• Sonuç bulunamadı

Derivatives of Logarithmic Functions

N/A
N/A
Protected

Academic year: 2021

Share "Derivatives of Logarithmic Functions"

Copied!
11
0
0

Yükleniyor.... (view fulltext now)

Tam metin

(1)

Derivatives of Logarithmic Functions

d

dx (log

a

x ) = 1 x ln a Proof.

Let y = log

a

x . Then

a

y

= x Using implicit differentiation we get:

d

dx a

y

= d

dx x = ⇒ ln a · a

y

· y

0

= 1

= ⇒ y

0

= 1

ln a · a

y

= 1 x ln a From the formula it follows that

d

dx (ln x ) = 1

x

(2)

Differentiate

y = ln(x

3

+ 1) We have

y

0

= 1

x

3

+ 1 · 3x

2

Differentiate

y = ln(sin x ) We have

y

0

= 1

sin x · cos x = cot x

(3)

Derivatives of Logarithmic Functions

d

dx (log

a

x ) = 1 x ln a

d

dx (ln x ) = 1 x Differentiate

y = √ ln x We have

y

0

= 1 2 √

ln x · 1 x Differentiate

y = log

10

(2 + sin x ) We have

y

0

= 1

(2 + sin x ) ln 10 · cos x

(4)

Differentiate

f (x ) = ln |x|

We have

f (x ) =

 ln x for x > 0 ln(−x ) for x < 0 Thus

f

0

(x ) =



1

x

for x > 0

1

−x

· (−1) =

1x

for x < 0 Hence

d

dx ln |x| = 1

x for all x 6= 0

(5)

Derivatives of Logarithmic Functions

d

dx (log

a

x ) = 1 x ln a

d

dx (ln x ) = 1 x Differentiate

y = ln x + 1

√ x − 2 We have

y

0

= 1

√x +1 x −2

· d dx

x + 1

√ x − 2

=

√ x − 2

x + 1 · 1 · √

x − 2 − (x + 1) ·

dxd

√ x − 2 ( √

x − 2)

2

=

√ x − 2 x + 1 ·

√ x − 2 − (x + 1) ·

1

2√ x −2

· 1 ( √

x − 2)

2

= x − 2 − (x + 1) ·

12

(x + 1)(x − 2) = x − 5

2(x + 1)(x − 2)

(6)

Differentiate

y = ln x + 1

√ x − 2 We have

y = ln(x + 1) − ln √ x − 2

= ln(x + 1) − 1

2 ln(x − 2) Thus

y

0

= 1 x + 1 − 1

2 · 1

x − 2

(7)

Logarithmic Differentiation

The following method is called logarithmic differentiation.

Differentiate

y = x

34

· √ x

2

+ 1 (3x + 2)

5

We take logarithms on both sides:

ln y = ln x

34

· √ x

2

+ 1

(3x + 2)

5

= ln x

34

+ ln p

x

2

+ 1 − ln(3x + 2)

5

= 3

4 ln x + 1

2 ln(x

2

+ 1) − 5 ln(3x + 2) We use implicit differentiation:

d

dx ln y = 3 4

d

dx ln x + 1 2

d

dx ln(x

2

+ 1) − 5 d

dx ln(3x + 2) 1

y y

0

= 3 4 · 1

x + 1 2 · 1

x

2

+ 1 · 2x − 5 1

3x + 2 · 3

(8)

y = (3x + 2)

5

We have:

1 y y

0

= 3

4 · 1 x + 1

2 · 1

x

2

+ 1 · 2x − 5 1 3x + 2 · 3 Solving for y

0

yields:

y

0

= y  3

4x + x

x

2

+ 1 − 15 3x + 2



Hence

y

0

= x

34

· √ x

2

+ 1 (3x + 2)

5

·  3

4x + x

x

2

+ 1 − 15 3x + 2



(9)

Logarithmic Differentiation

Steps of Logarithmic Differentiation:

I

Take natural logarithms on both sides of y = f (x ).

I

Use laws of logarithms to simplify.

I

Differentiate implicitly with respect to x .

I

Solve the resulting equation for y

0

.

(10)

The power rule does not apply: the exponent contains x ! We use logarithmic differentiation:

ln y = ln  x

√x



= √ x · ln x d

dx ln y = d dx

√ x · ln x  1

y y

0

= √ x · 1

x + ln x · 1 2 √ x y

0

= y

 1

√ x + ln x 2 √

x



= y  2 + ln x 2 √

x



= x

√x

 2 + ln x 2 √

x



Alternative: x

√x

= (e

ln x

)

√x

= e

ln x ·

√x

now use chain rule

(11)

The Number e as a Limit

Let f (x ) = ln x . We know that f

0

(x ) = 1

x and hence f

0

(1) = 1

By definition of the limit 1 = f

0

(1) = lim

h→0

f (1 + h) − f (1)

h = lim

h→0

ln(1 + h) − ln(1) h

= lim

h→0

 1

h · ln(1 + h)



= lim

h→0

ln(1 + h)

1h

As a consequence we get

e = e

1

= e

f0(1)

= e

limh→0ln(1+h)

1 h

= lim

h→0

e

ln(1+h)

1 h

= lim

h→0

(1 + h)

1h

e = lim

h→0

(1 + h)

1h

= lim

n→∞

 1 + 1

n



n

Referanslar

Benzer Belgeler

At the sur- face mode resonance frequency, the transmitted electromagnetic waves from the subwavelength circular annular aperture surrounded by con- centric periodic grooves have

ECoG recordings from the experiments were analyzed using the PowerLab Chart v.7.2.1 software package (ADInstruments Pty Ltd, Castle Hill, NSW, Australia).

Bu oluşturulan serilerden her birinden 9 adet (150x150x150 mm) küp numuneler hazırlanmıştır. İkinci aşamada ise maksimum agrega çapı 4, 8, 16 mm olan beton karışımlarla

C evdet Kudret'in yazın tarihçiliğine başla­ yışını ve ilk yapıtını ders kitabı olarak ve­ rişini belirttikten sonra onun yazın tarihçiliği­ ni, özelliklerini

40 yıllık süreçte orman alanının ve özellikle verimli orman alanlarının artması, toplam karbon içindeki, toprak üstü canlı biyokütle ve toprak altı biyokütle

Our main contributions include: (1) We propose a novel, highly efficient and effective nonlinear regression algorithm suitable for big data applications; (2) we show that our

Konut piyasası, yatırım amacı güden tasarruf sahipleri için gayrimenkul piyasasının bir parçası olarak düĢünülebileceği gibi üretim açısından da inĢaat

Our main contributions include: 1) We propose the least mean logarithmic square (LMLS) algorithm, which achieves a similar trade-off between the transient and steady-state