• Sonuç bulunamadı

Carlsson's rank conjecture and a conjecture on square-zero upper triangular matrices

N/A
N/A
Protected

Academic year: 2021

Share "Carlsson's rank conjecture and a conjecture on square-zero upper triangular matrices"

Copied!
23
0
0

Yükleniyor.... (view fulltext now)

Tam metin

(1)

Contents lists available atScienceDirect

Journal

of

Pure

and

Applied

Algebra

www.elsevier.com/locate/jpaa

Carlsson’s

rank

conjecture

and

a

conjecture

on

square-zero

upper

triangular

matrices

Berrin Şentürk, Özgün Ünlü1

Department of Mathematics, Bilkent University, Ankara, 06800, Turkey

a r t i c l e i n f o a b s t r a c t

Article history:

Received26May2017

Receivedinrevisedform20July 2018

Availableonline13September2018 CommunicatedbyS.Iyengar MSC: 55M35;13D22;13D02 Keywords: Rankconjecture Square-zeromatrices Projectivevariety Borelorbit

Letk beanalgebraicallyclosedfieldandA thepolynomialalgebrainr variables withcoefficientsink.Incasethecharacteristicofk is2,Carlsson[9] conjectured thatforanyDG-A-moduleM ofdimensionN asafreeA-module,ifthehomology ofM isnontrivialandfinitedimensionalasak-vectorspace,then2r≤ N.Herewe

statea strongerconjectureaboutvarietiesofsquare-zerouppertriangularN× N matriceswithentriesinA.UsingstratificationsofthesevarietiesviaBorelorbits, weshow that the stronger conjectureholds when N < 8 or r < 3 without any restrictiononthecharacteristicofk.Asaconsequence,weobtainanewprooffor manyoftheknowncasesofCarlsson’sconjectureandgivenewresultswhenN > 4 andr = 2.

©2018ElsevierB.V.Allrightsreserved.

1. Introduction

Awell-knownconjectureinalgebraictopologystatesthatif(Z/pZ)ractsfreelyandcellularlyonafinite

CW-complex homotopy equivalentto Sn1× . . . × Snm, then r islessthan or equalto m. This conjecture

is known to be true in several cases: In the equidimensional case n1 = . . . = nm =: n, Carlsson [7],

Browder [6], andBenson–Carlson [5] proved theconjecture undertheassumption thattheinducedaction on homology istrivial. Without thehomology assumption,theequidimensional conjecturewas provedby Conner[11] for m= 2,Adem–Browder[1] forp= 2 orn= 1,3,7,andYalçın [25] forp= 2,n= 1.Inthe non-equidimensionalcase,theconjectureisprovedbySmith[23] form= 1,Heller[13] form= 2,Carlsson [10] forp= 2 andm= 3,Refai[20] forp= 2 andm= 4,andOkutan–Yalçın[19] forproductsinwhichthe average ofthedimensionsissufficiently largecomparedto thedifferencesbetween them.Thegeneralcase

m≥ 5 isstillopen.

* Correspondingauthor.

E-mail addresses:berrin@fen.bilkent.edu.tr(B. Şentürk),unluo@fen.bilkent.edu.tr(Ö. Ünlü).

1

ThesecondauthorispartiallysupportedbyTÜBA-GEBİP/2013-22.

https://doi.org/10.1016/j.jpaa.2018.09.007

(2)

LetG= (Z/pZ)randk beanalgebraicallyclosedfieldofcharacteristicp.AssumethatG actsfreelyand

cellularlyonafiniteCW-complexX homotopyequivalenttoaproductofm spheres.Onecanconsider the cellularchaincomplexC∗(X;k) asafinitechaincomplexoffreekG-moduleswithhomologyH∗(X;k) that

hasdimension 2m as ak-vectorspace. Hence,astrongerand purely algebraicconjecture canbe statedas follows:If C isafinitechaincomplexoffreekG-moduleswith nonzerohomologythen dimkH∗(C∗)≥ 2r.

However,Iyengar–Walkerin[15] disprovedthis algebraicconjecture whenp= 2,butthealgebraic version forp= 2 remainsopen.

LetR beagraded ring.Apair(M,∂) isadifferential graded R-moduleifM isagradedR-moduleand

∂ isanR-linearendomorphismofM thathasdegree−1 andsatisfies2= 0.Moreover,aDG-R-moduleis free if theunderlyingR-moduleisfree.

LetA= k[y1,. . . ,yr] bethepolynomialalgebrainr variables,wherek isafieldandeachyihasdegree−1.

Usingafunctorfrom thecategory ofchaincomplexesofkG-modulesto thecategoryofdifferentialgraded

A-modules, Carlsson showed in [8], [9] that the above algebraic conjecture is equivalent to the following conjecturewhenthecharacteristic ofk is2:

Conjecture1.Letk beanalgebraicallyclosed field,A thepolynomialalgebra inr variableswithcoefficients ink,and N apositiveinteger.If(M,∂) isafree DG-A-moduleof rankN whosehomology isnonzeroand finite dimensionalasa k-vectorspace, then N≥ 2r.

When the characteristic of k is 2, Conjecture 1 was proved by Carlsson [10] for r ≤ 3 and Refai [20] forN ≤ 8. Avramov,Buchweitz,and Iyengarin[4] dealtwith regularringsand inparticular theyproved Conjecture 1 for r ≤ 3 without any restriction on the characteristic of k. See also Proposition 1.1 and Corollary1.2 in[2],Theorem5.3 in[24] forresultsincharacteristicnotequalto2.

Inthis paperwe consider theconjecture from theviewpointof algebraicgeometry. We showthat Con-jecture1isimplied bythefollowing inSection2:

Conjecture 2. Let k be an algebraically closed field, r a positive integer, and N = 2n an even positive integer.Assumethatthereexistsanonconstantmorphismψ fromtheprojectivevarietyPrk−1totheweighted quasi-projectivevarietyofrankn square-zerouppertriangularN×N matrices(xij) withdeg(xij)= di−dj+1

forsomeN -tupleof nonincreasingintegers (d1,d2,. . . ,dN). ThenN ≥ 2r.

WewillgiveamoreprecisestatementofConjecture2inSection3afterdiscussingnecessary definitions andnotation.Weproposethefollowing,whichisstrongerthanConjecture2:

Conjecture3. Letk, r, N , n andψ be as in Conjecture 2. Assume 1≤ R,C ≤ N and thevalue of xij at

every pointintheimage ofψ is 0 wheneveri≥ N − R+ 1 orj≤ C. ThenN ≥ 2r−1(R+C).

Note that inConjecture 3 wehave 2r−1(R+C) ≥ 2r because1 ≤ R and 1≤ C. The main result of the

paperis aproofofConjecture 3whenN < 8 orr < 3,seeTheorem 2andTheorem 6. AsConjecture 3is thestrongestconjecturementionedabove,weobtainproofsofalltheconjecturesinthisintroductionunder the sameconditions,including themain resultof Carlsson in[9]. Also note thatfor r = 2,taking N > 4

gives novel resultsnot covered inthe literature. However, when the characteristic of thefield k is not 2, Iyengar–Walker[15] gaveacounterexampletoConjecture1foreachr≥ 8.HencebySection2,wecansay thatConjectures 2and3are alsofalsewhen r≥ 8 andthecharacteristic of thefieldk isnot2.Allthese conjecturesare stillopen incasethecharacteristic ofk is2.InSection4,we concludewithexamplesand problems.

Wethankthereferee forgivingusextensivefeedback,ashorterproofofTheorem1andencouragingus toextendourresultstofieldswithcharacteristicsotherthan2.WearealsogratefultoMatthewGelvinfor commentsandsuggestions.

(3)

2. SomenotesonConjectures 1, 2,and3

To show thatConjecture 3is the strongest conjecturein Section1, it is enoughto provethe following theorem.

Theorem 1.Conjecture2impliesConjecture 1.

Proof. Let k,r,andA beas inConjecture1.Let(M,∂) beafreeDG-A-moduleofrankN which satisfies thehypothesisinConjecture1.Withoutlossofgenerality,wecanassumethatN isthesmallestrankofall suchDG-A-modules.

Suppose the image of the differential ∂ is not contained in (y1,. . . ,yr)M . Then, there exists a basis

b1,. . . ,bN of M and there are some i and j so that ∂(bi) = cbj +



l=jglbl for some non-zero c ∈ k

and some gl ∈ A. Replacing bj with ∂(bi) gives a new basis b1,...,bN such that ∂(bi) = bj. Now form

the acyclic sub-DG-A-module (E,∂) of (M,∂) spanned by bi, bj. The map (M,∂) → (M,∂)/(E,∂) is a surjective quasi-isomorphismandM/E is freeofrankN− 2.This isacontradiction.Hence,theimage of thedifferential∂ iscontainedin(y1,. . . ,yr)M .

Now pick any basis c1,. . . ,cN of M such that deg(c1) ≤ · · · ≤ deg(cN). Let m be such that

deg(cN−m+1) = · · · = deg(cN) and deg(ci) < deg(cN−m+1) for all i < N − m + 1. For each i, we have

∂(ci) = jgijcj, for some homogeneous polynomials gij ∈ A. Since the image of ∂ is contained in

(y1,. . . ,yr)M , no gij is anon-zero constant. Thus, whenever gij is non-zero, we have deg(gij)≤ −1 and

hence deg(cj) = deg(ci)− 1 − deg(gij)≥ deg(ci). It follows that the differential on M restricts to one on

thesubmodule

L = AcN−m+1⊕ · · · ⊕ AcN.

Moreprecisely,foralli∈ {N − m+ 1,. . . ,N} wehave∂(ci) =Nj=N−m+1gijcj whereeachnonzerogij isa

linearpolynomial.Hence,relativeto thebasiscN−m+1,. . . ,cN,thedifferential∂ onL isgivenbyamatrix

intheform y1X1+· · · + yrXr where eachXi is anm× m matrix withentriesink. Since2= 0 wehave

X2

i = 0 and XiXj+ XjXi= 0 foralli,j.Incasethecharacteristic ofthefieldk is 2,by aclassicalresult

aboutcommutingsetofmatrices,forexampleseeTheorem7 onpage207 in[14],there existsaninvertible

m×m matrixT withcoefficientsink suchthatT−1XiT isuppertriangularforalli∈ {1,. . . ,r}.Incasethe

characteristicofthefieldk isnot2,foreverypolynomialQ innoncommutativer variables,thesquareofthe matrixQ(X1,. . . Xr)(XiXj−XjXi) iszero.Therefore,byatheoremofMcCoyasstatedin[22] (seealso[12],

[17]),againthere exists amatrixT as abovewhich simultaneouslyconjugatesallXi’s to uppertriangular

matrices. Inotherwords,thereisak-linearchangeofbasisinwhicheachXi isuppertriangular.Itfollows

that,relativetothisnewbasiscN−m+1 ,. . . ,cNofL onehas∂(ci)∈ ⊕Nj=i+1Acj foralli∈ {N −m+1,. . . N}.

Note that M/L is a free DG-A-module whose differential has an image in (y1,. . . ,yr)(M/L) and so, by

inductive argumentsonrank,we mayassume thatM/L admits abasiswhichmakesits differentialupper triangular. The unionof any liftof this basisto M with thebasis cN−m+1,. . . ,cN gives abasisB for M

where ∂ is representedby anuppertriangular matrixΨ.Moreover, Propositions8 and9 in [10] work for any characteristic. Hence N isdivisible by2 and for any γ in kr− {0} theevaluation of Ψ at γ gives a

matrixofrankN/2.

LetS = k[x1,. . . ,xr] bethepolynomialalgebrawithdeg(xi)= 1. For1≤ i≤ r,replaceyi withxi inΨ

toobtainΨ.NotethatΨ canbeconsideredasa nonconstantmorphismfromtheprojectivevarietyPr−1k to theweightedquasi-projectivevarietyofrankN/2 square-zeroupper triangularN× N matrices(xij) with

(4)

3. Varietiesofsquare-zero matrices

Weassumethatk is analgebraicallyclosed field,n apositiveinteger,N = 2n,andd= (d1,d2,. . . ,dN)

anN -tupleofnonincreasingintegers.

3.1. Statementsof conjectures

Wegiveherethenotationfortheaffine andprojectivevarieties usedto provetheconjectures discussed above.Firstwefix anaffine varietyUN,aringR(UN),andasubvarietyVN asfollows:

• UN istheaffinevarietyofstrictlyuppertriangularN× N matricesoverk.

• R(UN)= k[ xij |1≤ i< j≤ N ] isthecoordinateringofUN.

• VN isthesubvarietyofsquare zeromatricesinUN.

Define anaction oftheunit groupk∗ onUN by λ· (xij)= (λdi−dj+1xij) forλ∈ k∗. Usingthis actionwe

settwo morenotation.

• U (d) istheweightedprojectivespace givenbythequotient ofUN− {0} bytheactionofk∗.

• R(U (d)) isthe homogeneouscoordinateringofU (d).Inotherwords, R(U (d)) isR(UN) consideredas

agradedringwithdeg(xij)= di− dj+ 1.

Note thatthepolynomialpij = j−1



m=i+1

ximxmj inR(U (d)) is homogeneousof degreedi− dj+ 2 whenever

1≤ i< j ≤ N.Similarly,the n× n-minors of(xij) are homogeneous polynomials inR(U (d)).Hence,we

definetwo subvarietiesofU (d) asfollows:

• V (d) istheprojectivevarietyofsquarezeromatricesinU (d).

• L(d) isthesubvarietyofmatricesofranklessthann in V (d).

Wecanusethis terminologytorestateConjecture2:

Conjecture4.Letk bean algebraicallyclosedfield, r a positiveinteger,andd anN -tupleof nonincreasing integers. If thereexists anonconstant morphismψ fromthe projectivevariety Prk−1 to thequasi-projective varietyV (d)− L(d), thenN ≥ 2r.

LetU beanopen subsetofV (d).Wesayψ :Pkr−1 → U isanonconstantmorphism ifψ isrepresentedby (ψij) sothatthefollowingconditionsaresatisfied:

(I) there exists a positive integer m so that each ψij is a homogeneous polynomial in the variables

x1,x2,. . . ,xrinS ofdegreem(di− dj+ 1) for 1≤ i< j≤ N,

(II) foreveryγ∈ Prk−1 there existsi,j suchthatψij(γ)= 0.

Inparticular,ifψ :Prk−1 → U isanonconstantmorphism, ψ canbeconsideredasafunctionfromPrk−1 to

U representedbyanonconstantpolynomialmapψ from Ar

k totheconeoverU suchthatψ( Ark− {0}) does

notcontain the zeromatrix inVN. Each indeterminate xij canbe viewed as homogeneous polynomialin

R(U (d)).Hencefor1≤ R,C ≤ N wedefineanimportantsubvarietyofV (d):

(5)

Now werestatetheConjecture3asfollows:

Conjecture5.Letk beanalgebraicallyclosed field, r apositiveinteger,andd an N -tupleof nonincreasing integers. If there existsa nonconstantmorphismψ from theprojective varietyPr−1k tothequasi-projective variety V (d)RC− L(d), thenN ≥ 2r−1(R+C).

Hence,these varietiesare themain interestinthis paper.

3.2. Actionof aBorelsubgroupon VN

HereweintroduceanactionofaBorelsubgroupinthegroupofinvertibleN×N matricesonthevarieties discussed intheprevioussubsection.Firstweset anotationfortheBorelsubgroup.

• BN isthegroupofinvertible uppertriangularN× N matriceswith coefficientsink.

ThegroupBN actsonVN byconjugation.

• VN/BN denotes theset oforbitsoftheactionof BN onVN.

• BX denotestheBN-orbitthatcontainsX∈ VN.

A partial permutation matrix is a matrixhaving at most onenonzero entry, which is 1, in eachrow and column. A result of Rothbach (Theorem 1 in [21]) implies that each BN-orbit of VN contains a unique

partial permutationmatrix.Henceweintroducethefollowingnotation:

• PM(N ) denotes the set of nonzero N × N strictly upper triangular square-zero partial permutation matrices.

Thereisaone-to-onecorrespondencebetweenPM(N ) andVN/BN sendingP toBP.Wecanidentifythese

partial permutationmatriceswithasubsetofthesymmetricgroupSym(N ):

• P(N ) isthesetofinvolutionsinSym(N );i.e., thesetofnon-identitypermutationswhosesquareisthe identity().

ForP ∈ PM(N) andσ∈ P(N),

• σP denotes thepermutationinP(N ) thatsendsi toj ifPij= 1;

• Pσ denotes thepartial permutationmatrixinPM(N ) that satisfies (Pσ)ij = 1 ifand onlyifσ(i)= j

andi< j.

ClearlytheassignmentsP → σP andσ→ Pσaremutualinversesandsodefineaone-to-onecorrespondence

betweenP(N ) and PM(N ).

3.3. Apartial orderon theset of orbits

There are important partial orders on VN/BN, P(N ), PM(N ), all of which are equivalent under the

one-to-one correspondence mentioned above (cf. [21]). We begin with VN/BN. For Borel orbits B,B

(6)

• B≤ B meanstheclosureofB,consideredasasubspaceofVN, containsB.

Second, we define a partial order on PM(N ). To do this, we consider ranks of certain minors of partial permutationmatrices.Ingeneral,foranN× N matrixX,

• rij(X) denotestherankofthelowerleft((N− i+ 1)× j) submatrixofX,where 1≤ i< j≤ N.

ForpartialpermutationmatricesP,P ∈ PM(N),

• P ≤ P meansrij(P)≤ rij(P ) for alli,j.

Third,wedefine apartial orderonP(N ). Forpositiveintegersi< j,letσ(i,j) denotetheproductof the permutationsσ and(i,j) andσ(i,j)theconjugateofσ by(i,j).Forσ,σ∈ P(N),

• σ≤ σ ifσ canbe obtainedfromσ byasequence ofmovesof thefollowing form: – Type Ireplacesσ withσ(i,j) ifσ(i)= j andi= j.

– Type IIreplacesσ withσ(i,i)ifσ(i)= i< i < σ(i). – Type IIIreplacesσ withσ(j,j)ifσ(j)< σ(j)< j< j.

– Type IVreplacesσ withσ(j,j) ifσ(j)< j< j = σ(j).

– Type Vreplacesσ withσ(i,j) ifi< σ(i)< σ(j)< j.

Theideaofdescribingorder viathesemovescomes from[16].Although weusedifferent namesformoves, the set of possible moves are same. We represent a permutation (i1,j1)(i2,j2). . . (is,js) in P(N ) by the

matrix  i1 i2 . . . is j1 j2 . . . js  .

Forexample,wedrawtheHassediagram ofP(4) inwhicheachedgeislabelledbythetypeofthemove itrepresents(seeFig.1).

WhenN ≥ 6,theHassediagram forP(N ) istoo largetodraw here.Weare actuallyonlyinterestedin asmallpartofthis diagram,whichwediscussinSection3.6.

Onecanconsider Fig.1as astratification ofV4.In thenextsection, weuse thestratification of VN to

stratifyV (d).

3.4. Stratification ofV (d)

Ford= (d1,d2,. . . ,dN) anN -tupleof nonincreasingintegers,λ∈ k∗,andX = (xij)∈ VN,wehave

λ· X = λ · (xij) = (λdi−dj+1xij) = DλIλXDλ−1

where denotes the diagonal matrixwith entries λd1,λd2,. . . ,λdN and is the scalar matrixwith all

diagonal entries λ. LetPX ∈ PM(N) be the uniquepartial permutation matrix inthe Borelorbit of X.

Considerb∈ BN suchthat

PX = b−1Xb.

Let Iλ,X be the diagonalmatrix whose jth entry isλ if (PX)ij = 1 for somei and 1 otherwise.Then we

(7)

Fig. 1. Hasse diagram of P(4).

IλPX = Iλ,X−1 PXIλ,X.

Hence,wehave

λ· X = Dλb Iλ,X−1 b−1X b Iλ,Xb−1D−1λ = Z−1XZ

where Z = bIλ,Xb−1D−1λ is in BN. Thus, for any X ∈ V (d) there exists a well-defined Borel orbit in

VN/BN thatcontainsarepresentativeofX inVN.Hencewecansetthefollowingnotation.ForX ∈ V (d),

• BX denotestheBorelorbitinVN/BN thatcontainsarepresentative ofX inVN.

Letψ :Prk−1→ V (d)− L(d) beanonconstantmorphism.Thereisaliftofthismorphismtoamorphism from Ar

k − {0} to the cone over V (d)− L(d) that canbe extended to a morphism ψ : Ark → VN. Since

Ar

k is anirreducible affine variety,there exists aunique maximal Borelorbitamong the Borelorbitsthat

intersects the image of ψ nontrivially. Note that this maximal Borel orbit is independent of the lift and extension we selected becauseit is also maximal inthe set {BX|X ∈ V (d)}. Hence we mayassociate a

permutationto thenonconstantmorphismψ:

• σψ isthepermutationthatcorrespondstotheuniquemaximalBorelorbitBX whereX isintheimage

ofψ.

Note that every point in the image of a morphism ψ as above must have rank n. Hence σψ must be a

product ofn distincttranspositions.InSection3.6,wewill restrictourattentiontosuchpermutations.

3.5. Operationson polynomialmapsfrom Ar k toVN

Another way to see that BX is well-defined for X ∈ V (d) is to consider the fact that a minor of a

representative ofX iszeroifandonlyifthecorresponding minorofanotherrepresentative iszero.Weuse this factseveral timestoproveourmain result.Henceweintroducethefollowingnotation. ForX ∈ VN,

• mi1i2... ik

j1j2... jk(X) denotesthedeterminantofthek×k submatrixobtainedbytakingthei1th,i2th,. . . , ikth

(8)

Firstnotethatmi1i2... ik

j1j2... jk canbeconsideredasamorphismfromVN tok,andhencecanbecomposedwith

the morphism ψ mentioned inthe previous subsection.Here we discuss several other morphisms thatwe cancomposewithsuchmorphisms.Foru∈ k,

• Ri,j(u) isthefunctionthattakes asquarematrixM andmultipliestheith rowofM byu andaddsit

tothejth rowofM whilemultiplyingthejth columnofM byu andaddingittotheith columnofM .

Note that Ri,j(u)(M ) is a conjugate of M . In fact, they are inthe same Borelorbit when M ∈ VN and

i > j. Hence,for i > j, we can consider Ri,j(u) as an operation thattakes a morphism from Ask to VN

and transformsitto amorphismfrom As+1k to VN by consideringu as anewindeterminate andapplying

Ri,j(u) tothemorphism.Forv∈ k∗,

• Di(v) denotesthefunctionthattakesasquarematrixM andmultipliestheith rowofM byv andthe

ith columnof M by1/v.

Letq beapolynomialins indeterminates.WedefineDi(q) asanoperationthattakesarationalmapfrom

thequasi-affinevarietyAsk− Z toVN and transformsitintoarationalmap fromAsk− Z ∪ V (q) toVN by

applyingDi(q),usingthefollowingnotation:

• V (q1,q2,. . . ,qk) isthevarietydeterminedbytheequationsq1= q2= . . . qk = 0.

Weusetheabovenotationalsoforvarietiesinprojectivespacesdeterminedbythehomogeneouspolynomials

q1,q2,. . . ,qk.

3.6. Rank oforbitsand proofof firstmainresult

Each σ∈ P(N) isaproduct ofdisjoint transpositions.Hencefor σ∈ P(N), wedefine therank of σ to

be the numberof transpositionsinσ. Note thatunderthe one-to-one correspondence between P(N ) and PM(N ),therankofapermutationisequalto therankofthecorresponding partialpermutationmatrix.

• RP(N ) denotesthepermutationsinP(N ) ofrankn.

NotethatallmovesotherthantypeIpreservetherankofσ.Indeed,theonlywayofobtainingσ ofsmaller rankbyapplying ourmovesis bydeletingatransposition, whichistheeffectofmoveof typeI.Alsonote thatitisimpossibletohaveamoveoftypeIIor amoveoftypeIVbetweentwopermutationsinRP(N ).

Forexample,wedrawtheHassediagramforRP(6) whereeachdottedlinedenotesamoveoftypeIIIand solidlinedenotesamoveoftypeV(seeFig.2).SuchHassediagrams,withparticularattentionpaidtothe maximalelements,willleadtotheproofofourfirstmainresult.

Theorem2.Conjecture 5holdsforN < 8.

Proof. TakeN < 8,d= (d1,d2,. . . ,dN) an N -tupleofnonincreasingintegers,andψ :Prk−1 → V (d)− L(d)

anonconstantmorphism.Thenσ = σψisinRP(N ).ByconsideringFigs.1and2,wenotethatthereexists

aunique maximal σ ∈ RP(N) suchthat σ can be obtained from σ bya sequence ofmoves of type III. Since movesof type III do not change the number of leading zero rows and ending zero columns of the corresponding partial permutation matrices, theBorel orbitcorresponding to σ is containedinV (d)RC if and onlyif theBorel orbitcorresponding to σ iscontained inV (d)RC for allR,C.Hence itis enoughto

(9)

Fig. 2. Hasse diagram of RP(6).

consider thecaseswhereσ is lessthanorequaltoamaximalelement inRP(N ) forN = 2,4,6.Wecover these casesbyproving inthefollowingeightstatements:

(i) Ifσ = (1,2) thenr < 2.

Assumetothecontrarythatσ = (1,2) andr≥ 2.Ifwealsowriteψ foritsrestrictiontoP1

k⊆ Pr−1k ,weget

amapoftheform

ψ(x : y) =  0 p12 0 0  ,

where p12 isahomogeneouspolynomialink[x,y].Since k isalgebraically closed,there exists γ∈ P1k such thatp12(γ)= 0.Thismeansψ(γ) isinL(d),whichisacontradiction.

(ii) Ifσ≤ (1,2)(3,4) thenr < 3.

Supposetothecontrarythatσ≤ (1,2)(3,4) andr≥ 3.Whenwerestrictψ toP2

k,wegetamapoftheform

ψ(x : y : z) = ⎡ ⎢ ⎢ ⎢ ⎣ 0 p12 p13 p14 0 0 0 p24 0 0 0 p34 0 0 0 0 ⎤ ⎥ ⎥ ⎥ ⎦.

Note thatthere existsγ inP2

k suchthat

p12(γ) = 0 and p13(γ) = 0.

Againthis meansψ(γ)∈ L(d).Hencethiscaseisprovedbycontradiction aswell. (iii) If σ≤ (1,4)(2,3) thenr < 2.

(10)

Supposewehave ψ(x : y) = ⎡ ⎢ ⎢ ⎢ ⎣ 0 0 p13 p14 0 0 p23 p24 0 0 0 0 0 0 0 0 ⎤ ⎥ ⎥ ⎥ ⎦. Letmi1i2... ik

j1j2... jk beas inSection3.5andusethesamenotationtodenoteitscompositionwithψ.Thenthere

existsγ in P1

k suchthat

m1234(γ) = (p13p24− p23p14)(γ) = 0.

Thisagaingivesacontradiction.

(iv) Ifσ≤ (1,2)(3,4)(5,6) thenr < 3.

Supposeotherwise.Wehave

ψ(x : y : z) = ⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 0 p12 p13 p14 p15 p16 0 0 0 p24 p25 p26 0 0 0 p34 p35 p36 0 0 0 0 0 p46 0 0 0 0 0 p56 0 0 0 0 0 0 ⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ .

Ifp12andp13 arenotrelatively primehomogeneouspolynomials thenthereexists γ∈ P2k suchthat

p12(γ) = 0, p13(γ) = 0, and m123456(γ) = 0.

Moreover,ifp46(γ)= 0 andp56(γ)= 0,then therankofψ(γ) isatmost2,whichleadsto acontradiction. Hencewehavep46(γ)= 0 orp56(γ)= 0. Let

c4(γ) := ⎡ ⎢ ⎣ p14(γ) p24(γ) p34(γ) ⎤ ⎥ ⎦ and c5(γ) := ⎡ ⎢ ⎣ p15(γ) p25(γ) p35(γ) ⎤ ⎥ ⎦ .

Sinceψ2= 0, c4(γ)p46(γ)+ c5(γ)p56(γ)= 0. Bythefactthatp46(γ)= 0 orp56(γ)= 0,c4(γ) andc5(γ) are

linearlydependent.Thustherankofψ(γ) isatmost2,whichisacontradiction.

Therefore wemay assumep12 and p13 are relatively prime. Sinceψ2 = 0,wehave p12p24+ p13p34 = 0

and p12p25+ p13p35 = 0. This impliesthatp12 dividesp34 and p35, and similarly p13 dividesp24 and p25. Thenthere exists γ inP2

k suchthat

p12(γ) = 0 and p13(γ) = 0.

Thismeansp12, p13,p24,p25,p34,andp35 allvanishatγ.Henceψ(γ)∈ L(d),whichisacontradiction.

(11)

These casesaresymmetric,soitisenoughtoprove (v). Consider ψ(x : y : z) = ⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 0 p12 p13 p14 p15 p16 0 0 0 0 p25 p26 0 0 0 0 p35 p36 0 0 0 0 p45 p46 0 0 0 0 0 0 0 0 0 0 0 0 ⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ .

Wemodifyψ bytheoperationsinSection3.5.FirstapplyR6,5(u) toψ foranewvariableu.Ifp46+up45= 0,

apply D5(1/(p46+ up45)) andthenR5,6(−p45) to obtainamatrixoftheform

⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 0 p12 p13 p14 0 0 0 0 m24 56 p26+ up25 0 0 0 0 m34 56 p36+ up35 0 0 0 0 0 p46+ up45 0 0 0 0 0 0 0 0 0 0 0 0 ⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ .

Hencebyselectingacorrectvalueforu wewouldbedoneifV (m24

56,m3456) V (p45).Wemayassume V (m2456, m3456)⊆ V (p45).

Similarly,wemayalsoassume

V (m2356, m3456)⊆ V (p35) and V (m2356, m2456)⊆ V (p25). Therefore,

V (m2356, m3456, m2456)⊆ V (p25, p35, p45) =∅.

Thus,{m2356,m3456,m2456} isaregularsequenceink[x,y,z].Ifp45andp46arenotrelativelyprime,thereexists

γ suchthatm23

56(γ)= 0,andp45(γ)= p46(γ)= 0.Hence,wemayassumep45 andp46are relativelyprime,

whichleadsacontradictionaswehave

p45m2356+ p25m3456− p35m2456= 0. (vii) Ifσ≤ (1,6)(2,3)(4,5) then r < 2.

To provethiscase,consider

ψ(x : y) = ⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 0 0 p13 p14 p15 p16 0 0 p23 p24 p25 p26 0 0 0 0 p35 p36 0 0 0 0 p45 p46 0 0 0 0 0 0 0 0 0 0 0 0 ⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ .

(12)

V (m124356)⊆ V (p13, p23) and V (m123456)⊆ V (p14, p24).

Hence{m124

356,m123456} mustbearegularsequenceink[x,y].Howeverthisisimpossiblebecausethedeterminant

of ⎡ ⎢ ⎣ gcd(p13, p14) p15 p16 gcd(p23, p24) p25 p26 0 gcd(p35, p45) gcd(p36, p46) ⎤ ⎥ ⎦ dividesbothm124 356 andm123456. (viii) Ifσ≤ (1,6)(2,5)(3,4) thenr < 2.

Itisenoughtoconsider aroot ofm123

456to provethiscase. 2

Note thatintheaboveproofthe last twocasesproveConjecture 5whenN ≤ 6 andr≤ 2. Intherest of the paper we will generalize these ideas to provethe conjecture for r ≤ 2. To do this we examine the dimensionsofthesevarieties.

3.7. Orbit dimensionsandproof of secondmain result

Wenowintroducenotationfordimensionsofthesevarieties.Inthissubsection,forσ∈ P(N),iftherank ofσ iss,then weobtaintwo sequencesofnumbersi1,. . . ,isandj1,. . . ,jssatisfyingthefollowing:

σ = (i1, j1)(i2, j2) . . . (is, js)

withi1< i2<· · · < isandia< jaforall1≤ a≤ s.In[18], Melnikovgivesaformulaforthedimensionof

aBorelorbit forσ inP(N ) asfollows:

• ft(σ):= #{jp| p< t,jp < jt} + #{jp| p< t,jp< it} for 2≤ t≤ s, • dim(Bσ)= N s+ s  t=1 (it− jt) s  t=2 ft(σ).

WedefineanewsubsetofRP(N ):

• DP(N ) istheset ofallσ inRP(N ) suchthatdim(Bσ)= dim(Bσ)− 1 wheneverσ isapermutation

obtainedbyapplyingasinglemoveoftypeI toσ.

For instance, the following is the Hasse diagram of DP(8) (Fig. 3). Note that in the Hasse diagram of

DP(8) allmovesare oftypeV.This isgenerallythecase,whichwe willprovebelow.Beforewedoso,we willproveaneasierresultthatwillintroducethenotationandargumentstylethatwillbenecessary.

Fixσ∈ DP(N).Weusetheourconventionforσ atthebeginningofthissubsectionwhichimpliesi1= 1.

Forq∈ {1,. . . ,n},letσ betheresultofapplying themoveoftypeIthatdeletes theqthtransposition ofσ,so that σ = (1, j1) . . . (iq−1, jq−1)(iq+1, jq+1) . . . (in, jn) = ⎛ ⎜ ⎝ 1 i2 . . . iq−1 iq iq+1 . . . in j1 j2 . . . jq−1 jq jq+1 . . . jn ⎞ ⎟ ⎠ .

(13)

Fig. 3. Hasse diagram of DP(8).

Then byMelnikov’sformulawehave

dim(Bσ) = N n + n  t=1 (it− jt) n  t=2 ft(σ) , and dim(Bσ) = N (n− 1) + n−1 t=1 (it− jt) n−1 t=2 ft(σ).

To simplifyourcalculation,wewriteft(σ)= ft1(σ)+ ft2(σ) for2≤ t≤ n,where

ft1(σ) = #{jp| p < t, jp < jt} and ft2(σ) = #{jp| p < t, jp< it},

and weusethenotation:

ft,ql (σ) = ⎧ ⎪ ⎨ ⎪ ⎩ ftl(σ) if t≤ q − 1 0 if t = q fl t−1(σ) if t≥ q + 1 forl = 1,2.

Lemma 3.If N= 2 and thetransposition(1,N ) appears inσ,thenσ /∈ DP(N).

Proof. If (1,N ) appears in σ and σ ∈ DP(N), let q = 2 and σ be the result of deleting the second transpositionfrom σ.Sincethei’sareincreasingandia< jaforall1≤ a≤ n,wehavei2= 2,so

(14)

σ= ⎛ ⎜ ⎝ 1 2 i3 . . . in N j2 j3 . . . jn ⎞ ⎟ ⎠ . Thus3≤ j2≤ N − 1.Letj2= N− b forsome1≤ b≤ N − 3.Then

σ = ⎛ ⎜ ⎝ 1 2 . . . in N N− b . . . jn ⎞ ⎟ ⎠ ,

andany numberbetweenN− b andN hastoappearas aj orani thatisbiggerthanj2.Therefore,  n  t=2 ft1(σ)− ft,21 (σ)  +  n  t=2 ft2(σ)− ft,22 (σ)  = b− 1.

Hence,dim(Bσ)− dim(Bσ)= N + 2− N + b− (b− 1)= 3,soσ /∈ DP(N). 2

Nowweprovethemainpropositionofthissubsection.

Proposition 4.If σ∈ DP(N), then jp< jt forallp< t, andthereforewe cannot applya moveof typeIII

toσ.Conversely,if σ∈ RP(N) and wecannot applyamoveof type ofIII toσ,thenσ∈ DP(N).

Proof. Assumethatσ∈ DP(N).Wewill provethefollowingstatementbyinductiononk:

jn−k< . . . < jn−1< jn and∀ (p < n − k), jp< jn−k. (∗)

Supposek = 0. To prove(), weneed to show that∀p< n,jp < jn. Letσ be obtained bydeletingnth

transpositionofσ. σ= ⎛ ⎜ ⎝ 1 i2 . . . in−1 in j1 j2 . . . jn−1 jn ⎞ ⎟ ⎠ . Sinceσ∈ DP(N),wehave 1 = dim(Bσ)− dim(Bσ) = N + (in− jn)  fn1(σ) + fn2(σ)  . (1)

Since thetotalnumberofpossible j exceptjn isn− 1,and anynumberbetween in and jn hasto appear

as j,we havefn2(σ) = n− 1 − (jn− in− 1).Bythe equation(1),fn1(σ)= n− 1,so that∀p< n,jp < jn

istrue.Thereforejn= N .

Nowassumethestatement() istruefork. Thenwecanvisualiseσ asfollows:

σ = ⎛ ⎜ ⎝ 1 < i2 < . . . < in−k−1 < in−k < in−k+1 < . . . < in j1 j2 . . . jn−k−1 jn−k < jn−k+1 < . . . < jn ⎞ ⎟ ⎠ Weneedtoprove() fork + 1,thatis,

(15)

By the second part of the inductive hypothesis for k, we have jn−k−1< jn−k so the first part of () is already true, and we onlyneed to show that thesecond partholds. In other words, itis enough to show thatfn1−k−1(σ)= n− k − 2.Letσ be obtainedbydeleting(n− k − 1)thtranspositionofσ.Thenwehave

n  t=n−k ft1(σ)− ft,n1 −k−1(σ) = k + 1. Letw := #{ip| in−k−1< ip< jn−k−1}.Then fn−k−12 (σ) = n− (k + 2) − (jn−k−1− in−k−1− 1 − w), and n  t=n−k ft2(σ)− ft,n2 −k−1(σ) = k + 1− w.

Bythefactthatdim(Bσ)− dim(Bσ)= 1,wehavefn−k−11 (σ)= n− k − 2.Thusthefirstclaimisproved.

Conversely, givenσ∈ RP(N),suppose thatσ isthe resultofapplying themoveoftypeI thatdeletes theq-th transpositionfrom σ.Notethatf1

q(σ)= q− 1 and n t=q+1ft1(σ)− ft,q1 (σ)= n− q.Hence, n  t=2 ft1(σ)− ft,q1 (σ) = n− 1. Then, dim(Bσ)− dim(Bσ) = N + (iq− jq)− (n − 1) − n t=2 ft2(σ)− ft,q2 (σ)  .

Wealsohavethedifferencef2

t(σ)− ft2(σ)= 0 whent∈ {1,. . . ,q− 1}.Therefore, n  t=2 ft2(σ)− ft,q2 (σ) = n  t=q #{jp| p < t, jp< it} n  t=q+1 #{jp| p < t, p = q, jp< it} = #{jp| jp< iq} + #{it| jq< it}.

Let F = #{jp | jp < iq} and G = #{it | jq < it}. Note that numbers between iq and jq must appear

as jl for l < q or as is where s > q. Let a = #{jp | iq < jp < jq} and b = #{it | iq < it < jq}. Then

a+ b = jq− iq− 1. Let A= #{jp | iq < jp} and B = #{it| it < jq}.Wehave A− a+ B− b− 1 = n.

Therefore, A+ B = n+ jq− iq. σ = ⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ B    i1, . . . , iq. . . b G    . . . , in j1, . . .    F a . . . j q, . . . , jn    A ⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠

(16)

Sinceσ∈ RP(N),A+ B + F + G= 2n.ThenF + G= n− jq+ iq.Consequently,dim(Bσ)− dim(Bσ)= 1,

soσ∈ DP(N). 2

Lemma5.Forevery X inV (d)− L(d) we have

rij(X)≥ j − i + 1 − n.

Proof. TherankofX isn,sor1N(X)= n.Theresultfollows fromtheinequality

rij(X) + (i− 1) + (N − j) ≥ r1N(X). 2

Wenowdefineourlast setofpermutations:

• MP(r,N ) isthesetofminimalpermutationsinP(N ) thatappearasapermutationintheformσψfor

somed andnonconstantmorphismψ :Prk−1→ V (d)− L(d).

Wenowstateandproveoursecond mainresult.

Theorem6.Conjecture 5holdsforr≤ 2.

Proof. We haveMP(1,N )= {(1,n+ 1)(2,n+ 2). . . (n,N )} (see Example 1). This means Conjecture 5

holdsforr = 1,becauseN− n+ (n+ 1)− 1= N ≤ N.HenceitisenoughtoproveConjecture5forr = 2.

SupposethatConjecture5doesnotholdforr = 2.ThenthereexistsanN -tupleofnonincreasingintegers

d= (d1,d2,. . . ,dN),twopositiveintegersR,C,andanonconstantmorphismψ :P1k→ V (d)RC− L(d) such

thatN < 2(R+C), or equivalently n<R+C.Write σψ = (i1,j1)(i2,j2). . . (in,jn) with 1= i1 < i2 < · · · < in andia< jaforall1≤ a≤ n.

Firstassumethatσ∈ DP(N).ByProposition4,wehavej1< j2<· · · < jn = N .Therefore,C = j1− 1

andR= N− in.Moreover,foreverya wehaveja>C andia< N− R+ 1.SetI :={i1,. . . ,in}.Notethat

{1,. . . ,C}⊆ I since∀a,ja>C.So,ia= a ifa≤ C.Similarly,ja−n= a ifa≥ N − R+ 1.Set

i := n− R + 1 and i := C

and

j := N− R + 1 and j := C + n.

Wehave

i− i = R + C − n − 1 = j − j.

Inparticular,i≤ i andj≤ j,sinceweassumedthatn<R+C.

Fori≤ i andj ≤ j, letAj,ji,i denote thesubmatrix of thepartial permutationmatrix obtained by

consideringtherowsfromi toi andcolumnsfromj toj.NotethatA1,i1,N hasC many1’sandA1,Nj,N hasR many1’s.HenceA1,ij,N musthave(R+C − n) many1’s.However,there isno1 in A1,ij,N−1; otherwisethere wouldexist a such thatia< i = n− R+ 1 and ja≥ j,whichleadsto acontradiction byconsideringthe

number of 1’s in the region determined by the union of A1,ia−1

1,N and A

1,N

ja+1,N. Similarly, there is no 1 in

A1,i

j+1,N.Hencethe(R+C − n)× (R+C − n)-submatrixA i,i

j,j contains(R+C − n) many1’s.Thus,A i,i j,j is

(17)

1 C j j ⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ ⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 0 . . . 0 .. . ... i = n− R + 1 Ai,i j,j 0 . . . 0 i =C 0 . . . 0 j = N− R + 1 .. . ... 0 . . . 0 N

This inparticular meansthatforeveryX intheimage ofψ wehave

ri,j−1(X) = rn−R+1,N−R(X) = 0

and

ri+1,j(X) = rC+1,C+n(X) = 0.

Sincek isalgebraicallyclosed,thereexistsarootoftheminormi,i+1...,i

j,j+1...,j.Thus,thereexistsX intheimage

of ψ suchthat

ri,j(X)≤ i − i, whichmeans

rn−R+1,C+n(X)≤ R + C − n − 1. Lemma5impliesthatforeveryX intheimage ofψ wehave

rn−R+1,C+n(X)≥ C + n − (n − R + 1) + 1 − n = R + C − n.

This isacontradiction,sowearedonewiththecaseσ∈ DP(N).

Now assumethat σ /∈ DP(N). We recursivelydefine perturbations of ψ sothat we canagain use the square submatrix Ai,ij,j to get acontradiction similar to that of the previous case. Set ψ0 = ψ, n0 = 0,

Z0=∅.Wehavearationalmapψ0:A2+n0

k − Z0→ VN.Nowgiven

ψs:A2+ns

k − Zs→ VN

we defineψs+1:A2+ns+1

(18)

Assumeσs∈ DP(N)./ ByProposition4,thereexists amoveoftypeIIIthatwecanapplyto σs.Hence, wemaydefine ls:= min{ l| l < l < σs(l) < σs(l)} and ls:= σs(min{ σs(l)| ls < l < σs(l) < σs(ls)}) . Incasels< i,wedefine ns+1:= ns+ ls− ls+ 1.

Note thatls> ls and so ns+1 ≥ ns+ 2. Hencethe affinevariety Zs canbe considered as asubvarietyof

A2+ns+1

k byconsideringA

2+ns

k ⊂ A

2+ns+1

k .Herewewrite(x,y,u1,u2,. . . uns+1) todenoteapointinA

2+ns+1

k .

HenceA2+ns

k correspondstothepointswhere uns+1= . . . = uns+1= 0.

Representψsbyamatrixs

ij) whose(i,j)-entryψsi,jisarationalfunctionink(x,y,u1,u2,. . . uns).Letpi

denotetheentryψs

i,σ(ls)whichisapolynomial.Alsoletp be¯ thegreatestcommondivisorofpls,pls+1,. . . ,pls.

Setpi := pi/¯p fori∈ {ls,ls+ 1,. . . ,ls}.Wedefine

Zs+1= Zs∪ V⎝ uns+1, ls  i:=ls uns+i−ls+1p  i⎠ .

We obtain ψs+1 from ψs by first applying Dls(uns+1), then Ri,ls(ui) where l

 s < i ≤ ls, then Di(li:=ls  suns+i−l  s+1p 

i) for ls < i ≤ ls, and finally applying Rls,i(−p



i) for ls < i ≤ ls. Notice that pi

alsodependsons,so wewriteps,i insteadofpi whens isnotclear.

We canrepeat this process until it is nolonger possible to find amove of typeIII with ls< i. At the end of this partof the process we obtain a rational map ψt for some t. Then we can continue with the

symmetric(withrespectto thediagonalofthematrixrunningfromthelowerleftentry totheupperright entry)operationsassumingψsisdefinedfors≥ t.Wedefine ψs+1as follows:

ls:= max{ l| l< l < σs(l) < σs(l)}

and

ls:= σs(max{ σs(l)| ls < l < σs(l) < σs(ls)}) .

We repeat the symmetric operations as long as we have σs(ls) > j. We define ns+1 := ns+ σs(ls)

σs(ls)+ 1.Let pj denote theentryψlss,j whichisapolynomial.Also letq be¯ thegreatestcommon divisor

ofpσs(ls),pσ(ls)+1,. . . ,pσs(ls).Similarly,wewritep



s,j insteadofpj whens isnotclear.

Attheendofthis processwe obtainarationalmapψ¯tfrom thequasiaffinevarietyU =A2+nt¯

k − Z¯tto

VN where wehaveri,j−1(X)= rn−R+1,N−R(X)= 0 and ri+1,j(X)= rC+1,C+n(X)= 0 foreveryX in the

imageofthisrationalmap.Denote thecompositionofmj,...ji,...,i withψt¯bym.Noticethatm isapolynomial ink[x,y,u1,. . . un¯t].Defineanotherpolynomialp inthesamepolynomialalgebraas follows:

p = ⎛ ⎝t−1 s=0 uns+1 ls  i=ls uns+i−ls+1p  s,i ⎞ ⎠ ⎛ ⎝t−1¯ s=t uns+1 σ(ls) j=σ(ls) uns+σ(ls)−j+1p  s,j⎠ .

(19)

Notice ps,l s,p



s,ls+1,. . . ,p



s,ls are relatively prime for 1≤ s ≤ t and similarly p

 s,σ(ls),p  s,σ(ls)+1,. . . ,p  s,σ(ls)

are also relativelyprimefor t + 1≤ s ≤ ¯t. Moreover, thepolynomialm has anirreducible factorink[x,y]

or for some s, the polynomial m has an irreducible factor in the form f uns + g, where f and g are in

k[x,y,u1,. . . uns−1] so thatf is neitheran associate of ps,ls norp



s,σ(ls). Hence,there exists asolution to

theequations p= 1 and m= 0, whichis againacontradictionbyLemma5. 2 4. Examplesandproblems

Thelast inequalityinConjecture5isequivalentto

r≤ ! log2  N R + C " + 1.

Onemightaskhow strictthisupperboundforr is.

In allthefollowing examples,we defineψ from Pkr−1 to V (d)RC− L(d) for differentvalues ofr, N and R+C where r = # log2 $ N R+C %&

+ 1. It follows that we do nothave abetter upper bound for r in these cases.

Example 1.Forr = 1,N = 2n,d= (0,. . . ,0) andR+C = N,define

ψ(x) = ⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 0 M 0 0 ⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ where M = ⎡ ⎢ ⎣ x 0 . .. 0 x ⎤ ⎥ ⎦ .

Note thatσψ= (1,n+ 1)(2,n+ 2). . . (n,N ).Thisexampleshowsthat

MP(1, N ) ={(1, n + 1)(2, n + 2) . . . (n, N)}.

Example 2.Forr = 2 andN = 4,d= (0,0,0,0) andR+C = 2,define

ψ(x, y) = ⎡ ⎢ ⎢ ⎢ ⎣ 0 x y 0 0 0 0 y 0 0 0 −x 0 0 0 0 ⎤ ⎥ ⎥ ⎥ ⎦ Inthis example,σψ= (1,2)(3,4).Hence,

MP(2, 4) ={(1, 2)(3, 4)}.

Example 3.Forr = 2,N = 6,d= (0,−1,−1,−1,−1,−1),andR+C = 3,set:

ψ(x, y) = ⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 0 x2 xy y2 0 0 0 0 0 0 y 0 0 0 0 0 −x y 0 0 0 0 0 −x 0 0 0 0 0 0 0 0 0 0 0 0 ⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ .

(20)

Here,wehaveσψ = (1,2)(3,5)(4,6).ConsideringtheHasse diagram forRP(6) inFig.2andsymmetryit

isclearthat

MP(2, 6) ={ (1, 2)(3, 5)(4, 6) , (1, 3)(2, 4)(5, 6) }.

Theaboveexamplecanbegeneralized:

Example4.Forr = 2,N = 2n,d= (0,−n+ 2,. . . ,−n+ 2),andR+C = n,set:

ψ(x, y) = ⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 0 xn−1 xn−2y . . . yn−1 0 . . . 0 0 0 . . . 0 y ... 0 −x y −x . .. 0 . .. . .. y −x 0 .. . 0 ⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ .

Wecanusetheaboveexamplesto obtainnewones bythechessboardconstruction:

Construction1.Let(l1,l2,. . . ,lm) beanm-tupleof positiveintegersand V (d)(l1,l2,...,lm) thesubvarietyof

V (d) suchthatxij = 0 whenl1+ l2+ . . . + l(s−1)+ 1≤ i< j≤ l1+ l2+ . . . + lsforsome1≤ s≤ m. For

example,thefollowingmatrixψ(x,y) isinV (d)(1,3,2) where d is6-tupleof nonincreasingintegers:

ψ(x, y) = ⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 0 x2 xy y2 0 0 0 0 0 0 y 0 0 0 0 0 −x y 0 0 0 0 0 −x 0 0 0 0 0 0 0 0 0 0 0 0 ⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ . Takeψ1∈ V (d1)(l1

1,l12,...,l1m)where d1 isN1-tuplenonpositiveintegersandψ2∈ V (d2)(l21,l22,...,l2m)where d2is

N2-tupleofnonincreasing integers.Wearrange a(N1+ N2)× (N1+ N2) matrixina2m× 2m-chessboard

asfollows:Theij-squarecontainsa'i i+1

2

(× l#εj j+1

2

&matrixsuchthatεk= 1 ifk isoddorεk = 2 ifk iseven

integer.Nowwe colortheij squareblack ifεi= εj andwhiteifεi = εj.Fill intheij squarewithzerosif

it isa blacksquare and otherwise fillitin with(xij) where i≤ i ≤ i andj ≤ j ≤ j part of ψεi where

i,i,j,j are definedby s = 's+1 2 ( −1  m=1 lεs m+ 1 and s = 's+1 2 (  m=1 lεs m.

Forinstance,usingchessboardconstructionwecanobtainanexample:

Example5. Forr = 2,N = 4+ 6= 10,d= (0,0,−1,−1,−1,−1,−1,−1,−1,−1), andR+C = 3+ 2= 5 weobtainanexamplebyapplying thechessboardconstructiononthemorphismsinExamples2and3.

(21)

0

0

Z

0

x2

0

xy

0

y2

Z

Z

0

0

0

0

Z

Z

0

0

Z

Z

Z

0

x

0

y

Z

Z

0

0

0

0

Z

0

0

0

0

0

0

Z

Z

0

y

0

0

Z

0

0

Z

0

0

0

0

0

0

Z

Z

0

−x

0

y

Z

0

0

Z

0

0

0

0

0

0

Z

Z

0

0

0

−x

Z

Z

0

0

Z

Z

Z

0

0

0

0

Z

Z

0

y

Z

0

0

Z

Z

Z

0

0

0

0

Z

Z

0

−x

0

0

Z

0

0

0

0

0

0

Z

Z

0

0

0

0

Z

0

0

Z

0

0

0

0

0

0

Z

Z

0

0

0

0

Z

Z

0

0

Z

Z

Z

0

0

0

0

Z

Z

0

0

Wealsohaveotherwell-knownconstructionsliketheKoszulcomplexconstruction[4] givingusexamples as below.

Example 6.Forr = 3,N = 8 andR+C = 2, define

ψ(x, y, z) = ⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 0 x y z 0 0 0 0 0 0 0 0 y −z 0 0 0 0 0 0 −x 0 z 0 0 0 0 0 0 x −y 0 0 0 0 0 0 0 0 z 0 0 0 0 0 0 0 y 0 0 0 0 0 0 0 x 0 0 0 0 0 0 0 0 ⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ . Inthis example,σψ= (1,2)(3,5)(4,6)(7,8).

Weendwithafewquestionsforfutureresearch.NoticethatallexamplesdiscussedaboveareinDP(N ).

Henceonecanask:

Question 1.IsMP(r,N )⊆ DP(N)?

Foralltheseexamples 2rN−1 isaninteger.Forinstance,wecanfindanexampleseeExample7forr = 3,

N = 12 but wedonotknowtheanswerofthefollowingquestion:

Question 2. Is there any example for r = 3 and N = 10? More precisely, canwe say that MP(3,10) is nonempty?

(22)

Example7.Forr = 3,N = 12,d= (0,0,−1,. . . ,−1) andR+C = 3,consider ⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 0 x y2 yz z2 0 0 0 0 0 0 0 0 0 0 0 0 y2 yz 0 z2 0 0 0 0 0 0 0 0 −x 0 −z 0 0 0 0 0 0 0 0 0 0 −x y 0 z 0 0 0 0 0 0 0 0 0 0 −x −y 0 0 0 0 0 0 0 0 0 0 0 0 −z 0 0 0 0 0 0 0 0 0 0 0 y −z 0 0 0 0 0 0 0 0 0 0 x 0 0 0 0 0 0 0 0 0 0 0 0 y 0 0 0 0 0 0 0 0 0 0 0 −x 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦

Note thatwe canobtain anexample for r = 3 andN = 4s for everys ≥ 2 byusing the examplesfor

r = 3,N = 8 andtheexampleforr = 3,N = 12 and applyingthechessboardconstructionas manytimes asnecessary. Iftheanswerto question2isnegative,thenonecanask thefollowingquestion:

Question3.Dothereexist anyperiodicityresultsaboutnonemptinessof MP(r,N )?

Anotherobservationwemakeabouttheseexamplesisthattherealwaysexistsasequenceofpermutations

σ1 < σ2 <· · · < σr such that the image of the morphism contains apoint from each Borel orbit

corre-spondingtothetheseσi’sandeachpairofconsecutiveσi’sconsist ofdistincttranspositions.Forexample,

puttingx= 1 andy = 0 toψ inExample2,wegetapointintheBorelorbitcorrespondingtopermutation

σ2= (1,2)(3,4), andputting x= 0 and y = 1,we getσ1= (1,3)(2,4).Henceonecouldask thefollowing question:

Question 4.Given σ in MP(r,N ) does there always exists amorphism ψ :Prk−1 → V (d)− L(d) with a sequence permutationsσ1 < σ2<· · · < σr and pointsX1,X2,. . . ,Xr intheimage ofψ such thatσψ = σ

andXi isintheBorelorbitofσi foralli andσi andσi+1 hasnocommontranspositions?

Iftheanswerisaffirmativetothisquestionthenonecansaythattheinequalities

n(n + 1) 2 ≤ dim(Bσi)≤ n 2 and dim(Bσi) + )n 2 * ≤ dim(Bσi+1)

holdand theygivetheinequalityN≥ 2r.

Note thatAlldayand Puppe [3] haverelated results:Ifk, A,r, N ,and M areas inConjecture1,then theyproveN ≥ 2r.Moreover,Avramov,BuchweitzandIyengar[4] verifiedthatN ≥ 2r inamoregeneral case.

References

[1] A. Adem,W.Browder, Thefreerank ofsymmetry of(Sn)k,Invent.Math.92 (2)(1988) 431–440,https://doi.org/10.

(23)

[2]C.Allday,V.Puppe,Boundsonthetorusrank,in:TransformationGroups,Poznań1985,in:Lect.NotesMath.,vol. 1217, Springer,Berlin,1986,pp. 1–10.

[3]C.Allday,V.Puppe, CohomologicalMethodsinTransformationGroups,Camb.Stud.Adv.Math.,vol. 32,Cambridge UniversityPress,Cambridge,1993.

[4] L.L.Avramov,R.-O.Buchweitz,S.Iyengar,Classandrankofdifferential modules,Invent.Math.169 (1)(2007) 1–35, https://doi.org/10.1007/s00222-007-0041-6.

[5] D.J.Benson,J.F.Carlson,Complexityandmultiplecomplexes,Math.Z.195 (2)(1987)221–238,https://doi.org/10.1007/ BF01166459.

[6] W.Browder,Cohomologyandgroupactions,Invent.Math.71 (3)(1983)599–607,https://doi.org/10.1007/BF02095996. [7] G.Carlsson,Ontherankofabeliangroupsactingfreelyon(Sn)k,Invent.Math.69 (3)(1982)393–400,https://doi.org/

10.1007/BF01389361.

[8] G.Carlsson,Onthehomologyoffinitefree(Z/2)n-complexes,Invent.Math.74 (1)(1983)139–147,https://doi.org/10.

1007/BF01388534.

[9]G.Carlsson,Free(Z/2)k-actionsanda problemincommutativealgebra,in: TransformationGroups,Poznań1985, in: Lect.NotesMath.,vol. 1217,Springer,Berlin,1986,pp. 79–83.

[10] G.Carlsson,Free(Z/2)3-actionsonfinite complexes,in:AlgebraicTopology andAlgebraicK-Theory,Princeton,N.J.,

1983,in:Ann.Math.Stud.,vol. 113, PrincetonUniv.Press,Princeton,NJ,1987,pp. 332–344,https://press.princeton. edu/titles/2548.html.

[11] P.E.Conner,Ontheactionofa finitegrouponSn× Sn,Ann.Math.(2)66(1957) 586–588,https://doi.org/10.2307/

1969910.

[12] M.P.Drazin,J.W.Dungey,K.W.Gruenberg, Sometheorems oncommutativematrices, J.Lond.Math.Soc.26(1951) 221–228,https://doi.org/10.1112/jlms/s1-26.3.221.

[13] A.Heller,Anoteonspaceswithoperators,Ill.J.Math.3(1959)98–100,http://projecteuclid.org/euclid.ijm/1255455001. [14]K.Hoffman,R.Kunze,LinearAlgebra,secondedition,Prentice-Hall,Inc.,EnglewoodCliffs,N.J.,1971.

[15] S.B. Iyengar,M.E.Walker,Examplesoffinitefreecomplexesofsmallrankandhomology,ActaMath.(2018),inpress, https://arxiv.org/abs/1706.02156.

[16]D.Karagueuzian,B.Oliver,J.Ventura,Thecomponentsofavarietyofmatriceswithsquarezeroandsubmaximalrank, in:Commutative Algebra,in: Lect.NotesPureAppl.Math., vol. 244,Chapman&Hall/CRC, BocaRaton,FL,2006, pp. 151–164.

[17] N.H. McCoy,Onthecharacteristic rootsofmatric polynomials,Bull.Am.Math.Soc.42 (8)(1936) 592–600,https:// doi.org/10.1090/S0002-9904-1936-06372-X.

[18] A. Melnikov, B-orbits insolutionsto theequationX2 = 0 intriangularmatrices, J. Algebra223 (1)(2000) 101–108,

https://doi.org/10.1006/jabr.1999.8056.

[19] O.B. Okutan,E.Yalçın, Freeactionsonproductsofspheresat highdimensions,AlgebraicGeom.Topol.13 (4)(2013) 2087–2099,https://doi.org/10.2140/agt.2013.13.2087.

[20] M. Refai,GroupactionsonfiniteCW-complexes,IndianJ.PureAppl.Math.24 (4)(1993)245–255,http://insa.nic.in/ writereaddata/UpLoadedFiles/IJPAM/20005a57_245.pdf.

[21] B.D.Rothbach,BorelOrbitsofX2= 0ingl(n),ProQuestLLC,AnnArbor,MI,thesis,(Ph.D.)–UniversityofCalifornia, Berkeley,2009,http://gradworks.umi.com/33/83/3383430.html.

[22] H.Shapiro,Simultaneousblocktriangularizationandblockdiagonalizationofsetsofmatrices,LinearAlgebraAppl.25 (1979)129–137,https://doi.org/10.1016/0024-3795(79)90012-0.

[23] P.A.Smith,Permutableperiodictransformations,Proc.Natl.Acad.Sci.USA30(1944)105–108,http://www.jstor.org/ stable/87918.

[24] M.E.Walker,TotalBettinumbersofmodulesoffiniteprojectivedimension,version1ofhttps://arxiv.org/abs/1702.02560, 2017.

[25] E.Yalçın,Groupactionsandgroupextensions,Trans.Am.Math.Soc.352 (6)(2000)2689–2700,https://doi.org/10.1090/ S0002-9947-00-02485-5.

Şekil

Fig. 1. Hasse diagram of P(4).
Fig. 2. Hasse diagram of RP(6).
Fig. 3. Hasse diagram of DP(8).

Referanslar

Benzer Belgeler

It can be concluded that an extended release tablet formulation of a hydrophilic drug can be prepared by using a low viscosity grade hydroxypropylmethylcellulose and a

Şair olarak, heccav olarak, öğretmen olarak, kültür sahibi bir insan olarak, müellif olarak onu ayrı ayrı aniatmaktansa, artist bir insan, daima dik­ katli,

At level four, the accuracy and efficiency of all versions are comparable, but the timing of IL version is a bit higher since its tree structure and the total number of

H›z›r, Ahmet Yaflar Ocak’›n ‹slâm-Türk ‹nançlar›nda H›z›r Yahut H›z›r-‹lyas Kültü adl› kita- b›nda söyledi¤i gibi bazen hofl olmayan

It is this approach that we employ in the paper (see Sect. 3 for the precise statements); its principal advantage over the clas- sical purely geometric treatment is the fact that,

In conclusion, in this work we studied power conversion and luminous efficiencies of nanophosphor QD integrated white LEDs through our computational models to predict their

Begin branching by the possible set of last jobs (known by the use of Emmons’ theorems) and apply depth first search by taking into account the precedence

Thus, it seems reasonable to set aside the criteria of entanglement based on nonlocality, violation of classical realism, and nonseparability, and to focus attention on