• Sonuç bulunamadı

On the ostrowski type integral inequality for double integrals

N/A
N/A
Protected

Academic year: 2021

Share "On the ostrowski type integral inequality for double integrals"

Copied!
8
0
0

Yükleniyor.... (view fulltext now)

Tam metin

(1)

Vol. XLV No 3 2012

Mehmet Zeki Sarikaya

ON THE OSTROWSKI TYPE INTEGRAL INEQUALITY FOR DOUBLE INTEGRALS

Abstract. In this note, we establish a new inequality of Ostrowski-type for dou-ble integrals involving functions of two independent variadou-bles by using fairly elementary analysis.

1. Introduction

In 1938, the classical integral inequality was established by Ostrowski [3] as follows:

Theorem 1. Let f : [a, b]→ R be a differentiable mapping on (a, b) whose derivativef′ : (a, b)→ R is bounded on (a, b), i.e., kfk

∞= sup t∈(a,b)

|f′(t)| < ∞.

Then, we have the inequality: (1.1) f(x) − 1 b− a b  a f(t)dt ≤ 1 4+ (x − a+b2 )2 (b − a)2  (b − a)kf′ k∞

for all x∈ [a, b]. The constant 14 is the best possible.

In a recent paper [1], Barnett and Dragomir proved the following Os-trowski type inequality for double integrals

Theorem 2. Let f : [a, b] × [c, d]→ R be continuous on [a, b] × [c, d], f′′

x,y = ∂

2f

∂x∂y exists on (a, b) × (c, d) and is bounded, i.e., kf ′′ x,yk∞ = sup (x,y)∈(a,b)×(c,d) ∂2f(x,y) ∂x∂y

<∞. Then, we have the inequality:

2000 Mathematics Subject Classification: 26D07, 26D15. Key words and phrases: Ostrowski’s inequality.

(2)

b  a d  c f(s, t)dtds − (d − c)(b − a)f (x, y) (1.2) −  (b − a) d c f(x, t)dt + (d − c) b  a f(s, y)ds  ≤ 1 4(b − a) 2+ (x −a+ b 2 ) 2 1 4(d − c) 2+ (y −d+ c 2 ) 2  f′′ x,y ∞

for all (x, y) ∈ [a, b] × [c, d].

In [1], the inequality (1.2) is established by the use of integral identity involving Peano kernels. In [5], Pachpatte obtained an inequality in the view (1.2) by using elementary analysis. The interested reader is also refered to ([1], [2], [4]–[8]) for Ostrowski type inequalities in several independent variables.

The main aim of this note is to establish a new Ostrowski type inequality for double integrals involving functions of two independent variables and their partial derivatives.

2. Main result

Theorem 3. Let f : [a, b] × [c, d]→ R be an absolutely continuous fuction such that the partial derivative of order 2 exists and is bounded, i.e.,

∂2f(t, s) ∂t∂s ∞ = sup (x,y)∈(a,b)×(c,d) ∂2f(t, s) ∂t∂s <∞ for all (t, s) ∈ [a, b] × [c, d]. Then, we have

(2.1) (β1− α1)(β2− α2)f a + b 2 , c+ d 2  + H(α1, α2, β1, β2) + G(α1, α2, β1, β2) − (β2− α2) b  a f  t,c+ d 2  dt− (β1− α1) d c f a + b 2 , s  ds − b a [(α2− c)f (t, c) + (d − β2)f (t, d)]dt − d c [(α1− a)f (a, s) + (b − β1)f (b, s)]ds + b a d c f(t, s)dsdt ≤ (α1− a) 2+ (b − β 1)2 2 + (a + b − 2α1)2+ (a + b − 2β1)2 8  × (α2− c) 2+ (d − β 2)2 2 + (c + d − 2α2)2+ (c + d − 2β2)2 8  ∂2f(t, s) ∂t∂s ∞

for all (α1, α2), (β1, β2) ∈ [a, b] × [c, d] with α1 < β1, α2< β2 where

(2.2) H(α1, α2, β1, β2) = (α1− a)[(α2− c)f (a, c) + (d − β2)f (a, d)]

(3)

Ostrowski-type inequality 535 and (2.3) G(α1, α2, β1, β2) = (β1− α1)  α2− c  f a + b 2 , c  + (d − β2)f a + b 2 , d  + (β2− α2)  (α1− a)f  a,c+ d 2  +  b− β1  f  b,c+ d 2  .

Proof.We define the following functions:

p(a, b, α1, β1, t) = ( t− α1, t∈ [a,a+b2 ] t− β1, t∈ (a+b2 , b] and q(c, d, α2, β2, s) = ( s− α2, s∈ [c,c+d2 ] s− β2, s∈ (c+d2 , d]

for all (α1, α2), (β1, β2) ∈ [a, b] × [c, d] with α1 < β1, α2 < β2. Thus, by

definitions of p(a, b, α1, β1, t) and q(c, d, α2, β2, s), we have

(2.4) b a d c p(a, b, α1, β1, t)q(c, d, α2, β2, s) ∂2f(t, s) ∂t∂s dsdt = a+b 2 a c+d 2  c (t − α1)(s − α2) ∂2f(t, s) ∂t∂s dsdt + a+b 2  a d c+d 2 (t − α1)(s − β2) ∂2f(t, s) ∂t∂s dsdt + b  a+b 2 c+d 2 c (t − β1)(s − α2) ∂2f(t, s) ∂t∂s dsdt + b  a+b 2 d c+d 2 (t − β1)(s − β2) ∂2f(t, s) ∂t∂s dsdt.

(4)

(2.5) a+b 2 a c+d 2  c (t − α1)(s − α2) ∂2f(t, s) ∂t∂s dsdt = (a + b − 2α1)(c + d − 2α2) 4 f  a + b 2 , c+ d 2  + a+b 2  a c+d 2  c f(t, s)dsdt −(a − α1)(c + d − 2α2) 2 f  a,c+ d 2  −(a + b − 2α1)(c − α2) 2 f  a + b 2 , c  + (a − α1)(c − α2)f (a, c) − a+b 2  a  (c + d − 2α2) 2 f  t,c+ d 2  − (c − α2)f (t, c)  dt − c+d 2  c  (a + b − 2α1) 2 f  a + b 2 , s  − (a − α1)f (a, s)  ds. (2.6) a+b 2 a d  c+d 2 (t − α1)(s − β2) ∂2f(t, s) ∂t∂s dsdt = −(a + b − 2α1)(c + d − 2β2) 4 f  a + b 2 , c+ d 2  + a+b 2  a d c+d 2 f(t, s)dsdt +(a − α1)(c + d − 2β2) 2 f  a,c+ d 2  +(a + b − 2α1)(d − β2) 2 f  a + b 2 , d  + (a − α1)(d − β2)f (a, d) + a+b 2  a  (c + d − 2β2) 2 f  t,c+ d 2  − (d − β2)f (t, d)  dt − d c+d 2  (a + b − 2α1) 2 f  a + b 2 , s  − (a − α1)f (a, s)  ds. (2.7) b a+b 2 c+d 2  c (t − β1)(s − α2) ∂2f(t, s) ∂t∂s dsdt = −(a + b − 2β1)(c + d − 2α2) 4 f  a + b 2 , c+ d 2  + b  a+b 2 c+d 2 c f(t, s)dsdt +(b − β1)(c + d − 2α2) 2 f  b,c+ d 2  +(a + b − 2β1)(c − α2) 2 f  a + b 2 , c 

(5)

Ostrowski-type inequality 537 − (b − β1)(c − α2)f (b, c) − b a+b 2  (c + d − 2α2) 2 f  t,c+ d 2  − (c − α2)f (t, c)  dt + c+d 2  c  (a + b − 2β1) 2 f  a + b 2 , s  − (b − β1)f (b, s)  ds. (2.8) b a+b 2 d  c+d 2 (t − β1)(s − β2) ∂2f(t, s) ∂t∂s dsdt = (a + b − 2β1)(c + d − 2β2) 4 f  a + b 2 , c+ d 2  + b a+b 2 d c+d 2 f(t, s)dsdt −(b − β1)(c + d − 2β2) 2 f  b,c+ d 2  −(a + b − 2β1)(d − β2) 2 f  a + b 2 , d  + (b − β1)(d − β2)f (b, d) + b a+b 2  (c + d − 2β2) 2 f  t,c+ d 2  − (d − β2)f (t, d)  dt + d  c+d 2  (a + b − 2β1) 2 f  a + b 2 , s  − (b − β1)f (b, s)  ds.

Adding (2.5)–(2.8) and rewriting, we easily deduce:

(2.9) b a d c p(a, b, α1, β1, t)q(c, d, α2, β2, s) ∂2f(t, s) ∂t∂s dsdt = (β1− α1)(β2− α2)f a + b 2 , c+ d 2  + H(α1, α2, β1, β2) + G(α1, α2, β1, β2) − (β2− α2) b  a f  t,c+ d 2  dt − (β1− α1) d c f a + b 2 , s  ds− b  a [(α2− c)f (t, c) + (d − β2)f (t, d)]dt − d c [(α1− a)f (a, s) + (b − β1)f (b, s)]ds + b  a d  c f(t, s)dsdt

(6)

where H(α1, α2, β1, β2) and G(α1, α2, β1, β2) defined by (2.2) and (2.3),

re-spectively. Now, using the identitiy (2.9), it follows that (2.10) (β1− α1)(β2− α2)f  a + b 2 , c+ d 2  + H(α1, α2, β1, β2) + b a d c f(t, s)dsdt + G(α1, α2, β1, β2) − (β2− α2) b  a f  t,a+ b 2  dt− (β1− α1) d c f  x,c+ d 2  ds − b  a [(α2− c)f (t, c) + (d − β2)f (t, d)]dt − d c [(α1− a)f (a, s) + (b − β1)f (b, s)]ds ≤ b a d c |p(a, b, α1, β1, t)||q(c, d, α2, β2, s)| ∂2f(t, s) ∂t∂s dsdt ≤ ∂2f(t, s) ∂t∂s ∞ b  a d c |p(a, b, α1, β1, t)||q(c, d, α2, β2, s)|dsdt.

On the other hand, we get

(2.11) b a |p(a, b, α1, β1, t)| dt = a+b 2  a |t − α1| dt + b  a+b 2 |t − β1| dt = α1 a (α1− t) dt + a+b 2  α1 (t − α1) dt + β1 a+b 2 (β1− t) dt + b β1 (t − β1) dt = (α1− a) 2+ (b − β 1)2 2 + (a + b − 2α1)2+ (a + b − 2β1)2 8 and similarly, (2.12) d c |q(a, b, α1, β1, t)| dt = c+d 2  c |s − α2| ds + d c+d 2 |s − β2| ds = (α2− c) 2+ (d − β 2)2 2 + (c + d − 2α2)2+ (c + d − 2β2)2 8 .

(7)

Ostrowski-type inequality 539

Corollary1. Under the assumptions of Theorem 3, we have

(2.13) (b − a)(d − c)f a + b 2 , c+ d 2  − (d − c) b  a f  t,c+ d 2  dt − (b − a) d c f a + b 2 , s  ds b a d c f(t, s)dsdt ≤ 1 16 ∂2f(t, s) ∂t∂s ∞ (b − a)2(d − c)2. Proof.We choose α1 = a, β1 = b, α2 = c and β2 = d in (2.1), then we see

that (2.13) holds.

Corollary2. Under the assumptions of Theorem 3, we have (2.14) (b − a)(d − c) 4 [f (a, c) + f (a, d) + f (b, c) + f (b, d)] −(d − c) 2 b  a [f (t, c) + f (t, d)] dt −(b − a) 2 d c [f (a, s) + f (b, s)] ds + b  a d c f(t, s)dsdt ≤ 1 16 ∂2f(t, s) ∂t∂s ∞ (b − a)2(d − c)2. Proof.We choose α1 = β1 = a+b2 , α2 = β2 = c+d2 in (2.1), then we see that

(2.14) holds.

Remark 1. If we take x = a+ b

2 and y =

c+ d

2 in Theorem 2, then the inequality (1.2) reduces (2.13). So, our result is generalization of the corresponding result of Theorem 2.

References

[1] N. S. Barnett, S. S. Dragomir, An Ostrowski type inequality for double integrals and applications for cubature formulae, Soochow J. Math. 27(1) (2001), 109–114.

[2] S. S. Dragomir, N. S. Barnett, P. Cerone, An n-dimensional version of Ostrowski’s inequality for mappings of Hölder type, RGMIA Res. Pep. Coll. 2(2) (1999), 169–180. [3] A. M. Ostrowski, Über die absolutabweichung einer differentiebaren funktion von ihrem

integralmitelwert, Comment. Math. Helv. 10 (1938), 226–227.

[4] B. G. Pachpatte, On an inequality of Ostrowski type in three independent variables, J. Math. Anal. Appl. 249 (2000), 583–591.

[5] B. G. Pachpatte, On a new Ostrowski type inequality in two independent variables, Tamkang J. Math. 32(1) (2001), 45–49.

[6] B. G. Pachpatte, A new Ostrowski type inequality for double integrals, Soochow J. Math. 32(2) (2006), 317–322.

[7] M. Z. Sarikaya, On the Ostrowski type integral inequality, Acta Math. Univ. Comeni-anae 79(1) (2010), 129–134.

(8)

[8] N. Ujević, Some double integral inequalities and applications, Appl. Math. E-Notes 7 (2007), 93–101.

DEPARTMENT OF MATHEMATICS FACULTY OF SCIENCE AND ARTS DÜZCE UNIVERSITY

DÜZCE-TURKEY

E-mail: sarikayamz@gmail.com, sarikaya@aku.edu.tr

Referanslar

Benzer Belgeler

Bulgular gözlemleri de içerecek şekilde görüş- melerdeki alıntılardan örnekler verile- rek yorumlanmış ve öne çıkan beş ana tema başlığı (boşanmalar için

İşletmenin yabancı sermaye ile ortaklık yapıp yapmama durumuna göre örgüt- çevre etkileşimi arasında anlamlı bir fark olup olmadığını belirlemek amacıyla

türlerinin bulunduğu su örneklerindeki klor miktarlarına bakıldığında sadece iki örneğin klor miktarı 0.3ppm’den yüksek (0.4 ppm) çıkmıştır. Klor miktarı

The pretreatment of straw particles with a chemical agent, such as acetic anhydride or a soapy solution, was found to be more effective at improving the physical

Aim: Evaluation of the effect of Ramadan fasting on circadian variation of acute ST-elevation myocardial infarction (STEMI) in Turkish patients.. Material and methods: This

In this study, AISI D2 cold work tool steel was used as the workpiece, along with CVD- and PVD-coated tungsten carbide cutting tools The main purpose of this study investigated

Diazepam is a short-acting benzodiazepine, which can be used acutely for penicillin-induced epilepsy model 17. Therefore, diazepam was used as a positive control, as the acute

Benzer şekilde bu ünite sonrası uygulanan hatırlama testi sonuçlarına bakıldığında işbirlikli öğrenme yönteminin uygulandığı deney grubu ile geleneksel yöntemin