• Sonuç bulunamadı

Design of practical broadband matching networks with commensurate transmission lines

N/A
N/A
Protected

Academic year: 2021

Share "Design of practical broadband matching networks with commensurate transmission lines"

Copied!
5
0
0

Yükleniyor.... (view fulltext now)

Tam metin

(1)

ContentslistsavailableatSciVerseScienceDirect

International

Journal

of

Electronics

and

Communications

(AEÜ)

j o u r n al hom ep ag e :w w w . e l s e v i e r . c o m / l o c a t e / a e u e

Design

of

practical

broadband

matching

networks

with

commensurate

transmission

lines

Metin

engül

KadirHasUniversity,FacultyofEngineeringandNaturalSciences,34083Cibali,Fatih,Istanbul,Turkey

a

r

t

i

c

l

e

i

n

f

o

Articlehistory: Received15November2012 Accepted4February2013 Keywords: Broadbandmatching Realfrequencytechniques Matchingnetwork Losslessnetworks

a

b

s

t

r

a

c

t

Todesignbroadbandmatchingnetworksformicrowavecommunicationsystems,commercially

avail-ablecomputeraideddesign(CAD)toolsarealwayspreferred.Butthesetoolsneedpropermatching

networktopologyandelementvalues.Therefore,inthispaper,apracticalmethodisproposedto

gener-atedistributed-elementmatchingnetworkswithgoodinitialelementvalues.Then,thegainperformance

ofthedesignedmatchingnetworkcanbeoptimizedemployingthesetools.Theutilizationofthe

pro-posedmethodisillustratedbymeansofthegivenexample.Itisshownthatproposedmethodprovides

verygoodinitialsforCADtools.

© 2013 Elsevier GmbH. All rights reserved.

1. Introduction

In the design of high frequency communication systems, if thewavelength of theoperationfrequency is comparable with physicalsizeofthelumpedcircuitelements,usageofdistributed elementsisinevitable.Therefore,atRadioFrequencies(RF),design of broadband matching networks withdistributed elements or commensuratetransmissionlineshavebeenconsideredasavital problemforengineers[1].

Although analytic theory of broadband matching may be employedfor simple problems [2,3], it iswell knownthat this theoryisinaccessibleexceptforsimpleproblems.Therefore,for practicalapplications,itisalwayspreferabletoutilizeCADtools, to design matching networks with distributed elements [4–6]. Matchedsystemperformanceisoptimizedbyallthecommercially available CAD tools. At the end of this process, characteris-tic impedancesand thedelay lengths ofthe transmissionlines areobtained. But performanceoptimization ishighly nonlinear withrespecttocharacteristicimpedancesanddelaylengths,and requiresproperinitials[7].Furthermore,selectionofinitialvalues isvitalforsuccessfuloptimization,sincetheconvergenceofthe optimizationdependsontheselectedinitialvalues.

Therefore,inthispaper,awell-establishedprocessisproposed, todesignbroadbandmatchingnetworkswithequallengthor com-mensuratetransmissionlines.Theselinesarealsocalledasunit elements(UEs).

∗ Tel.:+902125336532;fax:+902125335753.

E-mailaddresses:msengul@khas.edu.tr,mtnsngl@gmail.com

2. Broadbandmatchingproblem

The broadbandmatching problem can beconsidered as the design ofalossless two-portnetwork betweenageneratorand complexload,insuchawaythatpowertransferfromthesource totheloadismaximizedoverafrequencyband.Thepower trans-fercapabilityofthelosslessmatchingnetworkisbestmeasuredby meansofthetransducerpowergainwhichcanbedefinedasthe ratioofpowerdeliveredtotheloadtotheavailablepowerfromthe generator.

The matching problems can be grouped basically as single matching and double matching problems. In the single match-ingproblems,thegeneratorimpedanceispurelyresistiveandthe loadimpedanceiscomplex.Ontheotherhand,ifbothterminating impedancesarecomplex,thentheproblemiscalledasthedouble matchingproblem.

Letusconsidertheclassicaldoublematchingproblemdepicted inFig.1.Transducerpowergain(TPG)canbewrittenintermsof therealandimaginarypartsoftheloadimpedanceZL=RL+jXLand thoseoftheback-endimpedanceZ2=R2+jX2,orintermsofthe realandimaginarypartsofthegeneratorimpedanceZG=RG+jXG andthoseofthefront-endimpedanceZ1=R1+jX1ofthematching networkasfollows:

TPG(ω)= 4R˛Rˇ

(R˛+Rˇ)2+(X˛+Xˇ)2

. (1)

Hereif˛=1,ˇ=G,andif˛=2,ˇ=L.

Theobjectiveinbroadbandmatchingproblemsistodesignthe losslessmatchingnetworkinsuchawaythatTPGgivenby(1)is maximizedinsideafrequencyband.Sothematchingproblemin thisformalismcanberegardedasthedeterminationofarealizable 1434-8411/$–seefrontmatter © 2013 Elsevier GmbH. All rights reserved.

(2)

G Z

Distributed

Element

Equalizer

L Z 2 2, S Z

E

1 1, S Z

Fig.1.Doublematchingarrangement.

impedancefunctionZ1orZ2.OnceZ1orZ2isobtainedproperly,the losslessmatchingnetworkcanbesynthesizedeasily.

RealfrequencylinesegmenttechniqueproposedbyCarlin (RF-LST)isoneofthebesttechniquestodeterminearealizabledataset forZ2[8,9].Inthismethod,Z2isrealizedasaminimumreactance functionanditsrealpartR2(ω)isresembledbylinesegmentsin suchawaythatR2(ω)=

m

k=1ak(ω)Rk,passingthroughm-selected pairsdesignatedby



Rk,ωk;k=1,2,...,m



.Here,breakpoints (orbreakresistances)Rk areconsideredastheunknownsofthe problem.Then,thesepointsareobtainedvianonlinear optimiza-tionofTPG.

TheimaginarypartX2(ω)=

m

k=1bk(ω)RkofZ2isalsoexpressed bymeansofthesamebreakpointsRk.Itisimportanttonotethat thecoefficientsak(ω)areknownquantitiesandtheyarecalculated intermsofthepre-selectedbreakfrequenciesωk.Thecoefficients bk(ω)are obtainedbymeansof Hilberttransformation relation given for minimum reactance functions. If H{◦} represents the Hilberttransformationoperator,thenbk(ω)=H



ak(ω)



.

InRF-LST,twoindependentapproximationstepsseemtobe dis-advantagesofthemethod.Althoughitispossibletoextendthe methodtosolvedouble matching problems,thecomputational efficiencyappliesonlyforsinglematchingproblems.

Thebasicprincipleofthedirectcomputationaltechnique(DCT) issimilartothatoftherealfrequencylinesegmenttechnique[10]. Inthismethod,therealpartoftheunknownmatchingnetwork impedanceR2iswrittenasarealevenrationalfunction.Thenthe unknowncoefficientsofthisfunctionareoptimizedtogetthebest gainperformance.

InDCT, theunknowncoefficients ofR2 must bedetermined sothatR2 isanonnegativeevenrationalfunction,whichinturn ensurestherealizabilityoftheresultingimpedancefunctionZ2. Soinordertoguaranteetherealizability,anauxiliarypolynomial isutilizedforconstructinganintrinsicallynonnegativerealpart functionR2.Bytheintroductionofthispolynomial,althoughthe realizabilityissimplyensured,thecomputationaleffortandthe nonlinearityofthetransducerpowergainwithrespecttothe opti-mizationparametersareincreased.

InFettweis’smethod,parametricrepresentationofthepositive realback-enddrivingpointimpedanceZ2isutilized[11].Namely, thepositive realimpedanceZ2 isexpressedin apartialfraction expansion,andthenthepolesofZ2areoptimizedtogetthebest gainperformanceofthesysteminthefrequencyband.

Theparametricmethodconstitutes anefficientapproach for solvingsinglematchingproblems.Theonlyproblemisthe initial-izationofthelocationofpoles,whichmaybecritical.

Inallthemethodsexplainedbrieflyabove,thelossless match-ingnetworkisdescribedintermsofasetoffreeparametersby meansofback-enddrivingpointimpedanceZ2.But,thematching problemcanalsobedescribedbymeansofanyothersetof param-eters.Intherealfrequencyscatteringapproachwhichisreferred toastheSimplifiedRealFrequencyTechnique(SRFT),thecanonic polynomialrepresentationofthescatteringmatrixisemployedto describethelosslessmatchingnetwork[12,13].

In anothermethodproposed in[7,14],the back-enddriving pointimpedanceofthematchingnetworkZ2ismodeledasa min-imumreactancefunction,then,ifnecessary,aFosterimpedanceis connectedinseries.

Astheresultoftheexplanationabove,itisdesiredtoexpress theback-endimpedanceZ2ofthematchingnetworkintermsof anysetoffreeparameters.Thengainperformanceofthematching networkisoptimizedvia(1).Butthedeterminationofthe back-endimpedanceexpressioniscomplicated.Thereisaverysimple andobviouswaytodeterminetheback-endimpedanceZ2or front-endimpedanceZ1ofthematchingnetwork.Thisisthecruxofthe proposedmethod.

Intheproposedmethod,thesedrivingpointimpedances(Z2 orZ1)aredeterminedutilizing thescatteringparametersofthe losslessmatchingnetwork,sourceandloadreflectioncoefficients. Soin thenext section,canonic polynomial representation of a distributed-elementtwo-portnetworkisbrieflysummarized,and thenrationaleoftheproposedmethodisgiven.

3. Canonicpolynomialrepresentationofadistributed elementtwo-portnetwork

Mostof thedesign methods for microwavenetworks incor-poratefinite homogenoustransmissionlines ofcommensurable lengthsasidealUEs[15].Bycommensurate,itmustbeunderstood thatalllinelengthsinanetworkaremultiplesoftheUElength. Richardshasshownthatthedistributed-elementnetworks com-posedofcommensuratetransmissionlines(UEs)canbeproceeded inanalysisorsynthesisaslumpedelementnetworksunderthe transformation

=tanhp,

whereisthecommensuratedelayofthetransmissionlines,pis theusualcomplexfrequencyvariable(p=+jω)andistheso calledRichardsvariable,=+j.Specifically,ontheimaginary axis,thetransformationtakestheform=j=jtanω.

ReferringtothedoublematchingconfigurationshowninFig.1, thescatteringparametersofthelosslessmatchingnetworkcanbe writtenintermsofthreerealpolynomialsbyusingthewellknown Belevitchrepresentationasfollows:

S11()= h() g(), S12()= f(−) g() , S21()= f() g(), S22()=−h(−)g() , (2)

wheregisastrictlyHurwitzpolynomial,fisarealpolynomialwhich isconstructedonthetransmissionzerosofthematchingnetwork andisaunimodularconstant(=±1).Ifthetwo-portis recipro-cal,thenthepolynomialfiseitherevenoroddand=f(−)/f().

Thepolynomials



f,g,h



arerelatedbytheFeldtkellerequation

g()g(−)=h()h(−)+f()f(−). (3)

Itcanbeconcludedfrom(3)thattheHurwitzpolynomialg() isafunctionofh()andf().Ifthepolynomialsf()andh()are known,thenthescatteringparametersofthetwo-portnetwork, andthenthenetworkitselfcancompletelybedefined.

Inalmost allpractical applications,thedesignerhasanidea abouttransmissionzerolocationsofthematchingnetwork.Hence thepolynomialf()isusuallyconstructedbythedesigner.For prac-ticalproblems,thedesignermayusethefollowingformoff()

f()=f0()(1−2)n/2 (4)

wherenspecifiesthenumberofequal-lengthtransmissionlines incascade,andf0()isanarbitraryrealpolynomial.Apowerful classofnetworkscontainsseriesorshuntstubsandequal-length

(3)

transmissionlinesonly.Series-shortstubsandshunt-openstubs producetransmissionzerosat=∞.Series-openstubsand shunt-shortstubsproducetransmissionzerosat=0.Forsuchnetworks, thepolynomialf()takesthemorepracticalform

f()=k(12)n/2 (5)

wherekisthetotalnumberofseries-openandshunt-shortstubs, andthedifferencen−(n+k)givesthenumberofseries-shortand shunt-openstubs.Here,nisthedegreeofthematchingnetwork, whichisalsothedegreeofthepolynomialg()orh().

4. Fundamentalsoftheproposedmethod

Consider thedoublematching arrangement shownin Fig.1. Inputreflectioncoefficientofthematchingnetworkwhenits out-putportisterminatedinZLcanbeexpressedintermsofscattering parametersofthematchingnetworkas

S1=S11+

S12S21SL

1−S22SL (6)

whereSListheloadreflectioncoefficientandexpressedas SL=ZL−1

ZL+1. (7)

Similarly,outputreflectioncoefficientofthematchingnetwork whenitsinputportisterminatedinZGcanbewrittenintermsof scatteringparametersofthematchingnetworkas

S2=S22+

S12S21SG

1−S22SG (8)

whereSGisthesourcereflectioncoefficientandexpressedas SG= ZG−1

ZG+1. (9)

Sothefront-endandback-enddrivingpointimpedancesofthe matchingnetworkcanbecalculatedviathefollowingequations, respectively; Z1= 1+S1 1−S1 , (10) Z2= 1+S2 1−S2 . (11)

Astheresult,thefollowingalgorithmcanbeproposedtosolve bothsingleanddoublebroadbandmatchingproblemswith dis-tributedelements.

5. Proposedalgorithm

Inputs:

• ZL(measured)=RL(measured)+jXL(measured), ZG(measured)=RG(measured)+ jXG(measured): Measured load and generator impedance data, respectively.

• ωi(measured):Measurementfrequencies,ωi(measured)=2 fi(measured). • fnorm:Normalizationfrequency.

• Rnorm:Impedancenormalizationnumberinohms.

• h0,h1,h2,...,hn:Initialrealcoefficientsofthepolynomialh(). Heren is thedegreeofthepolynomialwhich is equaltothe numberofdistributedelementsinthematchingnetwork.The coefficientscanbeinitializedas±1inanadhocmanner,orthe approachexplainedin[16]canbefollowed.

• f():Apolynomialconstructedonthetransmissionzerosofthe matchingnetwork.Apracticalformisgivenin(5).

• ıc: The stopping criteria of the sum of the square errors.

Outputs:

• Analyticformoftheinputreflectioncoefficientofthelossless matchingnetwork,S11()=h()/g().Itisnotedthatthis algo-rithmdeterminesthecoefficientsofthepolynomialsh()and g(),whichinturnoptimizesthegainperformanceofthesystem. • Circuittopologyofthelosslessmatchingnetworkwithelement values:Thecircuittopologyandelementvaluesareobtainedas theresultofthesynthesisofS11().Synthesisisaccomplishedby extractingpolesat0and∞,correspondingtostubs,while equal-lengthtransmissionlinesareextractedbyemployingRichards extractionmethod[17] orthemethodgiven in[18]. Alterna-tively,thesynthesiscanbecarriedoutinamoregeneralfashion usingthecascadedecompositiontechniquebyFettweis,whichis basedonthefactorizationofscatteringtransfermatrices[19].As aresult,S11()issynthesizedasalosslesstwo-portwhichisthe desiredmatchingnetwork.

Computationalsteps:

Step1:Normalize themeasuredfrequencieswithrespectto fnormandsetallthenormalizedangularfrequencies

ωi=fi(measured)/fnorm.

Normalizethemeasuredloadandgeneratorimpedanceswith respecttoimpedancenormalizationnumberRnorm;

RL=RL(measured)/Rnorm, XL=XL(measured)/Rnorm, RG=RG(measured)/Rnorm, XG=XG(measured)/Rnorm over the entire frequencyband.

Step2:CalculatecorrespondingvaluesofRichardsvariablevia i=ji.=jtanωi.Thedelaycanbeobtainedasusualfromthe lengthlofthedistributed-elementandthephasevelocityc:=l/c. If l is chosen a fraction 1/K of thewavelength =c/fm (where fmisthemaximumnormalizedfrequencyinthefrequencyband, ωm=2 fm),itfollowsthat=2 /Kωm.Toprovideasafelimitfor theendofthestopband,ascaledfrequency ωm, >1,maybe advantageous[17].Then=2 /K ωm.

Step3:Obtain thestrictlyHurwitzpolynomialg() from(3). Thencalculatescatteringparametersvia(2).

Step4:CalculateloadandsourcereflectioncoefficientsSLand SGvia(7)and(9),respectively.

Step5:CalculateinputandoutputreflectioncoefficientsS1and S2via(6)and(8),respectively.

Step6:CalculateinputandoutputimpedancesZ1andZ2via(10) and(11),respectively.

Step7:Calculatetransducerpowergainvia(1).

Step 8: Calculate the error via

(ω)=1−TPG(ω), then ı=

 

(ω)



2.

Step9:Ifıisacceptable(ı≤ıc),stopthealgorithmand syn-thesizeS11().Otherwise,changetheinitializedcoefficientsofthe polynomialh()viaanyoptimizationroutineandreturntostep3.

6. Example

In this section, a double-matching example is presented to designapracticalbroadbandmatchingnetwork.Thenormalized sourceandloadimpedancedataaregiveninTable1.Itshouldbe notedthatthegivensourcedatacaneasilymodeledasacapacitor CG=4inserieswitharesistorRG=1(i.e.R+Ctypeofimpedance), andtheloaddataasacapacitorCL=4inparallelwitharesistance RL=1(i.e.R//Ctypeofimpedance).Sincethegivenimpedancedata arenormalized,thereisnoneedanormalizationstep.Thesame exampleissolvedhereviaSRFT.

Inthedesign,K=8, =1.3,andωm=1arechosen,eventually leadingtoanormalizedvalueof=0.6042.

In the matching network, it is not desired to have a trans-former,sotheleastdegreecoefficientofthepolynomialh()must

(4)

Z

L

Z

G

E

Z1

τ

Z

τ

2 Z

τ

3 Z

τ

4 Z

τ

5 Z

τ

6

Fig.2. Designeddistributed-elementdoublematchingnetwork;proposed:Z1=1.3114,Z2=1.5137,Z3=0.33667,Z4=1.8733,Z5=1.18295,Z6=1.2459,=0.6042;SRFT: Z1=1.3117,Z2=1.5067,Z3=0.33697,Z4=1.8708,Z5=1.18295,Z6=1.2453,=0.6042(normalized).

berestricted,i.e.h0=0[20].Thenthepolynomialh()is initial-izedash()=−6+54+32+inanadhocmanner.Also thepolynomialf()isselectedasf()=(1−2)3.Sointhe match-ingnetworktherewillbesixcascadedunitelementsonly.Inthe example,˛andˇareselectedas˛=1,ˇ=G.Sofront-end driv-ingpointimpedanceZ1andsourceimpedanceZGareusedinthe TPGexpressioninStep7.Thenafterrunningtheproposed algo-rithm,thefollowingscatteringparameterofthematchingnetwork isobtained S11()= h() g() where h()=−21.85646+39.70705+16.28164+0.35353 +9.470422.3660, g()=21.87926+80.59735+96.01754+67.20693 +33.18402+8.8298+1.

After synthesizing the obtained scattering parameter, the matchingnetworkseeninFig.2isobtained.

Asitis seenfromFig.3,initialperformance ofthematched system looks very good. However, it can be furtherimproved viaoptimizationutilizingthecommerciallyavailabledesigntool calledMicrowaveOfficeofAppliedWaveResearchInc.(AWR)[4]. Thus,thefinalnormalizedelementsvaluesaregivenasZ1=0.7517, Z2=1.709,Z3=0.2315,Z4=1.512,Z5=0.1459,Z6=1.145.For com-parisonpurpose,bothinitialandtheoptimizedperformancesof thematchedsystemandtheperformanceobtainedviaSRFTare depictedinFig.3.

InFig.4,transducerpowergaincurvesarezoomed.Thecurves obtainedviatheproposedmethodandSRFTareveryclosetoeach other,nearlythesame.ThealgorithmisimplementedviaMatlab. Theelapsedtimeforthisexampleis84.1322s.Itis84.6948svia SRFT.Alsototalsquarederror(ı=



|

(ω)|2)whichiscalculated atStep 8is 1.7189.It is1.7194 forSRFT. Thereis avery small

Table1

Givennormalizedloadandsourceimpedancedata.

ω RL XL RG XG 0.1 0.86 −0.34 1.00 −2.2500 0.2 0.60 −0.49 1.00 −1.2500 0.3 0.41 −0.49 1.00 −0.8333 0.4 0.28 −0.45 1.00 −0.6250 0.5 0.20 −0.40 1.00 −0.5000 0.6 0.14 −0.35 1.00 −0.4167 0.7 0.11 −0.32 1.00 −0.3571 0.8 0.09 −0.28 1.00 −0.3125 0.9 0.07 −0.26 1.00 −0.2778 1.0 0.06 −0.23 1.00 −0.2500

Fig.3. Performanceofthematchedsystemdesignedwithdistributedelements.

Fig.4.Closerexaminationofthegainperformances.

differencewhichcanbenegligible.Consequently,itcanbesaidthat

theproposedmethodandSRFTnearlyhavethesameperformance.

7. Conclusion

Designofpracticalbroadbandmatchingnetworksisoneofthe

importantproblemsofmicrowaveengineers.Inthisregard,

com-merciallyavailablecomputer-aideddesigntoolsareutilized.Once

thematchingnetworktopologyandproperinitialelementvalues

areobtained, these toolsare excellentto optimizesystem

per-formancebyworkingontheinitializedelementvalues.Soinitial

elementvaluesbecomeveryvital,sincethesystemperformance

ishighlynonlinearintermsoftheelementvaluesofthe

match-ingnetwork.Therefore,inthispaper,aninitializationmethodis

proposedtoconstructlosslessbroadbandmatchingnetworkswith

distributedelements.

Intheproposedmethod,theback-endorfront-enddrivingpoint

impedanceofthematchingnetworkisdeterminedintermsofthe

(5)

reflectioncoefficients.Thenthisimpedanceandoneofthe

termi-nationimpedances(ZGorZL)areusedtocalculatethetransducer

powergainofthesystem.Scatteringparametersofthematching

networkareoptimizedtogetthebestgainperformance.

Finally,it is synthesized asa lossless two-portresultingthe

desiredmatchingnetwork topologywithinitialelementvalues.

Eventually, the actual performance of the matched system is

improvedbymeansofacommerciallyavailableCADtool.

Basicadvantagesoftheproposedmethodcanbesummarized

asfollows:Thetransmissionzerosofthematchingnetworkcan

becontrolleddirectlybythechoiceofthepolynomialf().Since

thetransducerpowergainisquadraticallydependentonthe

opti-mizationparameters,theproblemreducestothatofaquadratic

optimization.Sothenumericalconvergenceofthemethodis

excel-lent.Alsotheproposedmethodis applicabletobothsingleand

doublematchingproblems.

An example is presented to construct broadband matching

network with distributed elements. It is shown that the

pro-posedmethodgeneratesverygoodinitialstofurtherimprovethe

matchedsystemperformancebyworkingontheelementvalues.

Therefore,itisexpectedthattheproposedalgorithmisusedasa

front-endforthecommerciallyavailableCADtoolstodesign

prac-ticalbroadbandmatchingnetworksformicrowavecommunication

systems.

References

[1]YarmanBS.Broadbandnetworks.WileyEncyclopediaofElectricaland Elec-tronicsEngineering;1999.

[2]Youla DC.Anewtheory ofbroadband matching.IEEE TransCircTheory 1964;11:30–50.

[3]FanoRM.Theoreticallimitationsonthebroadbandmatching ofarbitrary impedances.JFranklinInst1950;249:57–83.

[4]AWR, Microwave office of applied wave research Inc. http://www. appwave.com

[5]EDL,AnsoftDesignerofAnsoftCorp.http://www.ansoft.com/products.cfm [6]ADS,Agilenttechnologies.http://www.home.agilent.com

[7]Yarman BS,S¸engülM, Kılınc¸ A. Design of practical matching networks with lumped-elements viamodeling. IEEE Trans Circ Syst I: Regul Pap 2007;54(8):1829–37.

[8]CarlinHJ. Anew approachto gain-bandwidthproblems.IEEETrans CAS 1977;23:170–5.

[9]CarlinHJ,CivalleriPP.WidebandCircDes.CRCPerssLLC;1998.

[10]CarlinHJ,YarmanBS.Thedoublematchingproblem:analyticandreal fre-quencysolutions.IEEETransCircSyst1983;30:15–28.

[11]FettweisA.Parametricrepresentationofbrunefunctions.IntJCircTheoryAppl 1979;7:113–9.

[12]YarmanBS.Asimplifiedrealfrequencytechniqueforbroadbandmatching complexgeneratortocomplexloads.RCARev1982;43:529–41.

[13]YarmanBS.Asimplifiedrealfrequencytechniquetobroadbandmulti-stage microwaveamplifiers.IEEETransMTT1982;30:2216–22.

[14]S¸engülM,YarmanBS.Broadbandequalizerdesignwithcommensurate trans-missionlinesviareflectancemodeling.InstElectronInformCommunEng 2008;E91-A:3763–71.

[15]RichardsPI.Resistor-transmission-linecircuits.ProcIRE1948;36:217–20. [16]S¸engülM,YarmanBS, VolmerC, HeinM.Design ofdistributed-element

RF filters via reflectance data modeling. Int J Electron Commun (AEU) 2008;62:483–9.

[17]CarlinHJ.Distributedcircuitdesignwithtransmissionlineelement.ProcIEEE 1971;3:1059–81.

[18]S¸engülM.Synthesisofcascadedlosslesscommensuratelines.IEEETransCAS II:ExpressBriefs2008;55(1):89–91.

[19]FettweisA.Cascadesynthesisoflosslesstwo-portsbytransfermatrix factor-ization.R.Boite;1972.

[20]AksenA.Designoflosslesstwo-portwithmixed,lumpedanddistributed ele-mentsforbroadbandmatching.Dissertation.Bochum,RuhrUniversity;1994.

MetinS¸engülreceivedB.Sc.andM.Sc.degreesin Electron-icsEngineeringfrom ˙IstanbulUniversity,Turkeyin1996 and1999,respectively.HecompletedhisPh.D.in2006 atIs¸ıkUniversity, ˙Istanbul,Turkey.Heworkedasa tech-nicianat ˙IstanbulUniversityfrom1990to1997.Hewas acircuitdesignengineeratR&DLabsofthePrime Min-istryOfficeofTurkeybetween1997and2000.Between 2000and2008,hewasalectureratKadirHasUniversity, ˙Istanbul,Turkey.Dr.S¸engülwasavisitingresearcherat InstituteforInformationTechnology,Technische Univer-sitätIlmenau,Ilmenau,Germanyin2006forsixmonths. HeworkedasanassistantprofessoratKadirHas Univer-sitybetween2008and2010.Currentlyheisservingasan associateprofessoratKadirHasUniveristy.Dr.S¸engülisworkingonmicrowave matchingnetworks/amplifiers,datamodelingandcircuitdesignviamodeling.

Şekil

Fig. 1. Double matching arrangement.
Fig. 3. Performance of the matched system designed with distributed elements.

Referanslar

Benzer Belgeler

Fonlar için rekabet.. de önemli etkileri vard›r. Bu etki, program ve önceliklerde de¤iflim sa¤layabilece¤i için, her zaman olumsuz olmaz. Ancak kendi misyonlar› ve

1) Bir kanun verilen yetkinin sınırları içinde hükümeti buna yetkili kıldığında. 2) Acil durum ve mutlak zorunluluk gerekçelerinin bunu gerekli kıldığı

In this paper, we consider stochastic and time series modeling of carbon market prices and provide estimates of the model parameters involved, based on the European Union

The set includes Informed Consent Form, Demographic Information Form, Aberrant Behavior Checklist, Parenting Stress Index-Short Form, Family Resilience Scale and the

In spite of their belief in the historical and cultural justification of the Greek state’s claims on the area, the governing elites in Greece where realistic enough to acknowledge

1963’te Kıbrıs krizinin ortaya çıkmasından 1973 Petrol Krizi’ne kadar olan dönemde Arap ülkeleriyle yakınlaşma sürecine giren Türkiye, Petrol Krizi’nin harekete

are ready for Focused Ion Beam (FIB) procedure. First mask layer is to pattern Silicon dioxide used as isolation pads and the second mask is used for patterning metal layer.

Using simulation, a proper defocus distance