• Sonuç bulunamadı

The effect of vibration and cutting zonetemperature on surface roughness and tool wear ineco-friendly MQL turning of AISI D2

N/A
N/A
Protected

Academic year: 2021

Share "The effect of vibration and cutting zonetemperature on surface roughness and tool wear ineco-friendly MQL turning of AISI D2"

Copied!
11
0
0

Yükleniyor.... (view fulltext now)

Tam metin

(1)

The

effect

of

vibration

and

cutting

zone

temperature

on

surface

roughness

and

tool

wear

in

eco-friendly

MQL

turning

of

AISI

D2

Onur

Özbek

,

Hamit

Saruhan

DuzceUniversity,Turkey

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received20December2019 Accepted6January2020 Availableonline16January2020

Keywords: MQL

Cuttingtemperature

Cuttingtoolvibrationamplitude Surfaceroughness

Toolwear

Sustainablemachining

a

b

s

t

r

a

c

t

Today,developmentsintechnologyhavegainedmomentummorethanever,andtheneed forefficiencyinproductionaswellasintheecologicaldomainhasincreasedsignificantly. Studiesexaminingdrymachiningandcoolantremovalhavebeensupersededbythose pre-sentingnewcoolingandlubricationtechniques.Theeffectsonsurfaceroughnessdirectly relatedtofinalproductqualityarebeinginvestigatedintermsoftoollifeandemployee health.Thishasresultedinmorefrequentuseoftheeco-friendlyminimumquantity lubri-cation(MQL)technique,whichhasnowbecomea majorcompetitortodryandcoolant machining.Inthisstudy,AISID2coldworktoolsteel,amaterialwidelyusedinthemold industry,wasusedastheworkpiece.TestswerecarriedoutunderdryandMQLconditions andthetemperature,cuttingtoolvibrationamplitude,toolwear,surfaceroughnessandtool lifewereevaluated.Theexperimentswerecarriedoutusingtwodifferentcuttingtool coat-ingtypes(CVD-chemicalvapordepositionandPVD-physicalvapordeposition)andthree differentcuttingspeeds(60,90and120m/min)ataconstantcuttingdepth(1mm)andfeed rate(0.09mm/rev).Resultsrevealedthattoolwear,cuttingtemperatureandcuttingtool vibrationamplitudewerelowerby23,25,and45%,respectively,comparedtodrycutting. Becauseoftheseimprovements,thesurfaceroughnessoftheworkpiecewasimprovedby 89%andtoollifewasincreasedbyupto267%.

©2020TheAuthors.PublishedbyElsevierB.V.Thisisanopenaccessarticleunderthe CCBY-NC-NDlicense(http://creativecommons.org/licenses/by-nc-nd/4.0/).

Abbreviations:MQL,Minimumquantitylubrication;CVD,Chemicalvapordepositionand;PVD,Physicalvapordeposition;BUE,Built-up edge;Ra,Arithmeticmeanofsurfaceroughness;Rz,Meanof5recessesand5projectionssurfaceroughness.

Correspondingauthor.

E-mails:onurozbek@duzce.edu.tr(O.Özbek),hamitsaruhan@duzce.edu.tr(H.Saruhan). https://doi.org/10.1016/j.jmrt.2020.01.010

2238-7854/©2020 The Authors. Publishedby Elsevier B.V. This is anopen access articleunder the CC BY-NC-ND license (http:// creativecommons.org/licenses/by-nc-nd/4.0/).

(2)

1.

Introduction

Intheearly20thcentury,cuttingfluidusebecamewidespread becausedry processingconditions yieldedvery low perfor-manceinterms ofaccuratedimensions,surfaceroughness andtoollife[1–3].Althoughitimprovesthequalityofthefinal product,theuseofcuttingfluidsisknowntobe uneconom-icalaswell ashazardoustohumanhealth.These negative featureshavebeenexaminedinmanystudies[4–8]. Further-more,aftercompletionofitsservicelife,cuttingfluidmustbe disposedof,anditsdisposalcoststwiceasmuchastheprice ofthecuttingfluid[9].Forthesereasons,bytheendofthe20th century,newcoolingandlubricationmethodswerebeing pro-posedandstudied[10–13].Especiallyinthecontextofgreen manufacturing,theMQLtechniquehasbecomeprominentin recentyearsanditsusageisbecomingwidespread.Amongthe mainfeaturesoftheMQLtechniquearethatitreducesthe cut-tingzonetemperatureandtheamountoflubricationneeded toreducefrictioninthecuttingzone.Theheatgeneratedby thefrictionatthecuttingtool-workpieceinterfaceduringchip removalcauses thetemperaturetorise inthe cuttingzone andthistemperaturereducesthehardnessofthecuttingtool material[14].Manyresearchershavereportedthatwiththis loweredhardness,thecuttingtoolwearsfasterandthatthe changedcutting edgeand form ofthe broken chip due to thiswearadverselyaffectsurfaceroughnessanddimensional accuracy[15,16].Therefore,itisimportanttoavoidveryhigh cuttingtemperatures.Indrilling,millingandturning,30–38% improvementinsurfaceroughness[17,18],17.07–59% reduc-tionincuttingforces[17–19], 6.72–51%reductionincutting temperature/tooltip temperature [17,19–21], and 27.5–409% increaseintoollife[20,22,23]havebeenreportedwithMQL machiningcomparedtodrymachining.

Theapplicationofhardcuttingtoolcoatingswasa turn-ingpointinthedevelopmentofcuttingtools[24].Thesehard coatingsprovideasignificantincreaseinwearresistanceand cuttingtoollife.Theyalsoreducetheeffectsofcutting tem-peraturesandcuttingforcesonthecuttingtools.Today,more than70%oftungstencarbidetoolsarecoated[25,26].Carbide toolsareusuallycoatedusingtwomethods:CVDandPVD.The CVDcoatingsexhibitverygoodadhesiontocarbidetoolsand increasetheirwearresistance.WithPVDcoatings,an addi-tionaltoughnessisprovidedtothecuttingedge,aswellasan increaseinwearresistanceofthetools.Theresistanceofthe carbidetoolsagainstdiffusionandoxidationwearalongwith hothardnesspropertiescanbeincreasedbyTiC,TiN,Al2O3, TiCN,TiAlN,TiZrN,TiB2,anddiamondcoatings[27].TheTiN, whichisgenerallyusedinthetoplayerofhard-coatedtools, preventstheformationofbuilt-upedge(BUE)becauseit pro-videsbetterchipcontrolcomparedtoothercoatingtypesand itprovidesdrylubrication[28].

Thevibrationeffectiveon cuttingtoolshasbeen exam-inedinanumber ofstudies,and canbedivided into three categories: freevibration, forced vibration and self-excited vibration[29]. Free vibration dueto the immediateimpact forcesactingonthecuttingtoolisanunanticipatedtypeof vibrationthatisnotexpectedtooccur inthe normalstock removalprocess.This typeofvibration isignoredin stud-iesbecauseithasashorterandtransienteffectcomparedto

theothertwotypesofvibration.Forcedvibrationisdirectly proportional tothe cuttingforce actingon thecuttingtool at regular intervals. Self-excited vibration resultsfrom the dynamicimbalanceoftheturningprocess.Thefrequencyof theself-excitedvibrationisclosetoorgreaterthanthenatural frequencyofthecuttingtool[30].Theaccurateinterpretation ofthevibrationoccurringinthe cuttingtoolisparticularly importantasitisdirectlyrelatedtosurfaceroughnessand toollife.Severalstudieshavebeenconductedonthefactors andvariablesthatincreasethetoolvibrationamplitudesuch ascuttingspeed,feedrate,cuttingdepth,andcuttingforces [31,32].

Inthisstudy,AISID2coldworktoolsteelwasusedasthe workpiece,alongwithCVD-andPVD-coatedtungstencarbide cuttingtoolsThemainpurposeofthisstudyinvestigatedthe effectsofcuttingtoolvibrationandcuttingzonetemperature duringmachining onthe cuttingtoolcoating type,surface roughness(RaandRz),toolwear,andtoollife.

2.

Material

and

methods

Becauseofitshighcarbonandchromiumcontent,AISID2cold worktoolsteelwithhighstrength,hardness(50HRC)and abra-sionresistancewasusedinthestudy.Fortheturningtests, tailstock holes, 250mm in depth and 100mm indiameter, weredrilledtoreducevibrationintheworkpieces.The chem-icalcomponentsoftheAISID2coldworktoolsteelworkpiece materialaregiveninTable1.

Workpiecessuitable forhard turningwereturnedonan AccuwayJT-150CNClathe.Theexperimentswerecarriedout atthreedifferentcuttingspeeds (60,90,120m/min)witha constantfeedrate(0.09mm/rev)andconstantcuttingdepth (1mm)underdryandMQLprocessingconditions.The exper-imentalsetupisshowninFig.1.ThestudyusedtheCNMG 120408formTiAlN-TiNPVD-coatedandTiCN-Al2O3-TiN CVD-coatedtungstencarbidecuttingtools.

Table1–ChemicalcomponentsofAISID2coldworktool steel.

Element C Si Mn P Cr Mo V

% 1.575 0.32 0.3 0.024 11.7 0.74 0.96

(3)

Fig.2– Accelerometersmountedonthetoolholderatthreeaxes(X,YandZ)andvibrationdata.

TheB1-210modelMQLsystemproducedbyBielomatikwas used.Intheexperiments,thelubricantusedwastheca.100% biodegradable,vegetable-basedSAMNOSZM-22Wcuttingoil withadensityof1g/cm3 (20C)and viscosityof1.7mm2/s (20◦C). Thisoilwas deliveredtothecuttingzone ataflow rateof150mL/hatadistanceof25mmwitha1-mm diame-ternozzleatapressureof6bar.Thevibrationdatagenerated duringcuttingwere measuredusingtheSpectraQuest soft-wareandhardwaredeviceaccelerometermountedonthetool holderatthethreeaxesofX,YandZ,asshowninFig.2.After thevibrationdatacollectedbytheSpectraQuestsoftwarewere analyzedusingVibraQuest,theaverageofeachaxiswastaken andtheamplitudevaluesoftheX,YandZaxesvibrationof thetoolholderwereplotted.

Thetemperatureatthecuttingzonewasmeasuredusing theOptrisPI450infraredcamera.Theemissivityvalueofthe thermalcamerawastakenas0.81fortheAISID2coldwork toolsteelworkpiecematerial.Thethermalcamerawasfixed totheturretatadistanceof250mmfromthecuttingzoneso thatitmovedwiththecuttingtoolduringcutting.

In order to determine the surface quality of the mate-rial,aftereachexperiment, Ra(arithmeticmean ofsurface roughness)andRz(meanof5recessesand5projections) mea-surementswerecarriedoutfromfivedifferentpointsusinga MahrPS10profilometer.Theamountofflankwearonthe cut-tingtoolswasmeasuredviaaDINOLITE2.0microscope.In ordertobetterunderstandthe weartypesandwear mech-anisms,photographs were taken via aFEIQuanta FEG 250 scanningelectronmicroscope(SEM).

3.

Results

and

discussion

3.1. Cuttingtemperature

Withtheeffectoffrictionduringcutting,ahighamountof heatisproducedinthecuttingzone.Thisheat,uptoacertain

Fig.3–CuttingzonetemperaturesofCVDandPVDcutting tools.

value,facilitatesthecuttingasitallowsforeasyseparation ofthechipfromtheworkpiece.However,theincreasedheat adverselyaffectsthehardnessofthecuttingtool,thus accel-erating the wearofthe tool[14,33]. Fig. 3shows thatMQL reducedthecuttingzonetemperaturebyapproximately100◦C atallcuttingspeedsinbothCVDandPVDcoatedtools.The MQLsystemprovidessomelubricationandreducesfriction onthemachinedsurface[34,35].Thisresultsinalower cut-tingzone temperature.Increasingthecuttingspeed causes thefrictiontoincrease,thusincreasingthecuttingzone tem-perature[36–38].Underall cuttingconditions,lowercutting zonetemperatureswereobservedwithPVDtoolsthanwith CVD-coatedtools.Thisisthoughttobeduetothethermal conductivityoftheAl2O3coatingmaterialinthemiddlelayer oftheCVD-coatedtool.TheAl2O3materialexhibitslow ther-malconductivityathightemperatures.Thismakesitdifficult forthetemperatureatthecuttingtooltiptoexitthecutting

(4)

Fig.4–Thermalimagesofchipflowunderdifferentcuttingconditions:a)Dry;b)MQL.

zone[28,39,40].Oneofthereasonsthatthecutting tempera-tureofthecuttingzoneislowduringMQListhatthechipis movedawayfromthecuttingzoneduetothehighpressure oftheMQLsystem.InFig.4,thisisclearlyseeninthethermal imagesofthechipemergingfromthecuttingzoneunderdry andMQLconditions.

3.2. Cuttingtoolvibrations

ShowninFig.5arethevariationsofvibrationamplitude val-uesfortheCVDandPVDtoolsaccordingtothefrequencies measuredatthree axesunderdry and MQLcutting condi-tionsat120m/mincuttingspeed.Theaveragesofthevibration amplitudescollectedatallcuttingspeedsaccordingtotheX, YandZaxesaregiveninFig.6.Thehighestvibration ampli-tudesweremeasuredontheZaxis.Thisarosefromthefact thatmoremovementoccurredintheZaxis,whichwasthe directionofcuttingwherethetoolimpactedtheworkpiece [41].Lowervibrationamplitudevaluesweremeasured with MQLmachiningthanwithdrymachining.Thiswasexplained bythelubricationprovidedbyMQLinthecuttingzonethat reducedfrictionatthecuttingtool-workpieceinterface[34,42], loweredthecuttingzonetemperature[17,19],andreducedtool wear[43].

Thevibrationamplitudevaluesofthecuttingtoolscoated viabothCVDandPVDmethodsroseatallthreeaxeswith increasingcuttingspeed.Thisincreaseisthoughttohavebeen duetothe increaseincuttingtoolwearand the increased centrifugalforce.Increasedtemperatureinthecuttingzone accelerates cutting tool wear. As a result of losses due to wearonthecuttingtooltip,thetipradiusofthecuttingtool andthebrokenchipformdeteriorateasthechipisremoved. Continuousshapeandareachangesoccuratthecutting tool-workpiececontactzone.Wearonthecuttingtoolandsurface roughnessontheworkpieceincreasedbecauseofBUEformed onthecuttingtool.Allthesechangesresultedinchangesin cuttingforces,surfaceroughnessandcuttingtoolvibration values[31].

ThevibrationamplitudevaluesofthePVD-coatedtoolwere lowerthanthoseoftheCVD-coatedtool.Itisthoughtthatthe increasedheatacceleratedthe wearduetotheAl2O3 coat-inginthemiddlelayeroftheCVD-coatedtool,keepingthe temperatureinthecuttingzone,whiletheexcessivevibration

whenremovingthechipwiththeCVD-coatedtoolisthought tohavebeenduetochangesinthecuttingforceonthecutting tool.

3.3. Surfaceroughness

Fig.7showschangesinthesurfaceroughnessdependingon the cuttingspeed of thecutting tools.In the experiments, Ravaluesweremeasuredas0.32–3.26␮mandRzvaluesas 2.22–11.13␮m. The graphs show a significant reduction in bothRaandRzvaluesforbothcuttingtooltypesunderMQL machiningcomparedtodrymachining.ProcessingwithMQL yieldedanimprovementofupto88%inRaand91%inRz com-paredtodryprocessing.Thiswasassociatedwiththelower cuttingzonetemperature,vibrationamplitudevaluesand cut-ting toolwearwith the MQLmachining. Cuttingtoolwear [44–46]andcuttingtoolvibration[47]directlyaffectthesurface roughness.Intheexperiments,thePVD-coatedtools exhib-itedlowersurfaceroughnessvaluesthantheCVD-coatedtools underallcuttingconditions.Thiswasattributedtolesswear onthePVD-coatedtoolsthanontheCVD-coatedtools.There isadirectrelationshipbetweencuttingtoolwearandsurface roughness[44].

Thegraphsshowthattheincreasingcuttingspeedaffected bothsurfaceroughnessvalues(RaandRz).Thiswasattributed totheincreasesinthecuttingspeed,cuttingzone tempera-tureand cuttingtoolwearresultingfrom increasedcutting toolvibrationamplitudes.

3.4. Toolwear

ThegraphinFig.8showsthedifferencesintheCVDandPVD toolsunderdryandMQLconditionsdependingonthecutting speed.Theflankwearinthecuttingtoolswaslowerin exper-imentsperformedwithMQLthanunderdrycutting.Because theMQLsystemprovidessomelubricationinthecuttingzone, itlowersthecuttingzonetemperature,thusreducingwearon the cuttingtool.Theflankwearvaluesofthe cuttingtools increasedwithbothdry and MQLmachiningconditionsas cuttingspeedwasincreased.Cuttingforcesincreaseddueto theincreasedfrictionandcuttingzonetemperatureresulting fromthefastercuttingspeedandconsequently,toolwearwas adverselyaffected[48,49].

(5)

Fig.5–VariationofvibrationamplitudevaluesforCVDandPVDcoatedtoolsaccordingtofrequenciesunderdryandMQL cuttingconditionsat120m/mincuttingspeed.

(6)

Fig.7–SurfaceroughnesschangesduetocuttingspeedofCVD-andPVD-coatedcuttingtools.

Fig.8–CVDandPVDcoatedtoolsunderdryandMQL conditionsdependingondifferentcuttingspeeds.

ThePVD-coatedtoolwasshowntoperformbetterunder all cuttingconditions than the CVD-coatedtool. The wear resistanceofthecuttingtoolsincreasedwithgreatercoating thickness.However,thiscausesbrittleness,andtheremoval ofthecoating layerbecomesa problem.A thinnercoating provideshighertoughness[50].Generally,CVDcoatingsare thickerthanPVDcoatings.TheCVDcoatingsareata mini-mum6–9␮mthick,whilePVDcoatingsare1–3␮mthick[51]. CoatingsmadeviaPVDaremuchsmootherthanCVDcoatings andcanbedepositedontosharpedges[52,53].

Imagesofthewearonthecuttingtoolstakenbyoptical microscope are shown inFig. 9. Thepictures clearly show that the cutting tools had less wear with MQLmachining andthatthecuttingtoolwearincreasedwithincreasing cut-tingspeed.Ontheotherhand,BUE,causedbytheadhesive wear mechanism, occurred on the cutting tools under all cuttingconditions.TheBUEdimensionsgenerallydecreased withincreasing cuttingspeed. For better understanding of the wearmechanisms, SEM images atdifferent magnifica-tions were taken of the cutting tools for the experiments

carriedoutatafeedrateof0.09mm/revandacuttingspeedof 120m/min(Figs.10–14).TheSEMpicturesshowedthatflank wearandnosewearcausedbytheabrasivewearmechanism had occurredinall cuttingtools.WiththeCVD-coated cut-tingtool,thecoatinglayerhadbeenremovedinsomeareas duringturningunderdrycuttingconditions(Fig.10). Further-more,asaresultoftheremovaloftheTiNcoating(thetop coating),portionsoftheAl2O3coatinglayer(whitepoints)ata depthof40-␮minalineextendingfor400␮mstartingfromthe lowerlimitoftheflankwearcanbeseenontheCVD-coated tool.TheEDSanalysistakenfromthesewhitepointsverifies thissituation,asshowninFig.11.IntheSEMpicturetaken ofthePVD-coatedtoolturnedunderdrycuttingconditions, theflankandnosewear,abrasionmarksandBUEformation areclearlyseenonthecuttingtool(Fig.12).Fig.13showsthe SEMimageoftheCVD-coatedtoolunderMQLmachining con-ditions.Again, flankand nosewearareclearlyseen onthe cuttingtool.Inaddition, theabrasionmarksonthecutting edgeandtheAl2O3 coatingmaterial(themiddlelayer)also standout.However,theresultingBUEformedatthecutting edgeismuchlessthanthatformedunderthedrycutting con-dition.Similarly,theSEMpictureofthePVD-coatedtoolunder MQLmachiningshowstheBUEformationtobemuchlessthan underthedrycuttingcondition(Fig.14).Thus,theMQLsystem greatlyreducedthetypeofBUEthatadverselyaffectssurface roughnessandtoolwear.

3.5. Toollife

Tool wear has a direct impact on surface roughness, pro-duction time, and cost. Since tool life and tool wear are considered as machinability measures, they are important issuesinmachinabilitystudies[54–56].Fig.15showsthetool lifedifferencesbetweentheCVD-coated(Fig.15a)and PVD-coated(Fig.15b)toolsatacuttingspeedof90m/minanda feedrateof0.09mm/revunderdryandMQLmachining con-ditions. MachiningwithMQLprolonged the toollifeofthe CVD-coatedtoolby267%comparedtodrymachining,while thetoollifeofthePVD-coatedtoolwasprolongedby200%. WiththeMQLsystem,theoilreachesthecuttingzoneunder highpressure,reducingthecuttingzonetemperatureand

(7)

cut-Fig.9–FlankwearonCVDandPVDcoatedtoolsunderdryandMQLconditionsaccordingtodifferentcuttingspeeds.

Fig.10–SEMimagesofCVD-coatedcuttingtoolunderdrycuttingconditions.

Fig.11–SEMimageofCVD-coatedcuttingtoolunderdrycuttingconditionsandEDSanalysis.

tingtoolvibrationamplitude.Thus,thetoollifewasextended withlong-termprotectionofthecuttingtoolformandreduced toolwear.

With dry machining, the PVD-coated tool life was four timeshigherthantheCVD-coatedtoollife,andthreetimes

higherwithMQL.Thiscanbeexplainedbythehigh temper-atures and vibrationsgeneratedin the cuttingzone ofthe CVD-coatedtool,whichincreasedthewearonthecuttingtool, thusreducingitstoollife.

(8)

Fig.12–SEMimagesofPVD-coatedcuttingtoolunderdrycuttingconditions.

Fig.13–SEMimagesofCVD-coatedcuttingtoolunderMQLcuttingconditions.

(9)

Fig.15–Toollifedifferencesat0.09mm/revand90m/mincuttingparametersunderdryandMQLmachiningconditions:(a) CVD-coatedtools;(b)PVD-coatedtools.

4.

Conclusion

Inthisstudy,theeffectsofthecuttingzoneoftheMQLsystem oncuttingtemperature,cuttingtoolvibration,surface rough-ness,toolwearandtoollifewereinvestigatedintheturningof AISID2toolsteelwithPVDandCVD-coatedtools.Theresults obtainedfromtheexperimentsaregivenbelow.

Comparedtodrymachining,theeco-friendlyMQLsystem wasfoundtoreducethecuttingzonetemperatureby approxi-mately100◦Catallcuttingspeedsinbothtools(CVDandPVD). Similarly, tool vibration amplitude values decreased with MQLmachining.Comparedtodrymachining,MQLmachining demonstratedsignificantimprovementsinbothRaandRzfor bothcuttingtooltypes.ProcessingwithMQLresultedin88% improvementinRaand91%improvementinRz.Inthe exper-imentscarriedoutwithMQL,lesstoolwearwasseenthan withdrycutting.MachiningwithMQLprolongedthetoollife oftheCVDtoolsby267%andthePVDtoolsby200%compared todrymachining.

ThePVD-coated tools generatedlower cutting tempera-tures than the CVD-coated tools. Moreover, the PVD tool vibration amplitude values were also lower than those of theCVDtools.Thehighestvibrationamplitudeswere mea-sured on the Z axis. In terms of both Ra and Rz values, thePVD-coated toolsshowedbettersurfaceroughness val-uesunderallcuttingconditions.Intoolwear,thePVDtool alsoshowedbetterwear performanceatall cuttingspeeds comparedtotheCVDtool.Under drymachining, the PVD-coatedtoollifewasfourtimeslongerthan theCVD-coated toollife. Under MQLmachining, the PVD-coated toolshad atool lifethree timeslonger than thatof the CVD-coated tools.

Forbothcuttingtooltypes(PVDandCVD)andforboth cut-tingconditions(dryandMQL),withincreasedcuttingspeed, thecuttingzonetemperature,cuttingtoolvibrationamplitude values,surfaceroughness(RaandRz)andtoolwearincreased aswell.

Conflicts

of

interest

There were noconflictsofinterest inthe study.I takefull responsibilityforthis.

Acknowledgments

We would like to thank the Düzce University Scientific Research ProjectsUnit for theircontribution tothe project coded2019.06.05.974and ZirveIndustrialProductsfortheir support.

Appendix

A.

Supplementary

data

Supplementary material related to this article can be found,inthe onlineversion,atdoi:https://doi.org/10.1016/j. jmrt.2020.01.010.

r

e

f

e

r

e

n

c

e

s

[1]SrikantRR,RamanaVSNV.Performanceevaluationof vegetableemulsifierbasedgreencuttingfluidinturningof AmericanIronandSteelInstitute(AISI)1040steel—an initiativetowardssustainablemanufacturing.JCleanProd 2015;108:104–9.

[2]JawahirIS,AttiaH,BiermannD,DuflouJ,KlockeF,MeyerD, etal.Cryogenicmanufacturingprocesses.CIRPAnnManuf Technol2016;65(2):713–36.

[3]OsmanKA,ÜnverHÖ,S¸ekerU.Applicationofminimum quantitylubricationtechniquesinmachiningprocessof titaniumalloyforsustainability:areview.IntJAdvManuf Technol2019;100(9-12):2311–32.

[4]AdlerDP,HiiWS,MichalekDJ,SutherlandJW.Examiningthe roleofcuttingfluidsinmachiningandeffortstoaddress associatedenvironmental/healthconcerns.MachSci Technol2006;10(1):23–58.

(10)

[5]SharmaJ,SidhuBS.Investigationofeffectsofdryandnear drymachiningonAISID2steelusingvegetableoil.JClean Prod2014;66:619–23.

[6]GuptaMK,SongQ,LiuZ,PruncuCI,MiaM,SinghG,etal. Machiningcharacteristicsbasedlifecycleassessmentin eco-benignturningofpuretitaniumalloy.JCleanProd 2019:251.

[7]KaraF,TakmazA.Optimizationofcryogenictreatment effectsonthesurfaceroughnessofcuttingtools.MaterTest 2019;61(11):1101–4.

[8]KaraF,C¸ic¸ekA,DemirH.MultipleregressionandANN modelsforsurfacequalityofcryogenically-treatedAISI, 52100bearingsteel.JBalkanTribolAssoc2013;19(4):570–84. [9]ByrneG,DornfeldD,DenkenaB.Advancingcutting

technology.CIRPAnnManufTechnol2003;52(2):483–507. [10]AbbasAT,GuptaMK,SolimanMS,MiaM,HegabH,Luqman

M,etal.Sustainabilityassessmentassociatedwithsurface roughnessandpowerconsumptioncharacteristicsin nanofluidMQL-assistedturningofAISI1045steel.IntJAdv ManufTechnol2019;105(1-4):1311–27.

[11]GuptaMK,MiaM,SinghG,PimenovDY,SarikayaM,Sharma VS.Hybridcooling-lubricationstrategiestoimprovesurface topographyandtoolwearinsustainableturningofAl 7075-T6alloy.IntJAdvManufTechnol2019;101(1-4):55–69. [12]SinghG,PruncuCI,GuptaMK,MiaM,KhanAM,JamilM,

etal.Investigationsofmachiningcharacteristicsinthe upgradedMQL-assistedturningofpuretitaniumalloysusing evolutionaryalgorithms.Materials2019;12(6):999.

[13]KaynakY,GharibiA,YılmazU,KöklüU,Aslantas¸K.A comparisonoffloodcooling,minimumquantitylubrication andhighpressurecoolantonmachiningandsurface integrityoftitaniumTi-5553alloy.JManufProcess 2018;34:503–12.

[14]AlmondEA.Towardsimprovedtestsbasedonfundamental properties.In:ProceedingsoftheInternationalConference onImprovedPerformanceofToolMaterials.1981.p.161–9. [15]BaiW,RoyA,SunR,SilberschmidtVV.Enhanced

machinabilityofSiC-reinforcedmetal-matrixcomposite withhybridturning.JMaterProcessTechnol2019;268:149–61. [16]KaynakY.Evaluationofmachiningperformanceincryogenic machiningofInconel718andcomparisonwithdryandMQL machining.IntJAdvManufTechnol2014;72:919–33. [17]LoharDV,NanavatyCR.Performanceevaluationof

minimumquantitylubrication(MQL)usingCBNtoolduring hardturningofAISI4340anditscomparisonwithdryand wetturning.BonfringIntJIndEngManagSci2013;3(3):102–6. [18]JavamN.ThestudyofhighspeedturningusingMQL.Indian

JSciTechnol2013;6:4123–7.

[19]SainiA,DhimanS,SharmaR,SetiaS.Experimental estimationandoptimizationofprocessparametersunder minimumquantitylubricationanddryturningofAISI-4340 withdifferentcarbideinserts.JMechSciTechnol

2014;28(6):2307–18.

[20]BhowmickS,AlpasAT.Theroleofdiamond-likecarbon coateddrillsonminimumquantitylubricationdrillingof magnesiumalloys.SurfCoatTechnol

2011;205(23-24):5302–11.

[21]KhanMMA,MithuMAH,DharNR.Effectsofminimum quantitylubricationonturningAISI9310alloysteelusing vegetableoil-basedcuttingfluid.JMaterProcessTechnol 2009;209(15-16):5573–83.

[22]ZhangS,LiJF,WangYW.Toollifeandcuttingforcesinend millingInconel718underdryandminimumquantity coolinglubricationcuttingconditions.JCleanProd 2012;32:81–7.

[23]ThamizhmaniiS,RosliSH.Astudyofminimumquantity lubricationonInconel718steel.ArchMaterSciEng 2009;39:38–44.

[24]FilippovAV,NikonovAY,RubtsovVE,DmitrievAI,TarasovSY. Vibrationandacousticemissionmonitoringthestabilityof peaklesstoolturning:experimentandmodeling.JMater ProcessTechnol2017;246:224–34.

[25]BenardosPG,VosniakosGC.Predictingsurfaceroughnessin machining:areview.IntJMachToolsManuf

2003;43(8):833–44.

[26]BraicV,ZoitaCN,BalaceanuM,KissA,VladescuA,Popescu A,etal.TiAlN/TiAlZrNmultilayeredhardcoatingsfor enhancedperformanceofHSSdrillingtools.SurfCoat Technol2010;204(12-13):1925–8.

[27]PfoutsWR.Cuttingedgecoatings.ManufEng 2000;125(1):98–107.

[28]GrzesikW.Experimentalinvestigationofthecutting temperaturewhenturningwithcoatedindexableinserts.Int JMachToolsManuf1999;39(3):355–69.

[29]LeeEC,NianCY,TarngYS.Designofadynamicvibration absorberagainstvibrationsinturningoperations.JMater ProcessTechnol2001;108(3):278–85.

[30]MerrittHE.Theoryofself-excitedmachine-toolchatter: contributiontomachine-toolchatterresearch-1.J.EngInd 1965;87(4):447–54.

[31]ThomasM,BeauchampY,YoussefAY,MasounaveJ.Effectof toolvibrationsonsurfaceroughnessduringlathedry turningprocess.ComputIndEng1996;31(3-4):637–44. [32]ThomasM,BeauchampY.Statisticalinvestigationofmodal

parametersofcuttingtoolsindryturning.IntJMachTools Manuf2003;43(11):1093–106.

[33]GharibiA,KaynakY.Theinfluenceofdepthofcuton cryogenicmachiningperformanceofhardenedsteel.JFac EngArchitGaziUniv2019;34(2),581-296.

[34]SunY,HuangB,PuleoDA,JawahirIS.Enhanced

machinabilityofTi-5553alloyfromcryogenicmachining: comparisonwithMQLandflood-cooledmachiningand modeling.ProcedCIRP2015;31:477–82.

[35]YıldırımC¸V,KıvakT,ErzincanlıF.Toolwearandsurface roughnessanalysisinmillingwithceramictoolsof Waspaloy:acomparisonofmachiningperformancewith differentcoolingmethods.JBrazSocMechSciEng 2019;41(2):83.

[36]AouiciH,YalleseMA,FnidesB,MabroukiT.Machinability investigationinhardturningofAISIH11hotworksteelwith CBNtool.Mechanics2010;86(6):71–7.

[37]AbhangLB,HameedullahM.Chip-toolinterfacetemperature predictionmodelforturningprocess.IntJEngSciTechnol 2010;2(4):382–93.

[38]KumarKK,ChoudhurySK.Investigationoftoolwearand cuttingforceincryogenicmachiningusingdesignof experiments.JMaterProcessTechnol2008;203:95–101. [39]JawahirIS,VanLutterveltCA.Recentdevelopmentsinchip

controlresearchandapplications.CIRPAnnManufTechnol 1993;42(2):659–93.

[40]ReddyTS,SornakumarT,ReddyMV,VenkatramR, SenthilkumarA.Turningstudiesofdeepcryogenictreated P-40tungstencarbidecuttingtoolinserts–Technical communication.MachSciTechnol2009;13:269–81. [41]DimlaDESr.Theimpactofcuttingconditionsoncutting

forcesandvibrationsignalsinturningwithplaneface geometryinserts.JMaterProcessTechnol2004;155:1708–15. [42]BanerjeeN,SharmaA.Identificationofafrictionmodelfor

minimumquantitylubricationmachining.JCleanProd 2014;83:437–43.

[43]DharNR,KamruzzamanM,AhmedM.Effectofminimum quantitylubrication(MQL)ontoolwearandsurface roughnessinturningAISI-4340steel.JMaterProcessTechnol 2006;172(2):299–304.

[44]DharNR,PaulS,ChattopadhyayAB.MachiningofAISI4140 steelundercryogeniccooling—toolwear,surfaceroughness

(11)

roughnessusingcuttingparameters,force,sound,and vibrationinturningofInconel718.JBrazSocMechSciEng 2017;39(12):5087–96.

[48]FnidesB,YalleseMA,AouiciH.Hardturningofhotwork steelAISIH11:evaluationofcuttingpressures,resulting forceandtemperature.Mechanics2008;72(4):59–63. [49]ÖzbekNA,C¸˙Ic¸ekA,GülesinM,ÖzbekO.Applicationofdeep

cryogenictreatmenttouncoatedtungstencarbideinsertsin theturningofAISI304stainlesssteel.MetallMaterTransA 2016;47(12):6270–80.

[50]ShawMC.Metalcuttingprinciples.seconded;1984.London, UnitedKingdom.

steelunderdry,wetandcryogenicenvironments.JManuf Process2019;43:136–44.

[55]ÖzbekNA,C¸ic¸ekA,GülesinM,ÖzbekO.Investigationofthe effectsofcryogenictreatmentappliedatdifferentholding timestocementedcarbideinsertsontoolwear.IntJMach ToolsManuf2014;86:34–43.

[56]ÖzbekNA,C¸ic¸ekA,GülesinM,ÖzbekO.Effectofcutting conditionsonwearperformanceofcryogenicallytreated tungstencarbideinsertsindryturningofstainlesssteel. TribolInt2016;94:223–33.

Referanslar

Benzer Belgeler

Bu çalışmada, 35 HRC ve 62 HRC sertliğindeki AISI D3 soğuk iş takım çeliğinin CBN kesici takımlar ile işlenmesinde, yüzey kalitesi ve yanal yüzey aşınma

Also in this investigation, response surface method (RSM) was used to predict and optimize the material removal rate, tool wear ratio and surface roughness during

各個元件說明如下:Health care box UI Simulator 為主 要繪圖元件,依據資料元件資訊,模擬照護盒監控畫 面;Refresh 為繪圖更新元件,負責接收

a) Proses karakteristiği yukarıya doğru bir değişme göstermektedir. Nedenleri araştırılarak düzeltme veya değişime uygun yeni limitleri belirleme

Araştırmanın sonuçlarına genel olarak baktığımızda öğrencilerin; “düzlem aynada görüntünün yeri”, “düzlem aynada cisim ile görüntü arasındaki

Results showed that TFT’s fabricated with as-deposited films do not show gate field control over the channel layer but after a thermal treatment performed at temperatures higher

Bu çalışmada ise günümüzde kullanılan bir taşıt modeli etrafında oluşan hava akışı deneysel ve sayısal yöntemler kullanılarak incelenmiş, taşıt modelinin

Bu çalışmada, nitrürlenmiş AISI D2 soğuk iş takım çeliği yüzeyinde kutu difüzyon tekniği ile oluşturulan titanyum nitrür (TiN) kaplama tabakasının korozyon