• Sonuç bulunamadı

The extended Mittag-Leffler function and its properties

N/A
N/A
Protected

Academic year: 2021

Share "The extended Mittag-Leffler function and its properties"

Copied!
10
0
0

Yükleniyor.... (view fulltext now)

Tam metin

(1)

R E S E A R C H

Open Access

The extended Mittag-Leffler function and its

properties

Mehmet Ali Özarslan and Banu Yılmaz

* *Correspondence:

banu.yilmaz@emu.edu.tr Eastern Mediterranean University, Famagusta, North Cyprus via Mersin 10, Turkey

Abstract

In this paper, we present the extended Mittag-Leffler functions by using the extended Beta functions (Chaudhry et al. in Appl. Math. Comput. 159:589-602, 2004) and obtain some integral representations of them. The Mellin transform of these functions is given in terms of generalized Wright hypergeometric functions. Furthermore, we show that the extended fractional derivative (Özarslan and Özergin in Math. Comput. Model. 52:1825-1833, 2010) of the usual Mittag-Leffler function gives the extended Mittag-Leffler function. Finally, we present some relationships between these functions and the Laguerre polynomials and Whittaker functions.

Keywords: Mittag-Leffler; extended Beta functions; fractional derivative; Mellin transform; Laguerre polynomials; Whittaker functions; Wright generalized hypergeometric functions

1 Introduction

Fractional differential equations have been an active research area during the past few decades and they occur in many applications of physics and engineering. The Mittag-Leffler function appears as the solution of fractional order differential equations and frac-tional order integral equations. Some applications of the Mittag-Leffler function are as follows: studies of the kinetic equation, the telegraph equation [], random walks, Levy flights, superdiffuse transport, and complex systems. Besides this, the Mittag-Leffler func-tion appears in the solufunc-tion of certain boundary value problems involving fracfunc-tional integro-differential equations of Volterra type []. It has applications in applied problems, such as fluid flow, rheology, diffusive transport akin to diffusion, electric networks, proba-bility, and statistical distribution theory. Various properties of the Mittag-Leffler functions were presented and surveyed in []. Furthermore, a different variant of the Mittag-Leffler function has been investigated in [].

Let us start with giving the historical background of the Mittag-Leffler functions. The function Eα(z), Eα(z) = ∞  k= zk (αk + ), ()

was defined and studied by Mittag-Leffler in the year  in [–]. It is a direct general-ization of the exponential series, since, for α = , we have the exponential function. The

(2)

function defined by Eα,β(z) = ∞  k= zk (αk + β) ()

gives a generalization of equation (). This generalization was studied by Wiman in  [, ], Agarwal in , and Humbert and Agarwal [, ] in . Afterward, Prabhakar [] introduced the generalized Mittag-Leffler function by

Eδβ,γ(z) := ∞  n= (δ)n (βn + γ ) zn n!, ()

where β, γ , δ∈ C with (β) > . For δ = , it reduces to the Mittag-Leffler function given in equation (). Some of the properties of the generalized Mittag-Leffler function such as the Mellin transform, the inverse Mellin transform, and differentiation were given in []. On the other hand, monotony of the Mittag-Leffler function was given in [].

In this paper, we extend the Mittag-Leffler function Eαγ,β(z) in the following way. Since

Eγα,β(z) = ∞  k= (γ )k (αk + β) (c)k (c)k zk k!, using the fact that

(γ )k

(c)k

=B(γ + k, c – γ )

B(γ , c – γ ) ,

we extend the Mittag-Leffler function as follows:

E(γ ;c)α,β (z; p) := ∞  k= Bp(γ + k, c – γ ) B(γ , c – γ ) (c)k (αk + β) zk k!  p≥ ; Re(c) > Re(γ ) > , ()

where for Bp(x, y) we have

Bp(x, y) =

  

tx–( – t)y–e

p

t(–t)dt Re(p) > , Re(x) > , Re(y) > , ()

the extended Euler’s Beta function defined in [] (see also []).

(3)

2 Some properties of the extended Mittag-Leffler function

We begin with the following theorem, which gives the integral representation of the ex-tended Mittag-Leffler function.

Theorem (Integral representation) For the extended Mittag-Leffler function, we have

E(γ ;c)α,β (z; p) =B(γ , c – γ )    –( – t)c–γ –ep t(–t)E(c) α,β(tz) dt, ()

where p≥ , Re(c) > Re(γ ) > , Re(α) > , Re(β) > . Proof Using equation () in equation (), we get

E(γ ;c)α,β (z; p) = ∞  k=    tγ+k–( – t)c–γ –ep t(–t)dt  (c)k B(γ , c – γ ) zk (αk + β)k!. ()

Interchanging the order of summation and integration in equation (), which is guaranteed under the assumptions given in the statement of the theorem, we get

E(γ ;c)α (z; p) =    –( – t)c–γ –ep t(–t) ∞  k= (c)k B(γ , c – γ ) (tz)k (αk + β)k!dt. ()

Using equation () in equation (), we get the desired result. 

Corollary  Note that, taking t =+uu in Theorem, we get

E(γ ;c)α (z; p) =  B(γ , c – γ )  ∞  – (u + )cep(+u)u E(c) α,β  uz  + u du. ()

Corollary  Taking t= sinθin the Theorem, we get the following integral representation:

E(γ ;c)α (z; p) =  B(γ , c – γ )   π   sinγ –θcosc–γ –θep sin θ cos θ × E(c) α,β  z sinθ. () Now, using the definition of Prabhakar’s Mittag-Leffler’s function, Bayram and Kurulay obtained the recurrence formula []

E(c)α,β(tz) = βE (c) α,β+(tz) + αz d dzE (c) α,β+(tz).

(4)

Corollary (Recurrence relation) For the extended Mittag-Leffler function, we get E(γ ;c)α,β (z; p) = βE (γ ;c) α,β+(z; p) + αz d dzE (γ ;c) α,β+(z; p),

where p≥ , Re(c) > Re(γ ) > , Re(α) > , Re(β) > .

In the next theorem, we give the Mellin transform of the extended Mittag-Leffler func-tion in terms of the Wright generalized hypergeometric funcfunc-tion. Note that the Wright generalized hypergeometric function is defined by []

p q(z) =p q (a,A), (a, A), . . . , (ap, Ap) (b,B), (b, B), . . . , (bp, Bq) , z = ∞  k= p j=(aj+ Ajk) q j=(bj+ Bjk) zk k!, ()

where the coefficients Ai(i = , . . . , p) and Bj(j = , . . . , q) are positive real numbers such

that  + q  j= Bjp  i= Ai≥ .

Theorem (Mellin transform) The Mellin transform of the extended Mittag-Leffler

func-tion is given by ME(γ ;c)α (z; p); s=(s)(c + s – γ ) (γ )(c – γ ) (c, ), (β, γ ), (γ + s, ) (c + s, ), z 

p≥ , Re(c) > Re(γ ) > , Re(α) > , Re(s) > , Re(β) > , ()

where is the Wright generalized hypergeometric function.

Proof Taking the Mellin transform of the extended Mittag-Leffler function, we have

ME(γ ;c)α (z; p); s=

 ∞

ps–E(γ ;c)α (z; p) dp. () Using equation () in equation (), we get

ME(γ ;c)α (z; p); s =  B(γ , c – γ )  ∞  ps–    –( – t)c–γ –ep t(–t) E(c)α,β(tz) dt dp. ()

Interchanging the order of integrals in equation (), which is valid because of the condi-tions in the statement of the Theorem , we get

(5)

Now taking u = t(–t)p in equation () and using the fact that (s) =us–e–udu, we get ME(γ ;c)α,β (z; p); s  = (s) B(γ , c – γ )    tγ+s–( – t)c+s–γ –E(c)α(tz) dt. ()

Using the definition of Prabhakar’s generalized Mittag-Leffler function Eα(c),β(tz) in equation

(), we get ME(γ ;c)α (z; p); s = (s) B(γ , c – γ )    tγ+s–( – t)c+s–γ – ∞  k= (c)k(tz)k (αk + β)k!dt. ()

Interchanging the order of summation and integration, which is valid for Re(c) > Re(γ ) > , Re(s) > , Re(c – γ + s) > , Re(α) > , Re(β) > , we get

ME(γ ;c)α,β (z; p); s  = (s) B(γ , c – γ ) ∞  k= (c)kzk (αk + β)k!    tγ+k+s–( – t)c+s–γ –dt. ()

Using the Beta function in equation (), we have

ME(γ ;c)α,β (z; p); s  =(s)(c + s – γ ) B(γ , c – γ ) ∞  k= (c)kzk (αk + β)k! (γ + k + s)(γ + s) (γ + s)(c + k + s). ()

Considering that (c)k=(c+k)(c) , B(γ , c – γ ) =(γ )(c–γ )(c) , and inserting equation () into

equa-tion (), we get the result

ME(γ ;c)α (z; p); s=(s)(c + s – γ ) B(γ , c – γ )(c) ∞  k= zk (αk + β)k! (γ + k + s)(c + k) (c + k + s) =(s)(c + s – γ ) (γ )(c – γ ) (c, ), (β, α), (γ + s, ) (c + s, ), z . 

Corollary  Taking s=  in Theorem , we get

 ∞  Eα(γ ;c),β (z; p) dp = (c +  – γ ) (γ )(c – γ ) (c, ), (β, α), (γ + , ) (c + , ) , z .

Corollary  Taking the inverse Mellin transform on both sides of equation(), we get the

elegant complex integral representation

(6)

3 Derivative properties of the extended Mittag-Leffler function

The classical Riemann-Liouville fractional derivative of order μ is usually defined by

z  f(z)=  (–μ)  zf(t)(z – t)–μ–dt, Re(μ) < ,

where the integration path is a line from  to z in the complex t-plane. For the case m –  < Re(μ) < m (m = , , , . . .), it is defined by zf(z)= d m dzmD μ–m z  f(z) = d m dzm   (–μ + m)  zf(t)(z – t)–μ+m–dt  .

The extended Riemann-Liouville fractional derivative operator was defined by Özarslan and Özergin as follows.

Definition ([]) The extended Riemann-Liouville fractional derivative is defined as

z,pf(z)=  (–μ)  zf(t)(z – t)–μ–exp  –pzt(z – t) dt, Re(μ) < , Re(p) >  ()

and for m –  < Re(μ) < m (m = , , , . . .)

z,pf(z)= d m dzmD μ–m z  f(z) = d m dzm   (–μ + m)  zf(t)(z – t)–μ+m–exp  –pzt(z – t) dt  ,

where the path of integration is a line from  to z in the complex t-plane. For the case

p= , we obtain the classical Riemann-Liouville fractional derivative operator. We begin by the following theorem.

Theorem  Let p≥ , Re(μ) > Re(λ) > , Re(α) > , Re(β) > . Then

z–μ,p–E(c)α,β(z)  =z μ–B(λ, c – λ) (μ – λ) E (λ;μ) α,β (z; p).

(7)

Taking u =zt in equation (), we get z–μ,p–E(c)α(z) = z μ– (μ – λ)    –( – u)–λ+μ–exp  –p u( – u)  E(c)α(uz) du. ()

Comparing this result with equation (), we get

Dλ–μ,p z  –E(c) α,β(z)  =z μ–B(λ, c – λ) (μ – λ) E (λ;μ) α,β (z; p).

Whence the result. 

In the following theorem, we give the derivative properties of the extended Mittag-Leffler function.

Theorem  For the extended Mittag-Leffler function, we have the following derivative

formula:

dn

dzn



E(γ ;c)α (z; p)= (c)nE(γ +n;c+n)α,β+nα (z; p), n∈ N. ()

Proof Taking the derivative with respect to z in equation (), we get

d dz



E(γ ;c)α (z; p)= cE(γ +;c+)α,β+α (z; p). () Again taking the derivative with respect to z in equation (), we get

d

dz



E(γ ;c)α (z; p)= c(c + )E(γ +;c+)α,β+α (z; p). ()

Continuing the repetition of this procedure n times, we get the desired result. 

Theorem  For the extended Mittag-Leffler function, the following differentiation

for-mula holds: dn dzn  –E(γ ;c) α,β  λzα; p= zβ–n–E(γ ;c) α,β–n  λzα; p.

Proof In equation (), replace z by λzαand multiply zβ–, then taking the z-derivative n

times, we get the result. 

Theorem  For the extended Mittag-Leffler function, the following differentiation

for-mula holds: dn dpn  E(γ ;c)α,β (z; p)  = (–)n(γ – n)(c – γ – n)(c) (c – n)(γ )(c – γ ) E (γ –n;c–n) α,β (z; p).

(8)

4 Relations between the extended Mittag-Leffler function with Laguerre polynomial and Whittaker function

In this section, we give a representation of the extended Mittag-Leffler function in terms of Laguerre polynomials and Whittaker’s function.

Theorem  For the extended Mittag-Leffler function, we have exp(p)Eα(γ ;c),β (z; p) =  B(γ , c – γ ) ∞  m,n,k= Lm(p)Ln(p)(c)k (αk + β)k! z kB(m + k + γ + , n + c – γ + ),

where Re(c) > Re(γ ) > , Re(α) > , Re(β) > .

Proof We start by recalling the useful identity used in []

exp  –p t( – t) = exp(–p) ∞  m,n= Ln(p)Lm(p)tm+( – t)n+;  < t < . ()

Using equation () in equation (), we get

E(γ ;c)α,β (z; p) =B(γ , c – γ )    –( – t)c–γ –exp(–p) × ∞  m,n= Ln(p)Lm(p)tm+( – t)n+Ecα,β(tz) dt. ()

Now, taking into account the series expansion of Prabhakar’s generalized Mittag-Leffler’s function Eαc,β(tz) in equation (), we have

E(γ ;c)α,β (z; p) = exp(–p) B(γ , c – γ )    –( – t)c–γ – × ∞  m,n= Ln(p)Lm(p)tm+( – t)n+ ∞  k= (c)k(tz)k (αk + β)k!dt = exp(–p) B(γ , c – γ )    –( – t)c–γ – × ∞  m,n,k= Ln(p)Lm(p)(c)k (αk + β)k! t m+k+( – t)n+zkdt. ()

Interchanging the order of integration and summation in equation (), which can be done under the assumptions of the theorem, we have

E(γ ;c)α (z; p) = exp(–p) B(γ , c – γ ) ∞  m,n,k= Ln(p)Lm(p)(c)k (αk + β)k! z k × B(m + k + γ + , n + c – γ + ). ()

(9)

In the following theorem, we give the extended Mittag-Leffler function in terms of Whittaker’s function.

Theorem  For the extended Mittag-Leffler function we have

exp  pEα(γ ;c),β (z; p) = (c – γ + ) B(γ , c – γ ) ∞  m,k= Lm(p)(c)k (αk + β)k!p m+k+γ –Wγ–c–m–  ,m+k+γ(p).

Proof Considering the following equality: exp  –p t( – t) = exp  –p  – t exp  –p t ,

and using the generating function of the Laguerre polynomials, we get

exp  –p t( – t) = exp(–p) exp  –p t ( – t) ∞  m= Lm(p)tm. ()

Taking equation () into account in equation (), we have

E(γ ;c)α,β (z; p) =B(γ , c – γ )    –( – t)c–γ –et(–t)p Eα(c),β(tz) dt =  B(γ , c – γ )    –( – t)c–γ –exp(–p) exp  –p t × ( – t) ∞  m= Lm(p)tmE(c)α,β(tz) dt. ()

By use of Prabhakar’s generalized Mittag-Leffler function E(c)α(tz) in equation (), we get

E(γ ;c)α,β (z; p) = exp(–p) B(γ , c – γ )    –( – t)c–γexp  –p t m= Lm(p)tm ∞  k= (c)ktkzk (αk + β)k!dt. ()

Interchanging the order of summation and integration in equation (), we get

E(γ ;c)α,β (z; p) = exp(–p) B(γ , c – γ ) ∞  m,k= Lm(p)(c)kzk (αk + β)k!    tm+k+γ –( – t)c–γexp  –p t dt. ()

Finally, using the following integral representation []:    –( – t)ν–exp  –p t dt= (ν)pμ–exp  –pW–μ–ν  ,μ(p)  Re(ν) > , Re(p) > ,

(10)

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

All authors completed the paper together. All authors read and approved the final manuscript. Received: 5 November 2013 Accepted: 13 December 2013 Published:20 Feb 2014

References

1. Camargo, RF, Capelas de Oliveira, E, Vaz, J: On the generalized Mittag-Leffler function and its application in a fractional telegraph equation. Math. Phys. Anal. Geom. 15(1), 1-16 (2012)

2. Samko, SG, Kilbas, AA, Marichev, OI: Fractional Integrals and Derivatives: Theory and Applications. Gordon & Breach, New York (1993)

3. Haubold, HJ, Mathai, AM, Saxena, RK: Mittag-Leffler functions and their applications. J. Appl. Math. 2011, Article ID 298628 (2011). doi:10.1155/2011/298628

4. Soubhia, AL, Camargo, RF, Capelas de Oliveira, E, Vaz, J: Theorem for series in three-parameter Mittag-Leffler function. Fract. Calc. Appl. Anal. 13, 1-12 (2010)

5. Mittag-Leffler, GM: Une généralisation de l’intégrale de Laplace-Abel. C. R. Acad. Sci., Ser. II 137, 537-539 (1903) 6. Mittag-Leffler, GM: Sur la nouvelle fonction Eα(x). C. R. Acad. Sci. 137, 554-558 (1903)

7. Mittag-Leffler, GM: Sur la représentation analytique d’une fonction monogéne (cinquiéme note). Acta Math. 29(1), 101-181 (1905)

8. Wiman, A: Über der Fundamentalsatz in der Theorie der Funktionen Eα(x). Acta Math. 29, 191-201 (1905)

9. Wiman, A: Über die Nullstellen der Funktionen Eα(x). Acta Math. 29, 217-234 (1905)

10. Agarwal, RP: A propos d’une note de M. Pierre Humbert. C. R. Séances Acad. Sci. 236, 2031-2032 (1953) 11. Humbert, P, Agarwal, RP: Sur la fonction de Mittag-Leffler et quelques unes de ses generalizations. Bull. Sci. Math.,

Ser. II 77, 180-185 (1953)

12. Prabhakar, TR: A singular integral equation with a generalized Mittag-Leffler function in the kernel. Yokohama Math. J. 19, 7-15 (1971)

13. Kurulay, M, Bayram, M: Some properties of the Mittag-Leffler functions and their relation with the Wright function. Adv. Differ. Equ. 2012, 178 (2012)

14. Mainardi, F: On some properties of the Mittag-Leffler function, Eα(tz), completely monotone for t > 0 with 0 <α< 1.

arXiv:1305.0161

15. Chaudhry, MA, Qadir, A, Srivastava, HM, Paris, RB: Extended hypergeometric and confluent hypergeometric functions. Appl. Math. Comput. 159, 589-602 (2004)

16. Chaudhry, MA, Zubair, SM: On a Class of Incomplete Gamma Functions with Applications (2002)

17. Srivastava, HM, Manocha, HL: A Treatise on Generating Functions. Halsted, New York (Ellis Horwood, Chichester) (1984)

18. Özarslan, MA, Özergin, E: Some generating relations for extended hypergeometric functions via generalized fractional derivative operator. Math. Comput. Model. 52, 1825-1833 (2010)

19. Özarslan, MA: Some remarks on extended hypergeometric, extended confluent hypergeometric and extended Appell’s functions. J. Comput. Anal. Appl. 14(6), 1148-1153 (2012)

10.1186/1029-242X-2014-85

Cite this article as: Özarslan and Yılmaz: The extended Mittag-Leffler function and its properties. Journal of Inequalities

Referanslar

Benzer Belgeler

GÜNDE YARINI TON BOZA Yılın 5 ayı boza satışı yaptıkla­ rını, kalan dönemde de şıra ve sir­ ke sattıklarım belirten Mustafa Vefa, “ Ben yılda ancak 5-6

We investigate generalized gamma function, digamma function, the generalized incomplete gamma function, extended beta function.. Also, some properties of these

With the increasing In mole fraction, an increasing dislocation trend is observed that may be due to the growth temperature difference between ultrathin In x Ga 1x N back-barrier

microfluidic mixer, the results also reveal that the proposed microfluidic mixer can also control the degree of mixing by tuning the voltage for a given flow rate.. The flow is

Sonuç olarak yılan ısırmalarında temel tedavinin, bazı yan etkilerine rağmen, anti-serum uygulaması olduğu bilinmekle birlikte, olgularımızda olduğu gibi yılan

Senfonik orkestra için başarılı ilk Türk bestelerinden biri olan &#34;Prelüd ve îki Dans” müzik tarihimizdeki cana yakm yerini koruyacaktır. Geçmiş musikimiz­

Comparison of the con- trol group with the GTx-applied 48-hour, 25 mg/kg RH-applied 48-hour, 50 mg/kg RH-applied 24- and 48-hour, 75 mg/kg RH-applied 24- and 48-hour groups has shown

[r]