• Sonuç bulunamadı

Selective adsorption of L1210 leukemia cells/human leukocytes on micropatterned surfaces prepared from polystyrene/polypropylene-polyethylene blends

N/A
N/A
Protected

Academic year: 2021

Share "Selective adsorption of L1210 leukemia cells/human leukocytes on micropatterned surfaces prepared from polystyrene/polypropylene-polyethylene blends"

Copied!
9
0
0

Yükleniyor.... (view fulltext now)

Tam metin

(1)

ContentslistsavailableatScienceDirect

Colloids

and

Surfaces

B:

Biointerfaces

j o ur na l h o me p a g e :w w w . e l s e v i e r . c o m / l o c a t e / c o l s u r f b

Selective

adsorption

of

L1210

leukemia

cells/human

leukocytes

on

micropatterned

surfaces

prepared

from

polystyrene/polypropylene-polyethylene

blends

Nevin

Atalay

Gengec

a

,

Hilal

Unal

Gulsuner

b

,

H.

Yildirim

Erbil

a,∗

,

Ayse

Begum

Tekinay

b

aGebzeInstituteofTechnology,DepartmentofChemicalEngineering,41400Gebze,Kocaeli,Turkey

bInstituteofMaterialsScienceandNanotechnology,NationalNanotechnologyResearchCenter(UNAM),BilkentUniversity,06800Ankara,Turkey

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received27June2013

Receivedinrevisedform21August2013 Accepted18September2013

Available online 26 September 2013 Keywords:

Micropatterning L1210leukemiacells Leukocytes

Selectivecelladhesion Contactangle

a

b

s

t

r

a

c

t

TheobjectiveofthisstudyistopreparepolymericsurfaceswhichwilladsorbL1210leukemiacells

selectivelymorethanthatofhealthyhumanleukocytesinordertodevelopnewtreatmentoptionsfor

peoplewithleukemia.Chemicallyheterogeneousandmicropatternedsurfaceswereformedonround

glassslidesbydipcoatingwithaccompanyingphase-separationprocesswhereonlycommercial

poly-merswereused.Surfacepropertiesweredeterminedbyusingopticalmicroscopy,3Dprofilometry,SEM

andmeasuringcontactangles.Polymer,solvent/nonsolventtypes,blendcompositionandtemperature

werefoundtobeeffectiveincontrollingthedimensionsofsurfacemicroislands.MTTtestswereapplied

forcellviabilityperformanceofthesesurfaces.Polystyrene/polyethylene-polypropyleneblendsurfaces

werefoundtoshowconsiderablepositiveselectivitytoL1210leukemiacellswhereL1210/healthy

leuko-cytesadsorptionratioapproachedto9-foldinvitro.Effectsofwettability,surfacefreeenergy,microisland

sizegeometryontheadsorptionperformancesofL1210/leukocytespairsarediscussed.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Cell–polymer surface interactions which are important for diseasetreatmentordesignofbiomedicalproductsarenotwell understood at present. These interactions were related to five parameterssuchastypeandpercentdistributionofthechemical groupsonthesurface[1],surfaceroughness[1–5],surface wetta-bility[6–8],surfacefreeenergy(SFE)ofthesubstrate[6,9],andsize andshapeofthecellusedfortesting[10,11].Thedistancebetween surfacepatternsandfocaladhesionclustersonthecellmembrane isalsoanimportantparameterforthecelltoformastrong adhe-siononasubstrate[1–3,12,13].Shapes,functionsandviabilityof thecells maychangeasaresultoftheirinteractionwitha pat-ternedsubstrate[14].Chemicalcompositionandmorphologyofa substrateareimportantparametersaffectingtheadsorptionof pro-teinspresentonthecellsurfaceandinitialcelladhesion[15–17].

Whenbloodcontactswithasubstrate,theadhesionproperties ofnormalbloodcells(i.e.leukocytes,platelets)changedepending onthesurfacepropertiesofthesubstrate[18,19].Thesubstrateis quicklycoveredwithproteinspresentintheserum.Differences intopography, chemical composition,charge and wettabilityin thesubstratesurfaceresultinchangesintype,conformationand

∗ Correspondingauthor.Tel.:+902626052114;fax:+902626052105. E-mailaddresses:yerbil@gyte.edu.tr,yerbil19@yahoo.co.uk(H.Y.Erbil).

amountoftheadsorbedproteins.Proteinadsorptionisadynamic processandproteinsdonotstayonthesurfacepermanently,and overtimethehigher-affinityproteinsreplacethepreviously pre-adsorbedlower-affinityproteins[20].Proteinadsorptionincreases withtheincreaseinhydrophobicityofthesubstratesincewater moleculesintheseruminteractweaklywiththesurfaceenabling moreproteinstoadsorb.Ontheotherhand,proteinadsorption alsoincreaseswiththeincreaseinthesurfaceroughnessdueto theincreaseofthetotalsurfacearea.Attheend,compositionand conformationofproteinsaredifferentonthesurfacedependingon thehydrophobicityandroughnessofthesurface[20].These varia-tionsinproteinsarerecognizedbydistinctcelladhesionmolecules; hence,celladhesionishighlydependentoncelltype.Everycell hasadifferentcombinationofadhesionmoleculesexpressedon theirsurface.Forexample,leukocytesarewellendowedwith integ-rinadhesionreceptors[21].Moreover,cancercellsareknownto altertheiradhesionmoleculesinordertoinvadeandmetastasize [22–25].Therefore,itwillbepossibletoallowadesiredcelltype toattachtoasubstratebychangingsurfacetopography, composi-tion,andwettability.Ouraimistodesignapolymersurfacewhich allowsL1210adhesionandinhibithealthyleukocyteattachment. Thisselectivityisexpectedtobearesultofthefactthatsurface receptorsofhealthyleukocytesandL1210cancercellsmightbe different.

L1210mouselymphocyticleukemiacellsareoneofthemodel celltypesusedincancerstudies.TheadhesionpropertiesofL1210 0927-7765/$–seefrontmatter © 2013 Elsevier B.V. All rights reserved.

(2)

leukemiacellstosolidshavebeenexaminedpreviouslyanditwas foundthattheydonotadheretoglasswhereastheyeasilybindto embryonicfibroblastmonolayers[26].Itwasalsodeterminedthat adhesionofL1210cellsincreasedlinearlywiththeincreaseofthe sulfogroup( SO3H)concentrationonsulfonatedPSsurfaces[27].

Adhesionproperties ofhumanleukocytestosurfaceswerealso investigatedpreviouslyanditwasfoundthatthenumberof leuko-cyteswhichadheredtothepolymericsurfacesmodifiedbysurface sulfonationoradditionofotherfunctionalgroupswashigherthan thenon-modifiedsurfaces[28].Theactivationofadherent leuko-cyteswasfoundtobedependentonsurfacetopography,pattern geometryandsurfacechemistryof thesubstrate[18].Davidson etal.showedthatinteractionofthenormalcellswiththe topo-graphicallypatternedsurfaceswasdifferentfromthatofthecancer cellsandplasmamembranesofthenormalcellswerenoteasily deformedwhenthecontactareabetweensurfaceandcellswas increased[4].Yanetal.suggestedthatcellbindinglocationsand propertiescanbe controlledbydesigning specificmicropattern sizes[29].Thesefindingsshowthatmicropatternedsurfacesmay beusedinselectiveadsorptionofdifferentcelltypes.

Polymericmaterialsarewidelyusedasbiomedicalmaterials. Surfacepatterningofpolymershasbeenperformedbyapplying severalapproachessuchaslithography,UVlightsensible photore-sist,anduseofspeciallysynthesizedpolymers[30].Mostofthese patterningmethodsaretimeconsumingandexpensive;however, Erbiletal.havedemonstratedthatacheapcommercialpolymer suchaspolypropylene canbeconverted toa superhydrophobic surfacebyusingsolvent–nonsolventphaseseparationprocessand thismethodcanalsobeappliedtolargeareasurfacesand three-dimensionalmaterials[31].Polymerblendswhicharethephysical mixturesoftheindependentpolymerscanpreferablybeusedfor thispurposebecauseblendingmayprovideoptimizationofthe desiredpropertiesof thefinalsurface [32].Solventevaporation rate,phaseseparation,solventdiffusion,andSFEofthepolymers have substantialeffects on surface morphologyof the polymer blends[31,33–35].Micropatternedsurfacescanalsobeprepared usingpolymerblends[36,37].Kajiyamaandco-workersobserved that PMMA formed cylindrical micropatterns with controllable diametersbycreatingcrestsonthePSstructuresusingspin-coating withPMMA/PSblends[38].Overneyetal.obtainedmicropatterned surfacesbyperformingannealingprocessthroughformationofPS monolayersbyspin-coating onpoly-ethylene-co-propylene film [39].

Whitesides and co-workers were the first to use micro-patterned surfaces in the biomedical field in 1997 [12] and determinedthathumancellsdieonsolidswithparticularpatterns whereastheyremainaliveonsolidswithdifferentpatternsand concludedthatcellsizeandshapeareimportantfactorsforthis cellularbehavior[2,12].Theinteractionsbetweenmicrostructured surfacesand cellshave beenintensivelyinvestigated inthelast decadesanditwasfoundthatcellsstronglyrespondtotopographic changesonsurfaces[40–42]. Theamountand/ororientation of theinitialproteinadsorptionontopographicallyreconstructed sur-facesoccurdifferentlyfromtheflatsurfaces[41].

In this study, we prepared flat, rough and micropatterned surfaces on round glass slides using commercial polymers such as polystyrene (PS), high density polyethylene (HDPE), polyethylene-polypropylene copolymer (PPPE), ethylene-vinyl acetatecopolymer(EVA),andpolyvinylalcohol(PVOH)andalso polymerblends(PS/HDPE,PS/PPPE)bydipcoating method.We determined thespecific surfaces where selective adsorption of L1210leukemiacellsoccursbuthumanleukocytesdonotadsorb. Thesesurfacesmaybeused duringblood exchangetransfusion ofleukemia patientstoremove thecancerouscells (likeL1210 leukemia cell) out of blood. The effectiveness of the parame-ters such as surface roughness, surface chemical groups and

wettabilityontosurface/cellselectiveadsorptionwasalsostudied. Smoothpolymersurfaceswerepreparedtoobservetheeffectof roughness. It was found that selective adsorption performance changeddependingonthediametersofshortcylindricalislands and separation distance between the islands on the polymer surfacesespecially when PS/PPPE polymer blend surfaceswere usedwhereislanddiameterscanbeeasilycontrolled.

2. Materialsandmethods

2.1. Materials

PVOH (Merck, Mw=160,000), PS (Sigma–Aldrich,

Mw=350,000), HDPE (Basell Inc., HOSTALEN-GM8255,

Mw>1,000,000), PPPE copolymer containing 12% PE content

byweight(DowChemicalCo.,VERSIFY2300),andEVAcopolymer containing12%vinylacetatecontentbyweight(Dupont,ELVAX 660) wereused as received. These polymerswere dissolvedin THF (Merck), xylene and toluene solvents (Tekkim, Turkey) to prepare polymer solutions. Ethanol (EtOH, Merck) was used as non-solvent. Ultrapure water, diodomethane, formamide, ␣-bromonaphthalene,andethyleneglycol(allfromMerck)were usedascontactangledropliquids.Roundglassslides(Thermo Sci-entific)withdiametersof13and15mmwereusedassubstrates. Allbiologicalmaterialsusedinthisstudyareanalyticalgradeand werepurchasedfromInvitrogenandSigma–Aldrich.

2.2. Preparationofhomo-andcopolymerfilms

PVOH wasdissolvedinwater, PSand EVA intoluene, HDPE in xylene, PPPE in THFsolvents at a constant concentration of 10mg/mL.EtOHwasaddedtoPSandPPPEpolymersolutions pre-paredin THF solventby 10% (v/v).The withdrawal rate ofthe mechanicaldipperwasvariedbetween320–764mm/minatroom temperatureforPVOHandPSpolymers,at60◦CforPPPEandEVA, andat115◦CforHDPE.Cleanroundglassslideswaskeptinthe polymersolutionfor1mintoreachthermalequilibrium,andthen withdrawnwithaconstantspeed.Polymerfilmswerekeptina des-iccatorfor3–4handcompletelydriedinavacuumovenat40◦C overnight.PVOHfilmwasdriedundervacuumovernight,thenwas keptinglutaraldehydesolutionfor2handthenwashedusing dis-tilledwateranddriedundervacuumat50◦Covernighttoprepare cross-linkedPVOHsurfaces.Surfacesulfonationwascarriedout bysubmergingPSsamplesinsulfuricacid(60vol.%)for24h. Sul-fonatedPSsurfaces(PS-sulfo)wererinsedindeionizedwater,and air-dried.

2.3. PreparationofPS/HDPEandPS/PPPEblendfilms

PS,HDPEandPPPEpolymerstocksolutionswerepreparedin xyleneandTHFsolventsat10mg/mLconcentrationat10◦Cbelow theboilingpointsofthesolvents.PS/HDPEandPS/PPPEblend solu-tionswerepreparedby mixingthedifferentcompositionsfor a finalconcentrationof10mg/mLandstirredmechanicallyfor2–3h at60◦CtoreachequilibriumwhenTHF/xylenemixturewasused and115◦C whenonly xylenewasused.EtOHwasadded drop-wiseintotheblendsolution.Dipcoatingoftheroundglassslides byblendpolymerswascarriedoutwithamechanical dipperat a removalspeed of320–784mm/min.Coatedpolymer filmson glassslides werekeptin a desiccatorfor 3–4handcompletely dried in a vacuum oven at 40◦C overnight.Thicknesses of the coatings were between 0.5 and 2.0␮m. Surface topography of roughpolymerblendswasexaminedby3Dprofilometry(Nikon, Eclipse-LV100DMicroscope)andenvironmentalscanningelectron microscopy(ESEM,Quanta200FEG).

(3)

2.4. Contactanglemeasurement

Staticcontactanglesunderairweremeasuredbyusinga KSV-CAM200contactanglemeter.Equilibriumcontactanglevalues(e)

weredeterminedaftertheneedlewasremovedfroma5␮Ldroplet formedonthesolidsurface.Inaddition,wemeasuredboth advanc-ing(adv)andreceding(rec)watercontactangles(WCA)onthe

samplesurfacesbyincreasingthevolumeofthedropletsfrom3to 8␮Landdecreasingfrom8to4␮Lrespectivelythroughtheneedle byusingtheautomaticdispenserwhiletheneedlewaskeptwithin theliquiddroplet.rec werealsomeasuredbydropevaporation

methodforbetterprecision[43,44]. 2.5. Cellcultureandmaintenance

L1210(ATCC®CCL-219)andhumanprimaryleukocyteswere

usedforinvitrostudies.Humanprimaryleukocyteswereisolated fromwholeblood withstandard separationby densitymethod usingHistopaque(Sigma).L1210cellsweremaintainedinhigh glu-coseDMEM,4mMl-glutamine,1%Penicillin–Streptomycin,10% horseseruminstandardcellcultureconditions(37◦C,5%CO2,and

95%humidity).HumanprimaryleukocytesweremaintainedinF12 mediumsupplementedwith2mMl-glutamine,10%calfserum, and1%Penicillin/Streptomycininstandardcellcultureconditions. 2.6. AdhesionofL1210cellsandleukocytesonpolymersurfaces

PolymercoatedsurfacesweresterilizedunderUVlightbefore cellcultureexperiments.Priortocelladhesionexperiments,cells wereincubatedinserumfreemediacontaining4mg/mLBSAand 50␮g/mLcyclohexamidefor1hinstandardcellcultureconditions. Polymercoatedsurfacesandbaresurfacesthatwereusedascontrol wereplacedin24-wellplatesandcellswereseededonsurfacesat densitiesof15,000cells/cm2forleukocytesand45,000cells/cm2

forL1210cellsinserum-freemedia.Cellswereincubatedfor2h beforetheywerewashedwithHBSS(Hank’sBalancedSalt Solu-tion).Attachedcellswerestainedwith1␮MCalceinAMfor30min. Randomphotosweretakenfromeachwellandcellswerecounted usingImageJ.

2.7. CellularmorphologystudiesofL1210cellsonpolymer surfaces

In order to visualize the actin cytoskeleton of L1210 cells on polymer coated surfaces, cells were seeded at a density of 25,000cells/cm2. After 48h of incubation, they were fixed

with3.7%formaldehyde,permeabilizedwith0.25%Triton-Xand stainedwithTRITCconjugatedphalloidin.Thecellswere visual-izedunderanuprightmicroscope(ZeissAxioScope).Toanalyze themorphologiesof L1210cells onsubstrates,cells were fixed in2%gluteraldehydesolutionanddehydratedinincreasing alco-hol concentrations, dried with critical point-dryer (Tourismis Autosamdri®-815B)andimagedwithascanningelectron

micro-scope(FEIQuanta200FEG).

3. Resultsanddiscussion

Codes of thesurfaces prepared using PVOH, PS, sulfonated-PS,HDPEhomopolymers,PPPEandEVAcopolymersandPS/PPPE, PS/HDPEpolymerblendsareshowninTables1–3.

3.1. Surfacecharacterizationofflatpolymerfilmsandadhesionof L1210cellsandleukocytesonthesesurfaces

PVOH,PSandPS-sulfohomopolymer surfaceswerefoundto benearlyflatafterexaminingtheirSEMimageswherenovisible

protrusionscanbeseenevenat40,000×magnification(Fig.1a). PVOHandPS-sulfosurfaceswerefoundtobehydrophilic,whereas PSsurfacewashydrophobicasseeninWCAresults(Table1). Con-tactanglehysteresis(CAH)resultswerevariedbetween12–32±1◦. SurfacesulfonationofPSresultedinnearly2-foldincreaseinCAH indicatingahighincreaseinthechemicalheterogeneityonPS-sulfo surface.SFEvalueswerecalculatedusingevaluesbyapplyingvan

Oss–Chaudhury–Goodmethod[44,45]andwerefoundtorange between34.8and52.5mJ/m2.

AdhesionofL1210leukemiacellsandhealthyleukocytesonto flathomopolymersurfacesweretestedindependentlyanditwas foundthatrelativeadhesionofboth L1210cells andleukocytes onto hydrophilic PVOH and PS-sulfo surfaces was high while theiradhesionontohydrophobicPSsurface waslow (Fig.S1in the Supplementary Data). The increase of adhesion of healthy leukocyteswiththedecreaseofsurfacehydrophobicityisin agree-ment with the literature [6,7,28,46]. Our results were also in agreementwith a previousstudy where adhesionperformance ofL1210cells tothesulfonatedPSsurfacewashigherthanthat of non-sulfonated ones [27]. Regarding to cell selectivity, only PVOHsurfaceshowedselectivitywhereadhesionofhealthy leuko-cyteswashigherthantheadhesionofL1210cells.However,this wasoppositetoourexpectationswhere wetargetedtoprepare thesurfaces onwhich L1210 cells bindmore, whereas healthy leukocytes perform less adhesion. Very low positive selectiv-ity fitting our purpose was obtained only on the flat PS-sulfo surface.

3.2. Surfacecharacterizationofroughpolymerfilmsand adhesionofL1210cellsandleukocytesonthesesurfaces

SEMimagesoftheroughpolymersurfaces(HDPE,PPPEand EVA)weregiveninFig.1a.Thepresenceoflargespheruliteswas observed onHDPE coatingwithdiameters of 10–20␮m,where somenanofibrillarstructureshavingadimensionoflessthan1␮m wereseenatthecenter(Fig.1a).PPPEhadalowsurface rough-nesswithoutanyspheruliteformation.EVAsamplewasflatand smallprotrusionsof1–3␮mindiameterweredispersedacrossthe wholesurface.Theorder ofthesurfaceroughness(Rrms)of the

sampleswasHDPE>PPPE>EVA(Table1),which wasconsistent withourpreviouspublication[47]althoughthesurface prepara-tionmethodsarenotthesame.RrmsofEVA,HDPEandPPPEwere

generallysmall.HDPEandPPPEsurfaceswerehydrophobicand EVAwashydrophilicandthehighertheroughness,thehigherthe CAHresultswereobtained(Table1).SFEvaluesofHDPE,PPPEand EVAvariedinasmallrangebetween30.8and34.8mJ/m2(±12%

fromthemean).

Adhesionofbothcelltypesontoroughsurfaceswasfoundto berelativelyhigherthanthatontoflatsurfaces(Fig.S1).Adhesion ofbothleukocyteandL1210cellswasfoundtobehighestonthe PPPEsurface.SincePPPEandHDPEhadverycloseWCA,CAHand SFEvalues,this differenceincelladhesionperformancemaybe duetotheroughnessvariationorthepresenceofdifferentpattern structuresonPPPEsurfaceratherthanitshydrophobicity(Table1). Positiveadsorptionselectivitywasobservedonalloftherough sur-faceswhereadhesionperformanceofL1210cellsonHDPEandPPPE polymersurfaceswasnearlytwicetheleukocytes.Chemically het-erogeneousEVAandPPPEcopolymersurfacesshowedthehighest celladhesionperformanceinthisgroup.Thisfactrevealsthatrough andchemicallyheterogeneoussurfacescausehighercelladhesion inaccordancewithsomepreviouspublications[1–3,12,13,48].In summary,weobtainedpositiveselectiveadsorptiononroughand chemicallyheterogeneoussurfaceswhencommercialpolymersare usedhowevertheselectivityratioofL1210/leukocytewas insuffi-cient.Then,wedecidedtoprepareheterogeneoussurfaceshaving

(4)

Table1

Polymertype,watercontactangle,surfacefreeenergyandRrmsroughnessresultsonflatandroughpolymersurfaces.

Samplecode Polymertype Contactangle(±1◦) ␥TOT(mJ/m2) R(rms)

e adv rec CAH

PVOH PVOH(100%) 46 48 38 12 34.8 N.A.

PS PS(100%) 93 96 79 17 40.6 N.A.

PS-sulfo Sulfonated-PS 55 57 23 32 52.5 N.A.

HDPE HDPE(100%) 105 114 87 27 32.9 1.07

PPPE PPPE(100%) 106 107 83 24 30.8 0.63

EVA EVA-12(100%) 85 94 81 13 34.8 0.28

PS50/HDPE50 PS/HDPE(50:50) 101 107 84 23 N.A. N.A.

Table2

Polymertype,watercontactangleandRrmsroughnessresultsonPS,PPPEhomopolymersandPS/PPPEmicro-patternedpolymerblendsurfaceshavingdifferentblend

compositionobtainedby10vol.%non-solvent(EtOH)addition.

Samplecode Polymertype Contactangle(±1◦) R(rms)

e adv rec CAH

(PPPE)EtOH-10 PPPE(100%) 106 112 89 23 N.A.

(PS10/PPPE90)EtOH-10 PS/PPPE(10:90) 106 110 85 25 0.14

(PS20/PPPE80)EtOH-10 PS/PPPE(20:80) 105 111 81 30 0.15

(PS30/PPPE70)EtOH-10 PS/PPPE(30:70) 106 110 90 20 0.16

(PS50/PPPE50)EtOH-10 PS/PPPE(50:50) 106 109 88 21 0.18

(PS70/PPPE30)EtOH-10 PS/PPPE(70:30) 107 111 87 24 0.23

(PS)EtOH-10 PS(100%) 100 101 87 13 N.A.

specificpatternstructuresusingpolymerblendsinsteadofusinga singlepolymer.

3.3. Surfacecharacterizationofmicro-patternedPS50/HDPE50 polymerblendanditsadhesionperformanceforL1210cellsand leukocytes

WeobtainedPS50/HDPE50blendsurfacewhichcontains circu-larPSislandsonitwithdiametersof5–15␮m(Fig.1a).Surface morphologyofPS50/HDPE50blendwassimilartothereportsgiven

intheliteraturewherethediametersofcircularPSpatternswere between 2 and 20␮m depending on the synthesis conditions [49,50].Ingeneral,thepolymerwithlowerMwandSFE concen-tratesonthesurfacetominimizetheinterfacialtensionbetween polymer/airinterfaceandthusHDPEusuallycoversthesurfaceof PS.WCAandCAHresultsonthePS50/HDPE50surfacewasfoundto

bebetweenPSandHDPE(Table1).

AdhesionofL1210cellswashighonPS50/HDPE50surface(Fig.

S2a)however,theadhesionofhealthyleukocytesonthisblend sur-facedecreasedapproximately2-foldwhencomparedwithHDPE surfaceandthepositiveselectivityratioofL1210cells/leukocytes increasedfrom1.8to3.5onPS50/HDPE50 (Fig.S2b).L1210cells

donotliketoadheretoPSsurfacesandtheyprefertoadhereonto HDPEregionshowever,thepresenceofcircularPSislandsincreased theadhesionofL1210cellsmorethanthatofaHDPEsurface.Then, itisassumedthatmostoftheblendsurfacewascoatedwithHDPE includingthetopofthePSislands,probablywithaverythinHDPE layeronthemandthepresenceofthesecircularHDPEpatterns

causedtheincreaseoftheadhesionofL1210cellsandthedecrease ofleukocytes.Thus,thesizeandseparationdistancebetween cir-cularPSislandsareimportantfactorsaffectingtheadhesionofboth celltypes.Thenwedecidedtosynthesizenewpatternedsurfaces havingvaryingislanddiametersandseparationdistances. 3.4. Surfacecharacterizationofmicro-patternedPS/PPPEpolymer blendsfilmswithvaryingblendcompositionandadhesion performanceofL1210cellsandleukocytesonthesesurfaces

Dissolutionof HDPE in an organicsolventis a difficult pro-cessandwehadtousexyleneandheatuptohightemperatures topreparePS/HDPE blend solution.However,commercialPPPE copolymermaybeusedinsteadofHDPEandsincePPPEcanbe eas-ilydissolvedinTHFat60◦C.Then,wepreparedPS/PPPEpolymer blendsinTHFbyvaryingtheblendcompositionsas10:90,20:80, 30:70,50:50and70:30whereweaddedaconstant10vol.%EtOH intothesolutionforbetterphaseseparationduringdipcoating. SEMimagesofthesesurfacesweregiven(Fig.1b)anddiameters ofthecircularPSmicroislandsonPS/PPPEblendswerefoundto bebetween1and10␮mandwerelessthantheonesformedon PS/HDPEblend.

AllWCAresultsofPS/PPPEblendswereveryclosetoeachother andalsoclosetotheWCAofPPPEsurfaceobtainedby10vol.%EtOH additiontoitsTHFsolution(Table2)indicatingthatWCA’swere notaffectedbythepresenceofcircularPSislands.Thismaybe duetothecompletecoverageofcircularPSislandsbyPPPEduring filmformationandtheseblendsurfacesmaybeassumedtohavea

Table3

Polymertype,EtOHcontent,watercontactangleandRrmsroughnessresultsonmicro-patternedpolymerblendsurfaceswithaconstantPS40/PPPE60andPS20/PPPE80

compositionswheredifferentvol.%non-solvent(EtOH)wasadded.

Samplecode Polymertype EtOH(vol.%) Contactangle(±1◦) R(rms)

e adv rec CAH

(PS40/PPPE60)EtOH-4 PS/PPPE(40:60) 4 105 110 92 18 0.22

(PS40/PPPE60)EtOH-10 PS/PPPE(40:60) 10 105 111 87 24 1.54

(PS40/PPPE60)EtOH-14 PS/PPPE(40:60) 14 105 112 86 26 0.27

(PS40/PPPE60)EtOH-18 PS/PPPE(40:60) 18 106 112 84 28 0.14

(PS20/PPPE80)EtOH-6 PS/PPPE(20:80) 6 105 112 86 26 0.16

(PS20/PPPE80)EtOH-10 PS/PPPE(20:80) 10 105 111 81 30 0.15

(5)

Fig.1. (a)SEMimagesofflatandroughhomopolymer,copolymerandPS50/HDPE50polymerblendfilms;(b)micro-patternedPS,PPPEhomopolymersandPS/PPPE

micro-patternedpolymerblendsurfaceshavingdifferentblendcompositionobtainedbytheadditionof10vol.%non-solvent(EtOH)toTHFsolution.

completePPPEupperlayerwherethesurfaceroughnessand micro-patterningwereimposedbycircularPSislands.Thisisreasonable becauseSFEofPPPEwas30.8mJ/m2andmuchlessthanSFEofPSof 40.6mJ/m2(Table1)andPPPEhavingthelowerSFEmaypreferto concentrateonPS/airinterface.Itwasfoundthatthediametersof thecircularPSislandsonthesurfacecanbecontrolledbychanging theratioofPS/PPPEblendwhile10vol.%EtOHwasaddedwhere PSdiametersincreasedfrom1to10␮mwiththeincreaseofPS componentintheblendupto50%andthendecreaseddownto 2–4␮mabove50%.

L1210celladhesionincreasedonPS/PPPEblendsurfaceswith theincrease ofthe diameterofthe circularPSislands whereas leukocytesadhesionwereclosetoeach otheronthesesurfaces regardlessof thesizeof PSislands(Fig.2a).Allof thePS/PPPE polymerblendsurfacesshowedpositiveselectivitytowardL1210 cellsinagreementwithourobjective.L1210/leukocyteselectivity ratiorangedbetween2.0and9.5ontheseblendsurfaces(Fig.2b). (PPPE)EtOH-10 surface performed thehighest positive selectivity

andL1210cellsadheredtothissurface9.5timesgreaterthanthe healthyleukocytes.Mainreasonofthishighselectivityratiowas thelessadhesionofleukocytes.Themostsuccessfulsecond sur-facewasfoundtobe(PS20/PPPE80)EtOH-10whichshoweda7.8-fold

positiveselectivity.Bothofthesesurfaceshavesmallmicroislands whichallowtheadhesionofL1210cellsbutpreventsadhesionof leukocytes.Theincreasein sizeofcircularPSislandscausedan

increase oftheadhesionofboth L1210cellsand leukocytesfor (PS50/PPPE50)EtOH-10sample.Itisobviousthatthesurface

morphol-ogyarisingfromphaseseparation hasanimportantroleonthe cell/surfaceadhesionperformance.

As given in the introduction section, when blood contacts withasubstrate,thesubstrateis quicklycoveredwithproteins present in the serum and differences in topography, chemical composition, and wettability in the substrate surface result in changesintype,conformationandamountoftheadsorbed pro-teins[20].Whensurfaceroughnessincreases,proteinadsorption alsoincreasesduetotheincreaseofthetotalsurfacearea. Com-positionandconformationofproteinsaredifferentonthesurface dependingonthehydrophobicityandroughnessofthesurface. Every cell has a different combination of adhesion molecules expressedontheirsurfaceandthevariationsinproteinsonthe sub-stratearerecognizedbydistinctcelladhesionmolecules;hence, cell adhesionis highly dependent oncell type. Moreover, can-cer cells are knownto alter their adhesionmolecules in order to invade and metastasize [22–25]. Thus, surface receptors of healthyleukocytesandL1210cancercellsmightbedifferentand onlya specificcelltypeis allowedtoattachtoa substrate sur-facehavingspecificsurfacetopographyand composition.Inour work, we can only report which cell type prefers to attach to whichsurfacetypedependingonitsmorphology,roughnessand hydrophobicity.

(6)

Fig.2. (a)L1210andleukocyterelativecelladhesion;(b)L1210/leukocytecell adhe-sionratioformicropatternedroughfilmspreparedfromPS/PPPEpolymerblends withdifferentblendcompositionsobtainedbytheadditionof10vol.%non-solvent (EtOH)toTHFsolution.

3.5. Effectofnon-solventaddition:surfacecharacterizationof micro-patternedPS40/PPPE60andPS20/PPPE80polymerblend

filmswithvaryingnon-solventadditionandadhesion performanceofL1210cellsandleukocytesonthesesurfaces

Additionof non-solventresultsin the variation ofPS island sizesonthePS/PPPEblendsurfaces.Wepreparedpolymerblend

Fig.4. (a)L1210andleukocyterelativecelladhesion;(b)L1210/leukocytecell adhe-sionratioformicropatternedroughfilmspreparedusingconstantPS40/PPPE60blend

compositionandaddingdifferentvol.%ethanol.

surfaceswithaconstantPS40/PPPE60compositionwheredifferent

amountsofEtOH(4,10,14,and18vol.%)wereaddedand WCA andRrmsresultsonthesesurfacesareshowninTable3.Allthee

andadvvalueswereveryclosetoeachotherandalsoclosetothe

valueofPPPEcopolymerasseeninthistable,whereasrecreduced

andcorrespondinglyCAHincreasedbytheadditionofEtOHwhich

Fig.3.(a)OpticalmicroscopeandSEMimagesofmicro-patternedfilmspreparedusingconstantPS40/PPPE60polymerblendcompositionbutaddingdifferentvol.%ethanol; (b)micropatternedfilmspreparedusingconstantPS20/PPPE80polymerblendcompositionbyaddingdifferentvol.%ethanol.

(7)

Fig.5. (a)SEMimagesofL1210cells;(b)actinstainingofL1210cellsbyphalloidin.Red:actinfibers.(Forinterpretationofthereferencestocolorinthisfigurelegend,the readerisreferredtothewebversionofthisarticle.)

(8)

increasedtheroughnessandheterogeneityofthesurfaceduring phaseseparation.DiametersofcircularPSislandswerefoundina rangeof5–18␮m(Fig.3a)andinitiallyincreasedwiththeadded EtOHamount,howeverthenstayedapproximatelyconstantafter 10vol.%.

ResultsofcelladhesionsofL1210cellsandleukocytesontothe blendsurfaceswithaconstant PS40/PPPE60composition, where

differentamountsofEtOHwasaddedwerecompared with sin-gle(PS)EtOH-10and(PPPE)EtOH-10surfaces(Fig.4).Adhesionvalues

ofL1210cellswereclosetoeachotheronthesesurfacesexcept (PS40/PPPE60)EtOH-18surface(Fig.4a).AllofthePS40/PPPE60blend

surfacesshowedpositiveselectivitytowardL1210cellswhereratio ofL1210/leukocyteranged between4.2and 6.0 onthese blend surfaces(Fig.4b).Thehighestselectiveadsorptionwasfoundon the(PS40/PPPE60)EtOH-18 surface where theseparation distances

betweencircularPSislandswereslightly higherthanother sur-faces.rec valueforPPPEwasfoundtobe83◦(Table1)andthis

valuewasveryclosetothatof(PS40/PPPE60)EtOH-18of84◦(Table3),

indicatingthatPPPEcopolymercoatedthetopofthePS microis-landsduringfilmformation.Again,itwasfoundthatthesizeand geometryofmicroislandshasanimportantroleonthecell/surface adhesionperformance.

TheaboveworkwasrepeatedbypreparingPS20/PPPE80blends

inordertoseetheeffectof EtOHadditionontothesizesofPS microislands.DiametersofcircularPSmicroislandsdecreaseddue totheincreaseofthenucleationratewiththeuseofEtOHand variedbetween0.5and4.0␮m(Fig.3b).ThelargestPS microis-landswereseenon(PS20/PPPE80)EtOH-14 surface. WCAandRrms

roughnessresultsonmicro-patternedpolymerblendsurfaceswith aconstantPS20/PPPE80compositionwheredifferentamountsof

EtOH(6,10,and14vol.%)wereaddedarealsoshowninTable3. SimilartotheresultspresentedaboveforPS40/PPPE60blends,e

andadvvaluesofthePS20/PPPE80blendswereveryclosetoeach

otherandalsoclosetothevalueofPPPE(Table3)whereasrecvalue

reducedconsiderablyandcorrespondinglyCAHvalueincreasedby theadditionofEtOH.

RelativecelladhesionofL1210cellsandleukocytestotheblend surfaceshavingaconstantPS20/PPPE80compositionwithdifferent

amountsof ethanol addition wasdetermined(Fig. S3). Positive selectivitytowardL1210cellswasseenonallofthePS20/PPPE80

blendsurfaces.RelativeadhesionvaluesofL1210cellsincreased linearlywiththeincreaseofEtOHaddition,howevertheadhesion of leukocytes were close to each other on these surfaces (Fig. S3a).ThistrendissimilartotheincreaseofL1210celladhesion withtheincreaseofEtOHaddition(rightsideofFig.4a).Positive selectivityratioofL1210/leukocyterangedbetween5.0and8.0on theseblend surfaces(Fig. S3b).Thehighestselectiveadsorption wasfound on (PS20/PPPE80)EtOH-14 surface. The increase of the

circularPSdiameterfrom1to3.5␮mwiththeincreaseof non-solventadditionprovidedapositiveeffectonincreasingadhesion tendencyofL1210cells.

3.6. CharacterizationofL1210cellmorphologies

Uponbindingtoasubstratecellsstarttosynthesize extracellu-larmatrixproteins.Longtermadhesionbehaviorsofcells,which determinethemorphologiesandorganizationofactin cytoskele-tonsofcells,dependontheinteractionofsurfaceboundproteins andcells[51].InordertoinvestigatetheactincytoskeletonofL1210 cells,theywerestainedwithphalloidintodisplayF-actin orga-nization(Fig.5a).L1210cellsdisplayedactincytoskeletononall surfacesafter48h.SEManalyseswerealsoperformedtoinvestigate compatibilityofthesurfacestothecellsinmoredetail.These anal-ysesdemonstratedthatL1210cellsmaintainedtheirmorphology overallsurfaces(Fig.5b).Themorphologicalstudieshaveshown thatcellsgainedtheirexpectedmorphologiesattheendof48hand

maintainedtheirnaturalcytoskeletalorganization.These experi-mentsshowthatsynthesizedpolymerthinfilmsarebiocompatible surfacesforcellstudies.DiametersofL1210cellsusedinthisstudy wereapproximately5␮m(Fig.5a)andtheaveragediameterof aleukocyteis10␮m[52].Thus,theenhancedadhesiontendency ofleukocytesthanL1210cellsonPPPE/PSpolymerblendsurfaces withsmallmicro-patterndiametermightbecausedbythesize differencebetweenthesecelltypes.

4. Conclusions

Wepreparedpolymerblendsurfacesbydipcoatingontoglass wheremicroislandswereformedonthesurfacebyphase separa-tion.OurintentionwastoadsorbL1210leukemiacellsselectively muchmorethanthatofthehealthyhumanleukocytesonthese specificsurfaceswhichweremadeofcommercialpolymers.We determinedthesurfacepropertiesand relativeadhesion perfor-manceofthecellsonthesesurfaces.Itwasfoundthatthecontrol on thediameters of circular PS microislands on the surface is possibleespeciallywhenPS/PPPEblendsarepreparedusingTHF as solvent and EtOH as non-solvent. The top of the PS micro-islands was coated with a thin layer of PPPE having a lower SFEthan thatof PSduringfilmformation. Thesesurfaceswere testedfortheireffectoncellviabilitythroughMTT tests.It was foundthat all of the PS/PPPE blend surfaces showed consider-ablepositiveselectivitytoward L1210cells.The increaseinthe amountofEtOHincreasedboththediametersofPSmicroislands andrelativeadhesionofL1210cellsonthesesurfaces.However, healthyleukocytesdidnotshowthistrendandtheirrelative adhe-sionvalueswereclosetoeachother.PositiveselectivityofL1210 cells/healthyleukocytesratioapproachedto9-foldinvitro.The sur-facesshowingthehighestL1210/leukocyteselectivityratiowere (PPPE)EtOH-10,(PS20/PPPE80)EtOH-10 and (PS20/PPPE80)EtOH-14.The

diameterofcircularPSmicro-islandsonthesesuccessfulsurfaces variedbetween1.0and3.3␮m.Itwasalsoshownthatthesizes ofcircular micro-islands onthesurfacehave animportant role ontheL1210cell/surfaceadhesionperformance.Itispossiblethat theconformationandamountoftheadsorbedserumproteinson thesespecificblendsurfacesaredifferentdependingonthesizeof micro-islandsandthevariationsinproteinsonthesubstrateare recognizedbydistinctcelladhesionmoleculesdependingonthe typeofthecell.Thus,L1210leukemiacellsorhealthyleukocytes showeddifferentadsorptionbehavioronthesesurfaces.These find-ingsmaybeusedtodevelopnewtreatmentoptionsforpeoplewith leukemiawithsuitablescale-up.

Acknowledgement

TheauthorsgratefullyacknowledgethesupportfromThe Scien-tificandTechnologicalResearchCouncilofTurkey(TUBITAK)under theproject“Synthesisand useofmicro/nano patterned chemi-callyheterogeneoussurfacesfortheselectiveadsorptionofL1210 leukemiacells”(ProjectNo:MAG-110M181).

AppendixA. Supplementarydata

Supplementarymaterial relatedto this articlecanbe found, in the online version, at http://dx.doi.org/10.1016/j.colsurfb. 2013.09.040.

References

[1]E.M.Blanco,M.A.Horton,P.Mesquida,Langmuir24(2008)2284–2287. [2]G.M.Whitesides,E.Ostuni,S.Takayama,X.Y.Jiang,D.E.Ingber,Annu.Rev.

(9)

[3]Y.Xie,T.Sproule,Y.Li,H.Powell,J.J.Lannutti,D.A.Kniss,J.Biomed.Mater.Res. 61(2002)234–245.

[4]P.M.Davidson,H.Ozcelik,V.Hasirci,G.Reiter,K.Anselme,Adv.Mater.21(2009) 3586–3590.

[5]M.Nikkhah,F. Edalat,S.Manoucheri,A.Khademhosseini,Biomaterials33 (2012)5230–5246.

[6]M.Lampin,R.Warocquier-Clerout,C.Legris,M.Degrange,M.F.Sigot-Luizard, J.Biomed.Mater.Res.36(1997)99–108.

[7]M.C.Lensen,V.A.Schulte,J.Salber,M.Diez,F.Menges,M.Möller,PureAppl. Chem.80(2008)2479–2487.

[8]Y.Arima,H.Iwata,Biomaterials28(2007)3074–3082.

[9]H.M.Kowalczynska,ColloidsSurf.B:Biointerfaces4(1995)137–149. [10]C.W.Evans,CellBiol.Int.Rep.16(1992)1–10.

[11]A.N.Efremov,E.Stanganello,A.Welle,S.Scholpp,P.A.Levkin,Biomaterials34 (2013)1757–1763.

[12]C.S.Chen,M.Mrksich,S.Huang,G.M.Whitesides,D.E.Ingber,Science276 (1997)1425–1428.

[13]Y.C.Wang,C.C.Ho,FASEBJ.18(2004)525–527.

[14]M.J.Dalby,N.Gadegaard,R.S.Tare,A.Andar,M.O.Riehle,P.Herzyk,C.D.W. Wilkinson,R.O.C.Oreffo,Nat.Mater.6(2007)997–1003.

[15]A.S.G.Curtis,J.V.Forrester,P.Clark,J.CellSci.86(1986)9–24.

[16]H.J.Busscher,I.Stokroos,J.G.Golverdingen,J.M.Schakenraad,CellsMater.1 (1991)243–249.

[17]B.G.Keselowsky,D.M.Collard,A.Garcia,J.Biomater.25(2004)5947–5954. [18]J.Tan,W.M.Saltzman,Biomaterials23(2002)3215–3225.

[19]J.Folkman,A.Moscona,Nature273(1978)345–349.

[20]D.A. Puleo,R. Bizios (Eds.),Biological Interactions onMaterials Surfaces UnderstandingandControllingProtein,Cell,andTissueResponses,Springer, Dordrecht,2009.

[21]M.Stewart,M.Thiel,N.Hogg,Curr.Opin.CellBiol.7(1995)690–696. [22]N.Makrilia,A.Kollias,L.Manolopoulos,K.Syrigos,CancerInvest.27(2009)

1023–1037.

[23]J.S.Desgrosellier,D.A.Cheresh,Nat.Rev.Cancer10(2010)9–22.

[24]H.M.Kowalczynska,M.Nowak-Wyrzykowska,J.Dobkowski,R.Kolos,J. Kamin-ski, A.Makowska-Cynka, E. Marciniak, J. Biomed. Mater. Res. 61(2002) 260–269.

[25]A.Stachurska, J.Elbanowski,H.M. Kowalczynska,CellBiol.Int.36(2012) 883–892.

[26]B.Wojciak,W.Korohoda,J.CellSci.97(1990)433–438.

[27]H.M.Kowalczynska,M.Inkielman,M.Nowak-Wyrzykowska,L.Stolowska,J. Doroszewski,ColloidsSurf.B:Biointerfaces30(2003)193–206.

[28]A.Bruil,J.Terlingen,T.Beugeling,W.Vanaken,J.Feijen,Biomaterials13(1992) 915–923.

[29]C.Yan,J.Sun,J.Ding,Biomaterials32(2011)3931–3938. [30]J.P.Spatz,A.Roescher,M.Moller,Adv.Mater.8(1996)337–340. [31]H.Y.Erbil,A.L.Demirel,Y.Avci,O.Mert,Science299(2003)1377–1380. [32]D.R. Paul, J.W. Barlow,J. Macromol. Sci. Part C: Polym. Rev. 18(1980)

109–168.

[33]I.O.Ucar,M.D.Doganci,C.E.Cansoy,H.Y.Erbil,I.Avramova,S.Suzer,Appl.Surf. Sci.257(2011)9587–9594.

[34]M.D.Doganci,C.E.Cansoy,I.O.Ucar,H.Y.Erbil,E.Mielczarski,J.A.Mielczarski, J.Appl.Polym.Sci.124(2012)2100–2109.

[35]S.K.Kumar,T.P.Russell,Macromolecules24(1991)3816–3820.

[36]M.Khayet,A.M.Vazquez,K.C.Khulbe,T. Matsuura,Surf.Sci. 601(2007) 885–895.

[37]S.Walheim,M.Boltau,J.Mlynek,G.Krausch,U.Steiner,Macromolecules30 (1997)4995–5003.

[38]K.Tanaka,A.Takahara,T.Kajiyama,Macromolecules29(1996)3232–3239. [39]R.M.Overney,D.P.Leta,L.J.Fetters,Y.Liu,M.H.Rafailovich,J.Sokolov,J.Vac.

Sci.Technol.14(1996)1276–1279.

[40]A.S.deLeon,J.Rodriguez-Hernandez,A.L.Cortajaren,Biomaterials34(2013) 1453–1460.

[41]E.T.denBraber,J.E.deRuijter,L.A.Ginsel,A.F.vonRecum,J.A.J.Jansen,Biomed. Mater.Res.40(1998)291–300.

[42]T.G.vanKooten,A.F.vonRecum,TissueEng.5(1999)223–240.

[43]H.Y.Erbil,G.McHale,S.M.Rowan,M.I.Newton,Langmuir15(1999)7378–7385. [44]H.Y.Erbil,SurfaceChemistryofSolidandLiquidInterfaces,Blackwell

Publish-ing,Oxford,2006.

[45]C.J.vanOss,M.K.Chaudhury,R.J.Good,Chem.Rev.88(1988)927–941. [46]A.Bruil,L.M.Brenneisen,J.G.A.Terlingen,T.Beugeling,W.G.V.Aken,J.Feijen,J.

ColloidInterfaceSci.165(1994)72–81.

[47]I.O.Ucar,C.E.Cansoy,H.Y.Erbil,M.E.Pettitt,M.E.Callow,J.A.Callow, Biointer-phases5(2010)75–84.

[48]V.A.Tegoulia,S.L.Cooper,J.Biomed.Mater.Res.50(2000)291–301. [49]J.K.Lee,C.D.Han,Polymer40(1999)6277–6296.

[50]N.Virgilio,C.Marc-Aurele,B.D.Favis,Macromolecules42(2009)3405–3416. [51]K.Anselme,Biomaterials27(2006)1187–1199.

Şekil

Fig. 1. (a) SEM images of flat and rough homopolymer, copolymer and PS 50 /HDPE 50 polymer blend films; (b) micro-patterned PS, PPPE homopolymers and PS/PPPE micro- micro-patterned polymer blend surfaces having different blend composition obtained by the add
Fig. 3. (a) Optical microscope and SEM images of micro-patterned films prepared using constant PS40/PPPE60 polymer blend composition but adding different vol.% ethanol;

Referanslar

Benzer Belgeler

Additionally, for patients with systemic steroid therapy contraindicated, intratympanic injection can also be performed independently after TBCT screening if there is dehiscence of

Key words : interns, clinical practice, socialization process,pilot study,qualitative study, exploratory study, internaliza tion ,.

Bölümlere göre tükenmişlik düzeyi incelendiğinde çalışanlar arasında sadece duygusal tükenme boyutunda farklılık olmadığı, düşük kişisel başarı hissi

Ma‘rifet; tasavvufta dört kapıda denilen şeriat, tarikat, hakikat ve marifetten biridir. Tasavvuf ehlinin ruhani hâlleri yaşamak suretiyle iç tecrübe ve vasıtasız

Lokomotor aktivite testinde hız parametresi incelendiğinde kontrol grubu ile akut sigara maruziyeti grubu arasında ististiksel olarak herhangi bir fark bulunamamasına

İlginç olan bu tarihteki saptamaya rağ- men kontamine veya yanlış tanımlanmış olduğu bi- linen pek çok hücrenin halen yanlış şekilde araştır- malarda kullanılmasının

Bu makalede, ilk olarak Râzî’nin bir Şâfiî âlim olarak portresi sunulacak, kendisinin mezhep âlimlerince ve tabakât yazarlarınca nasıl telakki edildiği, üzerine