• Sonuç bulunamadı

Sulfisoxazole/cyclodextrin inclusion complex incorporated in electrospun hydroxypropyl cellulose nanofibers as drug delivery system

N/A
N/A
Protected

Academic year: 2021

Share "Sulfisoxazole/cyclodextrin inclusion complex incorporated in electrospun hydroxypropyl cellulose nanofibers as drug delivery system"

Copied!
8
0
0

Yükleniyor.... (view fulltext now)

Tam metin

(1)

delivery

system

Zeynep

Aytac

a,b

,

Huseyin

Sener

Sen

b

,

Engin

Durgun

a,b

,

Tamer

Uyar

a,b,∗

aInstituteofMaterialsScience&Nanotechnology,BilkentUniversity,Ankara06800,Turkey bUNAM-NationalNanotechnologyResearchCenter,BilkentUniversity,Ankara06800,Turkey

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received21October2014

Receivedinrevisedform9February2015 Accepted10February2015

Availableonline17February2015 Keywords: Electrospinning Nanofibers Hydroxypropylcellulose Cyclodextrin Sulfisoxazole Molecularmodeling

a

b

s

t

r

a

c

t

Herein,hydroxypropyl-beta-cyclodextrin(HP␤CD)inclusioncomplex(IC)ofahydrophobicdrug, sul-fisoxazole(SFS)wasincorporatedinhydroxypropylcellulose(HPC)nanofibers(HPC/SFS/HP␤CD-IC-NF) viaelectrospinning.SFS/HP␤CD-ICwascharacterizedbyDSCtoinvestigatetheformationofinclusion complexandthestoichiometryofthecomplexwasdeterminedbyJob’splot.Modelingstudieswere alsoperformedonSFS/HP␤CD-ICusingabinitiotechnique.SEMimagesdepictedthedefectfreeuniform fibersandconfirmedtheincorporationofSFS/HP␤CD-ICinnanofibersdidnotalterthefiber morphol-ogy.XRDanalysesshowedamorphousdistributionofSFS/HP␤CD-ICinthefibermat.Releasestudies wereperformedinphosphatebufferedsaline(PBS).TheresultssuggesthigheramountofSFSreleased from HPC/SFS/HP␤CD-IC-NF when comparedtofree SFS containing HPC nanofibers(HPC/SFS-NF). ThiswasattributedtotheincreasedsolubilityofSFSbyinclusioncomplexation.Sandwich configu-rationswerepreparedbyplacingHPC/SFS/HP␤CD-IC-NFbetweenelectrospunPCLnanofibrousmat (PCL-HPC/SFS/HP␤CD-IC-NF).Consequently,PCL-HPC/SFS/HP␤CD-IC-NFexhibitedslowerreleaseofSFS ascomparedwithHPC/SFS/HP␤CD-IC-NF.Thisstudymayprovidemoreefficientfuturestrategiesfor developingdeliverysystemsofhydrophobicdrugs.

©2015ElsevierB.V.Allrightsreserved.

1. Introduction

Electrospinningisawellrecognizedandversatiletechniquefor producing nanofibersfrompolymersolutions or polymermelts with the help of a very strong electric field [1]. Electrospun nanofibersandtheirnanofibrousmatsareverygoodcandidatesfor useinbiotechnology,textiles,membranes/filters,scaffolds, com-posites,sensorsduetotheirveryhighsurfaceareatovolumeratio, nanoporousstructureanddesignflexibilityforfurther functional-ization[1,2].Additionally,bygiventhemorphologicalsimilarities betweenelectrospunnanofibersandextracellularmatrix, bioma-terialsforwoundhealing,drugdeliverysystemsandscaffoldsfor tissueengineeringcouldbedevelopedthroughtheelectrospinning [1,2].

Certain hydroxyl groups of cellulose are substituted with anotherfunctionalgroupyieldsitsderivates.Forexample, hydrox-ypropylcellulose(HPC)isanon-ioniccellulosederivativewhich

∗ Correspondingauthor.Tel.:+903122903571;fax:+903122664365. E-mailaddresses:tamer@unam.bilkent.edu.tr,tameruyar@gmail.com(T.Uyar).

can be synthesized by substituting with hydroxypropyl ether groups[3].HPCcouldbeusedinthefieldofbiomedical engineer-ingfor drugdeliveryapplications[4,5].Hence,electrospunHPC nanofibersalsocouldbequiteapplicableintheareaof biotech-nologyduetotheirdistinctivecharacteristicsasmentionedearlier. However,asfaraswecanascertain,intheliteraturethereareonly fewstudiesrelatedtoelectrospinningofHPC[6–8].Shuklaetal. haveproducedelectrospunHPCnanofibersfromethanoland 2-propanolsolventsystem[6].Inanotherstudy,Francisetal.have obtainedHPCnanofibersinaqueoussolutionusingpolyethylene oxideascarriermatrix [7].InthestudyofPeriasamyetal.two typesofenzymeswereimmobilizedinHPCnanofibers[8].

Cyclodextrins(CDs)areaclassofcyclicoligosaccharides(Fig.1b) withseverald-glucopyranoseslinkedby ␣-1,4-glycosidicbonds [9].ThemostcommonnativeCDshave6,7,or8glucoseunitswhich arecalledas␣-CD,␤-CDand␥-CD,respectively[10].Therearealso chemically modified CDs like hydroxypropyl-beta-cyclodextrin (HP␤CD)inwhichsomeofthehydroxylgroupsaresubstitutedwith hydroxypropylgroups.CDsarewater-solublemoleculeswithrigid andwelldefinedmolecularstructures.CDstaketheshapeofa trun-catedconeasshowninFig.1c[9].Asoutstandingsupramolecules http://dx.doi.org/10.1016/j.colsurfb.2015.02.019

(2)

Fig.1. Chemicalstructureof(a)sulfisoxazole,(b)HP␤CD;schematicrepresentationof(c)HP␤CD,(d)SFS/HP␤CD-IC,(e)electrospinningofnanofibersfromHPC/SFS/HP␤CD-IC solution,(f)thereleaseofSFSfromHPC/SFS/HP␤CD-IC-NF.

withhydrophobiccavity,CDsarecapableofformingnon-covalent complexeswithvariouscompoundsincludingpoorlysolubledrugs, antibiotics,andvolatilecompounds[9,10].Theinclusioncomplex (IC)formation in theCD systems is favored by substitution of thehigh-enthalpywatermoleculeswithintheCDcavity,withan appropriateguestmoleculeoflowpolarity[9].Here,eachguest moleculeisenclosedwithinthehydrophobiccavityoftheCD.CDs findapplicationsinvariousfieldssuchaspharmaceutical,cosmetic, food,chemicalindustriesandagriculture[10].Forexample,infood industrytheycansuppressunpleasantodorsand tastes.Onthe otherhandtheycanimprovethesolubilityandprovideprotection againstlightoroxygenforguestcompounds.FurthermoreCDscan delaythedegradationorevaporationofguestmoleculesthatare highlyvolatile[10].Inthecontextofpharmaceuticalindustry,the solubilityrelatedproblemsofsomedrugsremainamongthemost challengingissuesofthedrugformulation,whereCDscanenhance solubility,dissolutionrate,chemicalstability andbioavailability. Interestinglycontrolledreleaseofpoorlysolubledrugsbymeans ofCD-IC[9,10] isworth mentioning.In particular,a chemically modifiedCDlikeHP␤CDismoresuitableforthesolubilizationof hydrophobicdrugs,becauseofitsbetteraqueoussolubility com-paredtonativeCDs[11].IthasbeenshownthatCDsandCD-ICs canbeusedinfunctionalizationofelectrospunnanofibersfor dif-ferentapplicationslikebiomedical[12–17],filtration[18–20]and foodpackaging[21–26].

Thesulfonamidedrugshaveabasicchemicalstructure compris-ingasulfanilamidegroupandfiveorsix-memberedheterocyclic ring.Sulfisoxazole(SFS)(Fig.1a)is asulfonamidedrugwithan oxazolesubstituent.Itisaweaklyacidicinnaturewithantibiotic activityandpoorlysolubleinwater[27].ThelowsolubilityofSFS preventsitsfastdissolutionand leadstopooravailabilityatthe targetsite.Henceinthisstudy,SFSwasselectedasamodeldrug forreleaseexperiments.Therehavebeenreportsintheliterature regardingCD-ICofSFStoevaluatechemicalstability,thermal sta-bilityandsolubilitybeforeandaftercomplexation[28].Another studydealswiththecharacterizationofICviasolubility,thermal anddissolutionstudies[29].Ontheotherhand,absorptionand flu-orescencespectraofsulphadrugswereanalyzedinthepresence ofCD-ICtodeterminethestoichiometryofsulphadrugsand␤CD [27].

In this study, HPC nanofibers incorporating SFS (HPC/SFS-NF)and ICofSFSwithHP␤CD(Fig.1d)(HPC/SFS/HP␤CD-IC-NF) wereobtainedvia electrospinningfor ourdrugdeliverysystem (Fig.1e).SinceHPCnanofibersarewatersoluble,HPC/SFS-NFand

HPC/SFS/HP␤CD-IC-NF matsweresandwiched between electro-spunpolycaprolactone(PCL)nanofibrousmats (PCL-HPC/SFS-NF and PCL-HPC/SFS/HP␤CD-IC-NF). PCL is a semi crystalline and hydrophobicpolymerthatiscommonlyusedforbiomedical appli-cationssuchastissue engineeringscaffold [30]wounddressing [31] and drug delivery system [32], thanks to its biocompati-bilityand biodegradability. SFS/HP␤CD-ICwascharacterizedby DSCand continuousvariation technique(Job’s plot)in orderto investigatethestoichiometryoftheIC.Inaddition,inclusion com-plexationhasbeeninvestigatedbymolecularmodelingusingab initio techniques. HPC/SFS-NF and HPC/SFS/HP␤CD-IC-NF were characterizedbySEM,XRDandUV-Visspectroscopy.Release stud-ieswereperformedinphosphatebufferedsaline(PBS)(Fig.1f)and quantifiedthroughHPLC.Inaddition,SFS(powder),HPC/SFSfilm, HPC/SFS/HP␤CD-ICfilm;HPC/SFS-NFand HPC/SFS/HP␤CD-IC-NF werealsousedascontrolsamplesforreleasestudies.

2. Materialsandmethods 2.1. Materials

Hydroxypropyl cellulose (HPC, Mw∼300,000g/mol, Scien-tific Polymer Products), polycaprolactone (PCL, Mn∼70,000– 90000g/mol,SigmaAldrich),sulfisoxazole(SFS,min.99%,Sigma Aldrich),hydroxypropyl-beta-cyclodextrin(HP␤CD,average sub-stitution degree per anhydroglucose unit 0.6, Wacker Chemie AG,Germany),ethanol (99.8%,Sigma Aldrich),dichloromethane (DCM,extrapure, SigmaAldrich), N,N-dimethylformamide pes-tanal(DMF,Riedel),acetonitrile(ACN,chromasol,SigmaAldrich), methanol (extra pure, Sigma Aldrich), potassium phosphate monobasic(RiedeldeHaen),disodiumhydrogenphosphate dodec-ahydrate(RiedeldeHaen),sodiumchloride(SigmaAldrich)were purchasedandusedasreceivedwithoutanyfurtherpurification. Thewaterusedinexperimentswasdistilled–deionizedfroma MilliporeMilli-Qultrapurewatersystem.

2.2. Preparationofsolutions

TwotypesofSFScontainingHPCnanofibers(HPC/SFS-NFand HPC/SFS/HP␤CD-IC-NF) wereprepared by incorporating 9% SFS (w/w,withrespecttopolymer).For producingHPC/SFS/HP ␤CD-IC-NF,theamountofSFSwasdeterminedas1:1molarratiowith HP␤CD,and thesame amountof SFSwasusedforHPC/SFS-NF. In order to prepare HPC/SFS-NF, SFS and 3% (w/v) HPC were

(3)

solution),SFS wasdissolvedinethanol atRT.Then50% HP␤CD (w/w,withrespecttopolymer)wasaddedintothesolutionand stirredovernightatRT.Finally,3%(w/v)HPCwasaddedintothe system,and dissolved for the electrospinning. For comparison, wehavealsoelectrospunHPCinethanol(3%,w/v)withoutSFSor SFS/HP␤CD-IC.Table1summarizesthecompositionsofthe solu-tionsusedfortheelectrospinning ofthenanofibers.Toproduce PCLnanofibers,10%(w/v)PCLwasdissolvedinthebinarysolvent systemcontainingDMF:DCM(v/v)(3:1).

2.3. Electrospinningofnanofibersandpreparationoffilms

HPC,HPC/SFS,HPC/SFS/HP␤CD-ICandPCLsolutionswere indi-viduallyloadedintoa3mLplasticsyringewithneedlediameter of0.8mmplacedhorizontallyonthesyringepump(KDScientific, KDS101).Theflowratesofthepolymersolutionswerecontrolled bysyringepumptoensurehomogeneousflowandfixedat1mL/h. Thecylindricalmetalcollectorwasplacedatadistanceof11cm fromtheneedletipandcoveredbyaluminumfoil.Thegroundand thepositiveelectrodesofthehighvoltagepowersupply(AUSeries, MatsusadaPrecisionInc.)wereclampedtothecollectorandthe needlerespectively.Theelectrospinningapparatuswasenclosed inaPlexiglasbox,andelectrospinningwascarriedoutat16kV, 22◦Cand20%relativehumidity.

SFScontainingHPCfilms(HPC/SFSfilmandHPC/SFS/HP ␤CD-ICfilm)werepreparedbysolutioncastingmethodusingthesame amountsofSFS,HPCandHP␤CD.Notethattheearlierdescribed procedurewasemployedtopreparethevarioussolutionsfor cast-ing.

2.4. Characterizationandmeasurements

InordertoinvestigatethethermalpropertiesofSFS-HP␤CD-IC, powderofSFS-HP␤CD-ICwasobtainedbyevaporatingthesolvent. Inaddition,physicalmixtureofSFSandHP␤CD(SFS-HP␤CD-PM) wasalsoprepared ascontrol.ThepowdersofSFS,HP␤CD, SFS-HP␤CD-PM and SFS-HP␤CD-IC were analyzed with differential scanningcalorimetry(DSC)(Netzsch,DSC204FI).ForDSC measure-ment,SFS,HP␤CD,SFS-HP␤CD-PMwerepreparedinanaluminum pan,heldisothermallyat25◦Cfor3minandheatedfrom25◦Cto 250◦Catarateof20◦C/minundernitrogenpurge.SFS-HP␤CD-IC wassubjectedtoheatingand coolingcyclesconsistingof: hold-ingisothermallyat25◦Cfor3min,rampingfrom25◦Cto250◦C at20◦C/min,coolingatarateof20◦C/mindownto25◦C.Itwas subjectedtoasecondcycletoinvestigatethechangeinthermal behaviorfollowingthefirstheatatarateof20◦C/min.

The stoichiometryof IC was investigated by thecontinuous variationtechnique(Job’splot)[33].Equimolar(10−4M)solutions ofSFSandHP␤CDpreparedinethanolweremixedtoastandard volumevaryingthemolarratio(r,[SFS]/[SFS]+[HP␤CD])from0to 1whilekeepingthetotalconcentrationofeachsolutionconstant. Afterstirring thesolutions for1h atRT,theabsorbance ofthe

theviscosityofHPC,HPC/SFS,HPC/SFS/HP␤CD-ICandPCLsolutions atRT.Therheometerwasequippedwitha cone/plateaccessory (spindletypeCP40-2)ataconstantshearrateof100sec−1.The con-ductivityofsolutionwasdeterminedbyInolab®Multi720-WTW

atRT.

Scanningelectronmicroscopy(SEM,FEI–Quanta200FEG)was usedtoexaminethemorphologiesoftheelectrospunnanofibers. Thesamplesweremountedonmetalstubsusingadouble-sided adhesivetapeandcoatedwithAu/Pdlayer(∼6nm)(PECS-682)to minimizethecharging.Nearly100fiberswereanalyzedtocalculate averagefiberdiameter(AFD).

Thecrystallinestructureofthematerialswasexaminedwith X-ray diffraction (XRD). XRD data for the powder of SFS and HP␤CD;HPCNF,HPC/SFS-NFandHPC/SFS-HP␤CD-ICNFmatswere recordedusingaPANalyticalX’Pertpowderdiffractometer apply-ingCuK␣radiationinthe2rangeof5–30◦.

Since HPC is water-soluble,thesandwich configuration was prepared by placing the HPC/SFS/HP␤CD-IC-NF between PCL nanofibrousmatforachievingthecontrollablereleaserate (PCL-HPC/SFS/HP␤CD-IC-NF). The facile pressure is given by thumb forcepsatopenfaceofthemembranetowrapthestructure.The sameprocedurewasappliedtopreparesandwichconfiguration of HPC/SFS-NF (PCL-HPC/SFS-NF).Ascontrol, therelease of SFS (powder),HPC/SFSfilm,HPC/SFS/HP␤CD-ICfilm,HPC/SFS-NFand HPC/SFS/HP␤CD-IC-NFwerealsotested.Atotalimmersionmethod was used tostudy the cumulative release profiles of SFS from thecomposite matsandcontrolsampleswherethethicknessof composite mats is ∼400␮m (determined byZeiss AxioImager A2mopticalmicroscope).Inthistechnique,eachofthecomposite matsincluding24mgHPC/SFS-NFor 37mgHPC/SFS/HP ␤CD-IC-NFand30mgPCLnanofibersandthecontrolsampleswithsame amountof SFS wereimmersed in 30mLof phosphate buffered saline(PBS)mediumat37◦Cat 50rpm.Atpredeterminedtime intervalsbetween0and720min,0.5mLofthetestmediumwas withdrawnandanequalamountofthefreshmediumwasrefilled. ThereleasedamountofSFSwasdeterminedbyhighperformance liquidchromatography(HPLC,Agilient,1200series)equippedwith VWD UVdetector.The columnwas2.1mm×50mm, contained 3␮mpacking(ACE, C8)and thedetection wasaccomplishedat 270nm.Mobilephase,flowrate,injectionvolumeandthetotalrun timewere100%ACN,0.1mL/min,20␮Land4min,respectively.The calibrationsampleswerepreparedinethanol.Accordingto pre-determinedcalibrationcurveforSFS,thedatawerecalculatedto determinethecumulativeamountofSFSreleasedfromthesamples foreachspecifiedimmersionperiod.Theexperimentswerecarried outintriplicateandtheresultswerereportedasaverage±standard deviation.

Inordertodeterminetheactualloading(%)ofSFSinnanofibers, aknownweightofthesamplewasdissolvedinethanolandthe amountof SFS inthe sample wasmeasured byHPLC in tripli-cate.Accordingtocalibrationcurvepreparedinethanol,thetotal amountofSFSinthesampleandactualloading(%)wascalculated.

(4)

Fig.2. DSCthermogramsoffirstheatingscan ofSFS,HP␤CD,SFS/HP␤CD-PM, SFS/HP␤CD-ICandsecondheatingscanofSFS/HP␤CD-IC.

Theexperimentswerecarriedoutintriplicateandtheresultswere reportedasaverage±standarddeviation.

Todeterminethesolubilityof SFSineach fiber,certain con-centrationofSFS(powder) (0.094mM)andthesameamountof SFScontainingHPC/SFS/HP␤CD-IC-NFweredissolvedinwater.For comparison,HPC/SFS-NFandHPC/SFS/HP␤CD-IC-NFwerescaledto thesameweight.Lastly,UVabsorbanceofSFSinthesampleswas measuredat270nmviaUV–Vis–NIRspectroscopy(Varian,Cary 5000).

2.5. Computationalmethod

Thestructures of SFS, pristine ␤-CD [34], HP␤CD, and their ICswereoptimizedbyusingabinitiomethodsbasedondensity functionaltheory(DFT)[35,36]implementedintheViennaAb ini-tiosimulationpackage[37,38].Theinitialgeometryof␤-CDwas obtainedfromCambridgeStructuralDatabase[39].HP␤CDis con-structedmanuallybyaddingfour2-hydroxypropylgroupsonthe primarygroupsof ␤-CDcorrespondingtoa substitutiondegree peranhydroglucoseunit of0.6 which wascompatiblewiththe experiments[40].The exchange-correlation wastreated within Perdew-Burke-Ernzerhofparametrizationofthegeneralized gradi-entapproximation(GGA-PBE)[41]withinclusionofVanderWaals correction[42].Theelementpotentialsweredescribedbyprojector augmented-wavemethod(PAW)[43]usingaplane-wavebasisset withakineticenergycutoffof400eV.TheBrillouinzoneintegration wasperformedatthe-point.Allstructureswereconsideredas isolatedmoleculesinvacuumandwererelaxedusingthe blocked-Davidsonalgorithmwithsimultaneousminimizationofthetotal energyandinteratomicforces.Theconvergenceonthetotalenergy andforcewastestedandthensetto10−5eVand10−2eV/Å, respec-tively.

3. Resultsanddiscussion

3.1. ThermalpropertiesofSFS/HPˇCD-IC

DSCthermogramsofthepowderofSFS,HP␤CD,SFS-HP␤CD-PM andSFS-HP␤CD-ICaredisplayedinFig.2.TheDSCcurveofpure SFSexhibitedasharpendothermicpeakat203◦C(H=115.4J/g) corresponding to the melting point of SFS [29]. The thermal transitionofHP␤CDrangedfrom40◦Cto170◦Ccorrespondingto dehydrationofHP␤CD-ringcavity,andappearsasanendothermic transitionwithanenthalpyof184.1J/g.Theendothermictransition ofSFSwasretainedinSFS-HP␤CD-PM(between170◦Cand205◦C), andabroadendothermictransitioncorrespondingtodehydration ofHP␤CDappearedintherangeof40◦Cto160◦C.Theenthalpies

Fig.3. Continuousvariationplot(Job’splot)forthecomplexationofSFSwithHP␤CD obtainedfromabsorptionmeasurements.

oftheabove-mentionedtransitionswere12.97J/gand 169.2J/g, respectively. These transitions observed in DSC thermogram of SFS-HP␤CD-PM might be attributed to the presence of less or nointeractionbetweenSFSand HP␤CD.Whencrystallineguest molecules formIC with CDs,the melting point either shifts or disappearsintheDSCthermogram[29].Notably,inDSC thermo-gramofSFS/HP␤CD-ICthemeltingofSFSisnotobserved,however endothermictransitions between 40–80◦C and 80–190◦C were observedduringthefirstheatingscan.Thedisappearanceofan endothermicpeak of a guestmolecule can beattributed toan amorphousstate and/ortoaninclusion complexationin which guest molecules being completely included into the cavity of CD by replacing water molecules. Moreover,no transition was observedinthesecondheatingscanofSFS/HP␤CD-IC.Inthefirst heatingscanofSFS/HP␤CD-IC,theenthalpiesoftheendothermic transitionswere1.91J/gand58.78J/g,respectively.Therefore,the enthalpiesoftransitionsofSFS/HP␤CD-ICweremuchsmallerthan thoseofSFS/HP␤CD-PM.Theenthalpyreductionalsoshowsthe interactionbetweenSFSandCDinSFS/HP␤CD-IC[44].

3.2. Stoichiometrydeterminationbythecontinuousvariation method(Job’splot)

Thecontinuousvariationmethod(Job’splot)wasusedto deter-minethestoichiometryofSFS/HP␤CD-IC.Accordingtothismethod, maximumpointofthemolarratio(r)correspondstothe complexa-tionstoichiometry.TheplotinFig.3showsthemaximumatamolar ratioofabout0.5,indicatingthatthecomplexeswereformedwith 1:1stoichiometry.

3.3. MolecularmodelingofSFS/HPˇCD-IC

ThestabilityofCD-ICswhenSFSincludedinHP␤CDis exam-ined by first-principles modeling techniques. Firstly, HP␤CD is manually built by adding four 2-hydroxypropyl groups onthe primary groups of pristine ␤-CD corresponding toa degree of substitutionof0.6.Variousdecorationpatternsofsubstituentsare considered(e.g.1-2-3-4,1-2-5-6,1-3-5-7wherenumbersindicate therelative positionofsubstitution glucoses)[40,45].The opti-mizationresultsdonotindicateanysignificantenergydifferences onthesubstituentpattern.OntheothersidetheO-Hinteraction betweensubstituents reducestheenergytosomeextent(upto 10kcal/mol), thus hydroxypropyl (HP) arms may prefer to get closerasshowninFig.4b.Accordinglyweconsider1-3-5-7pattern asprototypeandexaminethepossibilityofICformation.Inorder toformacomplex,singleSFSmoleculeisintroducedintoHP␤CD at various positions. In addition, two different orientationsare

(5)

Fig.4.SideandtopviewofoptimizedstructuresofSFS/HP␤CD-ICwhenHParmsare(a)openand(b)close.Gray,red,andyellowspheresrepresentcarbon,oxygen,and sulfuratoms,respectively.O HbondingbetweenHPgroupsareindicatedbydashedlines.(Forinterpretationofthereferencestocolorinthisfigurelegend,thereaderis referredtothewebversionofthisarticle.)

considered where NH2- or CH3-end points toward cavity. For

eachcase thewholesystemisoptimized withoutimposingany constraints.ThelowestenergyconfigurationsareshowninFig.4. Thecomplexationenergy(Ecomp)iscalculatedby

Ecomp=EHP␤CD+ESFS−EHP␤CD+SFS

whereEHP␤CD,ESFS,EHP␤CD+SFSisthetotalenergy(includingvander

Waalsinteraction)ofHP␤CD,SFS,andSFS/HP␤CD-IC,respectively. Ecompiscalculatedas35.05and32.49kcal/molforopenandclose

HParms,respectively. WhenHP armsgetclosernarrowingthe rim,Ecompslightlyreduces.Ourresultsareinagreementwiththe

Job’splotandsupporttheformationofstableICofSFSandHP␤CD with1:1molarratio.

3.4. Morphologyofthenanofibers

Based on our preliminary experiments, ethanol was chosen asasolventfordissolvingboth HPCandSFS. Theconcentration ofHPCwasdeterminedas3%(w/v)inethanoltoyieldbead-free nanofibers.TheamountofSFS(9%,w/w,withrespecttoHPC)was setata1:1ratiowithHP␤CDinSFS/HP␤CD-IC.Fig.5displaysSEM imagesandAFD along withfiberdiameterdistributions ofHPC NF, HPC/SFS-NF and HPC/SFS-HP␤CD-IC NF. By optimizing the electrospinningparameters,wewereabletoobtainbead-freeand uniformnanofibers from HPC, HPC/SFSand HPC/SFS-HP␤CD-IC systems.TheAFDofHPCNFwas125±50nm,whereasAFDof elec-trospunHPC/SFS-NFandHPC/SFS/HP␤CD-IC-NFwere90±40nm and60±25nm,respectively.TheslightdecreaseinAFDcouldbe explainedbydifferencesinconductivityandviscosityofHPC/SFS and HPC/SFS/HP␤CD-IC solutions compared to HPC solution (Table 1). Stable jet formation usually depends on sufficiently high surface charge densities which are influenced by applied voltageandtheelectricalconductivityofthepolymersolution.As

theconductivityofasolutionincreases,thestretchingincreases due to the higher number of charges formed in the solution whichthinsthediameterofthefiber[46].Inaddition,viscosityis importantforthecontinuityofjetduringelectrospinningwhile lowerviscosityleadstolowerdiameternanofibers[47].HPC/SFS andHPC/SFS/HP␤CD-ICsolutionshavemuchhigherconductivity and slightlyhigher viscositythanHPCsolution;thereby AFDof HPC/SFS-NF and HPC/SFS/HP␤CD-IC-NF were lower than HPC nanofibers. Moreover, HPC/SFS/HP␤CD-IC-NF was thinner than HPC/SFS-NFpossiblyduetothehigherconductivityandslightly lowerviscosityoftheparentsolution.

Furthermore,weinvestigatedtheeffectofSFSincorporationin theformoffreeSFSandSFS/HP␤CD-IConnanofibermorphology. IncorporationofSFSinHPCnanofibersdidnotdeterioratetheshape anduniformity.Moreoverrelativelythinnerfiberswereobtained duetothehigherconductivityofHPC/SFSandHPC/SFS/HP␤CD-IC solutions.Ontheotherhand,neitherdrugcrystalsnoraggregates wereobservedonthesurfacesofnanofibers.Phaseseparationis not likely to occuras SFS is highly soluble in the HPC/ethanol system, while the solvent (ethanol) evaporates rapidly during electrospinning.Forreleaseexperiments,sandwich-like compos-itematswerepreparedinwhichtheinnerlayerwasHPC/SFS-NF orHPC/SFS/HP␤CD-IC-NFmatandouterlayerswereelectrospun PCLnanofibrousmat.SEMimageandAFD(260±110nm)along with fiberdiameter distributions of bead-free and smooth PCL nanofibersisshowninFig.5d.

3.5. Crystallinestructureofnanofibers

XRD was performed to investigate the crystallinity of the samples. Fig. 6 represents the XRD patterns of the powder of SFS and HP␤CD; HPC NF, HPC/SFS-NF and HPC/SFS-HP␤CD-IC NF mats.XRDpatternofasreceivedSFSindicated thatSFS isa

(6)

Fig.5.SEMimagesandfiberdiameterdistributionswithaveragefiberdiameter(AFD)oftheelectrospunnanofibersobtainedfromsolutionsof(a)HPC,(b)HPC/SFS,(c) HPC/SFS/HP␤CD-ICand(d)PCL.

crystallinematerialwithcharacteristicdiffractionpeaks.TheHPC NF diffraction exhibits a diffused pattern with two diffraction haloswhichshowthatthepolymerisamorphous.InHPC/SFS-NF, thecharacteristicpeaksofSFSwereabsentandonlyahumpofthe amorphousformisnoticed.ThissuggeststhatSFSwasnolongerin crystallinestate;apparentlyitwasconvertedintoanamorphous state. In HPC/SFSethanol solution, SFS is well solubilized and homogeneouslydistributedwithinthepolymersolution,soduring the electrospinning process, drug mobility is restricted due to therapidevaporationofthesolventandtheSFSmoleculescould notformcrystallineaggregates.Theabsenceofanyintenseand sharppeakinthepatternofHP␤CDrevealsthatitpossessesan amorphous structure. In the XRD pattern of HPC/SFS/HP ␤CD-IC-NF, the crystalline diffraction peak of SFS was also absent. That means SFS was in amorphous state in the HPC/SFS/HP␤ CD-IC-NF[48].

3.6. Invitroreleasestudy

Thecumulativerelease(%)ofSFSfromdifferentsamplesisgiven inFig.7asafunctionofimmersiontime.Allsamplesdepicted sus-tainedreleasebehaviorofSFSoveraperiodof720min(Fig.7a). SFS followeda typicaldual-stagerelease profilefromallofthe samples,aninitialrelativelyfastreleasefollowedbya constant release.HPC/SFS/HP␤CD-IC-NFreleasedmuchmoreamountofSFS intotalthanSFS(powder)andHPC/SFS/HP␤CD-ICfilm.Thiscould beduetothehighsurfaceareaofHPC/SFS/HP␤CD-IC-NFcompared toSFS(powder)andHPC/SFS/HP␤CD-ICfilm.Theactualloading (%)ofSFSinHPC/SFS-NFandHPC/SFS/HP␤CD-IC-NFwere deter-minedas76±1%and73±1%,respectively.However,totalamount ofreleasedSFSwasmuchhigherfromHPC/SFS/HP␤CD-IC-NFthan HPC/SFS-NF.Possiblereasonforthiscouldbethehighersurface areaofHPC/SFS/HP␤CD-IC-NFduetothelowerfiberdiameteras

(7)

Fig.6. XRDpatternsofSFS,HP␤CD,HPCNFandHPCnanofiberscontainingSFS.

Fig. 7.The cumulative release of SFS from SFS (powder), HPC/SFS film, HPC/SFS/HP␤CD-ICfilm,HPC/SFS-NFwithoutPCL,HPC/SFS/HP␤CD-IC-NFwithout PCL,PCL-HPC/SFS-NFandPCL-HPC/SFS/HP␤CD-IC-NFfor(a)720min,(b)120min (n=3,theerrorbarsinthefigurerepresentthestandarddeviation(SD)),and(c)the solubilityofSFSaspowder,inHPC/SFS-NFandHPC/SFS/HP␤CD-IC-NFinaqueous solution.

mat can facilitate the dissolution of the drug in the medium and promote a rapid drugrelease [49]. In order toextend the releasetimeofSFSfromHPC/SFS-NFandHPC/SFS/HP␤CD-IC-NF, wehavepreparedPCL-HPC/SFS-NFand PCL-HPC/SFS/HP ␤CD-IC-NF. SFS release from PCL-HPC/SFS-NFwas slowercompared to HPC/SFS-NFwithoutPCLandPCL-HPC/SFS/HP␤CD-IC-NFreleased SFSslowerthanHPC/SFS/HP␤CD-IC-NFwithoutPCLbecauseofthe presenceofanextralayerforreleaseofSFS.Asaconsequence, PCL-HPC/SFS/HP␤CD-IC-NFexhibitedarapidreleaseattheinitialstage andthensustainedrelease atthefinalstage.Thismightbe cru-cialformanyapplicationsthatarerelatedwiththepreventionof bacteriaproliferation.Bringingtothecontext,higherreleaseatthe initialstageisofgreatimportancewhichlimitstheproliferationof bacteriainthebeginningwhilesustainedreleaseinhibitsthefew bacteriawhichmanagedtoproliferate[50].

HPC/SFS/HP␤CD-IC-NFreleasedhigheramountofSFSinthe ini-tialstageand ineach time period givenonthegraph;and the maximumamountofreleasedSFSwasalmost14%higheras com-paredtoHPC/SFS-NF.Aswementionedbefore,thissituationmight berelatedwiththeexistenceofHP␤CDinthematrix[51].CDs haveabilitytoenhancedrugreleasefrompolymericsystems,since theyincrease theconcentrationof diffusiblespecieswithin the matrix[52].WhenahydrophobicdrugmakescomplexwithCD itssolubilityincreasesconsiderablywhereCD-ICisusuallymore hydrophilicthanthefreedrug.ThenanofiberscontainingCD-IC weteasierandthestructuredisintegratesdissolvingthesubstance quickly [51,53]. The enhancement in thesolubility of SFS with HPC/SFS/HP␤CD-IC-NFwasverifiedbysolubilitytest.TheUV–Vis spectroscopyofSFS(powder),HPC/SFS-NFandHPC/SFS/HP ␤CD-IC-NFdissolvedinwaterisshowninFig.7c.HPC/SFS-NFallowsthe SFSdrugtobedispersedinthemediumwhichfacilitatesits disso-lution.AlthoughsameamountofSFSwasusedforeachsamplethe solubilityofSFShasincreasedmuchmoreinHPC/SFS/HP ␤CD-IC-NF.Additionally,thepresenceofCDmaylowertherequireddose ofanactivemoleculebyimprovingitssolubility.Consequently, HPC/SFS/HP␤CD-IC-NFcouldbeusedasanefficientdrugdelivery systemforwounddressingpurpose.

4. Conclusion

The concept of employing electrospunnanofibers as matrix andimprovingthesolubilityofhydrophobiccompoundsby CD-ICs are well-known approaches those have been investigated. Therefore, we have anticipated that combination ofdrug/CD-IC andversatileelectrospinningprocesscouldenableHPCnanofibers to be used for the deliveryof a variety of hydrophobic drugs. Here, SFS wasusedasa model drugtostudyitsrelease kinet-icsfromelectrospunHPCnanofibersincorporatingSFS/HP␤CD-IC. ThestoichiometryofthecomplexbetweenSFSand HP␤CDwas determinedtobe1:1byJob’splot.Furthermore,modeling stud-ies performedusing ab initiotechniques alsorevealed that the

(8)

stoichiometryoftheSFS/HP␤CD-ICwas1:1(SFS:HP␤CD). There-fore,theresultsofmolecularmodelingareingoodagreementwith theexperimentaldata.SFSreleasefromPCL-HPC/SFS/HP ␤CD-IC-NFthatwaspreparedbyplacingHPC/SFS/HP␤CD-IC-NFbetween PCLnanofibrousmatswasslowercomparedtoHPC/SFS/HP ␤CD-IC-NFwithoutPCL.Controlledrelease ofSFS wasattainedfrom HPC/SFS-NFandHPC/SFS-HP␤CD-ICNFforaperiodof720min,yet weobservedthathigheramountofSFSwasreleasedfrom HPC/SFS-HP␤CD-IC-NFwhencomparedtoHPC/SFS-NF.Thisispossiblydue tothepropertyofCD-ICtoenhancethesolubilityofhydrophobic SFSmoleculesviainclusioncomplexationwithHP␤CDandhigher surfaceareaofHPC/SFS/HP␤CD-IC-NFcomparedtoHPC/SFS-NF. Asaresult,PCL-HPC/SFS/HP␤CD-IC-NFdepictedslowreleaseand highestamountoftotalSFSrelease.Thisstudycontributestothe existingliteratureforimprovingCD-ICfunctionalizedelectrospun nanofibersthatmightbeusedaswounddressingwith character-isticsofbothCDandelectrospunnanofibersfordeliveryofpoorly solubledrugs.

Acknowledgments

Dr. Uyar acknowledges The Scientific and Technologi-cal Research Council of Turkey (TUBITAK) -Turkey (Project no. 111M459) and EU FP7-PEOPLE-2009-RG Marie Curie-IRG (NANOWEB,PIRG06-GA-2009-256428)andTheTurkishAcademy ofSciences–OutstandingYoungScientistsAwardProgram (TUBA-GEBIP)-Turkeyforpartialfundingoftheresearch.Z.Aytacthanks to TUBITAK (Project no. 111M459 and 213M185) for the PhD scholarship.

References

[1]J.H.Wendorff,S.Agarwal,A.Greiner,Electrospinning:Materials,Processing, andApplications,JohnWiley&SonsPublishing,Weinheim,2012.

[2]A.Greiner,J.H.Wendorff,Angew.Chem.Int.Ed.46(2007)5670.

[3]J.H.Guo,G.W.Skinner,W.W.Harcum,P.E.Barnum,Pharm.Sci.Technol.Today 1(1998)254.

[4]A.Abdelbary,A.H.Elshafeey,G.Zidan,Carbohydr.Polym.77(2009)799.

[5]Y.Bai,Z.Zhang,A.Zhang,L.Chen,C.He,X.Zhuang,X.Chen,Carbohydr.Polym. 89(2012)1207.

[6]S.Shukla,E.Brinley,H.J.Cho,S.Seal,Polymer46(2005)12130.

[7]L.Francis,A.Balakrishnan,K.Sanosh,E.Marsano,Mat.Lett.64(2010)1806.

[8]V.Periasamy,K.Devarayan,M.Hachisu,J.FiberBioeng.Inform.5(2012)191.

[9]J.Szejtli,Chem.Rev.98(1998)1743.

[10]E.M.M.DelValle,ProcessBiochem.39(2004)1033.

[11]L.Szente,J.Szejtli,Adv.DrugDeliv.Rev.36(1999)17.

[12]M.F.Canbolat,A.Celebioglu,T.Uyar,ColloidsSurf.B:Biointerfaces115(2014) 15.

[13]A.Celebioglu,O.C.O.Umu,T.Tekinay,T.Uyar,ColloidsSurf.B:Biointerfaces116 (2014)612.

[14]X.Z.Sun,G.R.Williams,X.X.Hou,L.M.Zhu,Carbohydr.Polym.94(2013)147.

[15]T.Vigh,T.Horváthová,A.Balogh,P.L.Sóti,G.Drávavölgyi,Z.K.Nagy,G.Marosi, Eur.J.Pharm.Sci.49(2013)595.

[16]X.Luo,C.Xie,H.Wang,C.Liu,S.Yan,X.Li,Int.J.Pharm.425(2012)19.

[17]J.L.Manasco,C.Tang,N.A.Burns,C.D.Saquing,S.A.Khan,RSCAdv.4(2014) 13274.

[18]T.Uyar,R.Havelund,J.Hacaloglu,F.Besenbacher,P.Kingshott,ACSNano4 (2010)5121.

[19]T.Uyar,R.Havelund,Y.Nur,A.Balan,J.Hacaloglu,L.Toppare,F.Besenbacher, P.Kingshott,J.Membr.Sci.365(2010)409.

[20]T.Uyar,R.Havelund,Y.Nur,J.Hacaloglu,F.Besenbacher,P.Kingshott,J.Membr. Sci.332(2009)129.

[21]F.Kayaci,Y.Ertas,T.Uyar,J.Agric.FoodChem.61(2013)8156.

[22]F.Kayaci,O.C.O.Umu,T.Tekinay,T.Uyar,J.Agric.FoodChem.61(2013)3901.

[23]F.Kayaci,T.Uyar,Carbohydr.Polym.90(2012)558.

[24]F.Kayaci,T.Uyar,FoodChem.133(2012)641.

[25]E.Mascheroni,C.A.Fuenmayor,M.S.Cosio,G.D.Silvestro,L.Piergiovanni,S. Mannino,A.Schiraldi,Carbohydr.Polym.98(2013)17.

[26]Z.Aytac,S.Y.Dogan,T.Tekinay,T.Uyar,ColloidsSurf.B:Biointerfaces120(2014) 125.

[27]A.A.M.Prabhu,G.Venkatesh,N.Rajendiran,J.Solut.Chem.39(2010)1061.

[28]B.Szafran,J.Pawlaczyk,J.Incl.Phenom.Mol.Recognit.Chem.23(1996)277.

[29]G.Gladys,G.Claudia,L.Marcela,Eur.J.Pharm.Sci.20(2003)285.

[30]L.G.Mobarakeh,M.P.Prabhakaran,M.Morshed,M.H.Nasr-Esfahani,S. Rama-krishna,Biomaterials29(2008)4532.

[31]E.J.Chong,T.T.Phan,I.J.Lim,Y.Z.Zhang,B.H.Bay,S.Ramakrishna,C.T.Lim,Acta Biomat.3(2007)321.

[32]M.Zamani,M.Morshed,J.Varshosaz,M.Jannesari,Eur.J.Pharm.Biopharm.75 (2010)179.

[33]P.Job,Ann.diChim.Appl.9(1928)113.

[34]K.Lindner,W.Saenger,Carbohydr.Res.99(1982)103.

[35]W.Kohn,L.J.Sham,Phys.Rev.140(1965)A1133.

[36]P.Hohenberg,W.Kohn,Phys.Rev.136(1964)B864.

[37]G.Kresse,J.Furthmüller,Phys.Rev.B54(1996)11169.

[38]G.Kresse,J.Furthmüller,Comput.Mat.Sci.6(1996)15.

[39]F.H.Allen,ActaCrystallogr.Sect.B:Struct.Sci.58(2002)380.

[40]P.Mura,G.Bettinetti,F.Melani,A.Manderioli,Eur.J.Pharm.Sci.3(1995)347.

[41]J.P.Perdew,J.A.Chevary,S.H.Vosko,K.A.Jackson,Phys.Rev.B46(1992)6671.

[42]S.Grimme,J.Comput.Chem.27(2006)1787.

[43]P.E.Blöchl,Phys.Rev.B50(1994)17953.

[44]M.O.Ahmed,I.El-Gibaly,S.M.Ahmed,Int.J.Pharm.171(1998)111.

[45]T.Irie,K.Fukunaga,A.Yoshida,K.Uekama,H.M.Fales,J.Pitha,Pharm.Res.5 (1988)713.

[46]T.Uyar,F.Besenbacher,Polymer49(2008)5336.

[47]S.Ramakrishna,AnIntroductiontoElectrospinningandNanofibers,World Sci-entificPublishingCompanyIncorporated,Singapore,2005.

[48]E.E.M.Eid,A.B.Abdul,F.E.O.Suliman,M.A.Sukari,A.Rasedee,S.S.Fatah, Carbo-hydr.Polym.83(2011)1707.

[49]X.Li,M.A.Kanjwal,L.Lin,I.S.Chronakis,ColloidsSurf.B:Biointerfaces103 (2013)182.

[50]K.Kim,Y.K.Luu,C.Chang,D.Fang,B.S.Hsiao,B.Chu,M.Hadjiargyrou,J.Control. Release98(2004)47.

[51]J.Szejtli,CyclodextrinTechnology,Kluweracademic,Dordrecht,1988.

[52]D.C.Bibby,N.M.Davies,I.G.Tucker,Int.J.Pharm.197(2000)1.

Referanslar

Benzer Belgeler

Apart from meeting the needs of learners with different learning style preferences and having the potential of improving different skills, another strength of the software is that

The objective of this study was to determine the essential oil composition of two Gundelia tournefortii varities reported in Flora of Turkey and to supply contributions to the

İki yıllık ortalama sonuçlara göre, en düşük ham protein verimi değeri 12.9 kg/da ile kılçıksız bromun Lyon çeşidinden, en yüksek (27.6 kg/da) ise İngiliz çiminin

Bingöl ekolojik koĢullarında bir yıllık olarak yürütülen ve 8 adet nohut çeĢidinin verim ve verim komponentleri yönünden denendiği çalıĢmada ele alınan

In this study, our population (F 1001) samples should be classified as a separate and new species called Veronica edremitense.. We believe that this work will

yüzyılda Bizans devleti ve Kutsal Roma imparatorluğu arasında yarattığı siyasi krizlerden çok uzak olmanın ötesinde ve Chalkokondyles’in çağdaşı Dukas gibi

affects the Query Hit messages returned to Query messages, the popularity of the shared resources is another important factor that can affect the Query Hits, since popular resources

Araştırma sahasında erozyon potansiyelinin yüksek olduğu sahaların dağılışı ile arazi kullanımı/örtüsü özellikleri karşılaştırıldığında yüksek