• Sonuç bulunamadı

THE MIXED BOUNDARY VALUE PROBLEM FOR A THIRD ORDER EQUATION WITH MULTIPLE CHARACTERISTICS

N/A
N/A
Protected

Academic year: 2021

Share "THE MIXED BOUNDARY VALUE PROBLEM FOR A THIRD ORDER EQUATION WITH MULTIPLE CHARACTERISTICS"

Copied!
13
0
0

Yükleniyor.... (view fulltext now)

Tam metin

(1)

33

AMS. 35G15

THE MIXED BOUNDARY VALUE PROBLEM FOR A THIRD ORDER EQUATION WITH MULTIPLE

CHARACTERISTICS

Yu.P.Apakov

Namangan Engineering-Pedagogical Institute 8, Ziyokor str., Namangan 160103, Uzbekistan

E-mail: apakov.1956@mail.ru

ABSTRACT

In the paper, the boundary value problem is considered for equation

0

Uxxx Uyy  

in the domain

D   x y ; ; 0   x a ; 0   y b.

Uniqueness of the stated problem is proved by the method of energy integral. The solution is constructed by the Fourier method. Eigenvalues and eigenfunctions are found for a problem of Sturm-Louville’s type.

Key words: mixed boundary value problem, multiple characteristics, method of energy integral.

ÖZET

Bu makalede,

D    x y ; ;0   x a ;0   y b

bölgesinde

xxx yy

0

UU

eşitliği için sınır değer problemi incelenmiştir. Ortaya konulan problemin tekliği enerji integrali metoduyla ispatlanmıştır. Bu çözüm Fourier metoduyla kurulmuştur. Özdeğerler ve özfonksiyonlar Sturn-Louville tipli bir problem için bulunmuştur.

Anahtar Kelimeler: karışık sınır değer problemi, çoklu karakteristikler, enerji integralinin metodu.

1. Introduction

Consider the equation

0

Uxxx Uyy  

(1)

in the domain

D   x y ; ; 0   x a ; 0   y b.

(2)

34

First works devoted to the equation (1) were papers of Italian mathematics H. Block [6] and E. Del Vecchio [12,13]. Then their results were generalized in the paper by L. Cattabriga [7] where he constructed fundamental solutions and developed the theory of potentials. Later, various boundary value problems were studied in [1]-[2] using fundamental solutions constructed in [7].

Some local boundary value problems for the equation (1) were constructed in [3]-[5] where solutions were constructed using the Fourier method.

2. Statement of the problem

We study the following boundary value problem for the equation (1) in the domain D.

Problem

A

. To find a regular solution

U x y   , C

x y3,2,

  D C

x y2,1,

  D

of

the equation (1) in the domain D satisfying the boundary conditions

   

   

, 0 , 0 0,

0 ,

, , 0,

y

y

U x U x

x a U x b U x b

 

 

     

  

(2)

 

0, 1

 

,

;

2

 

,

 

, 3

 

, 0

xx x xx

U y  y U a y  y U a y  y  y b (3) where

    , , ,

are constants such that

2

 

2

 0, 

2

 

2

 0

and functions

j

C1

 

0,b , j

1,3,

2

C2

   

0,b ,

i 0

 

i

 

b i,

1, 2,3.

Note that Problem

A

was considered at

    1,     0

[3] at

    1,     0

in [4], and an analogous problem was considered in [5].

3. Uniqueness of the solution

Theorem 1. If

 

0,

 

0, then the homogeneous problem

A

has not more than one solution.

(3)

35

Proof. Suppose the opposite, i.e. let U1

x y,

and U2

 

x y, be solutions of Problem

A

. Then U x y

 

, U x y1

 

, U2

 

x y, is the solution of the homogeneous problem.

Consider the identity

 

2 2

1 0.

xx 2 x y y

UU U UU U

x y

     

   

Integrating it in

D

and taking into account homogeneous boundary conditions, we obtain

           

2 2

0 0 0

1 0, , , , 0 , 0 , 0

2

b a a

x y y y

D

U y dyU x b U x b dxU x U x dxU x y dxdy

   

.

Requiring

  0,   0

in (2), we have

       

2 2 2 2

0 0 0

1 0, , , 0 , 0.

2

b a a

x y y y

D

U y dy

U x b dx

U x dx U x y dxdy

 

   

   

Taking into account conditions of theorem, we obtain

  , 0

U

y

x y

, i.e.

U x y   , f x   . U

y

  x , 00

therefore

  , 0 0

U x

, hence,

f x   0

or

U x y   , 0

. If

  0,

0, 0, 0,

     

then we also have

U x y   , 0

.

4. Existence of the solution

Consider the following subsidiary problem: to find a non-zero solution of the equation (1) satisfying conditions (2) which is represented in the form

  ,     .

U x yX x Y y

(4) Substituting (4) in (1) and separating the variables, we obtain

0,

Y    Y

(5)

0.

X    X

(6)

We have from (5) and (2) the problem of Sturm-Louville’s type:

   

   

0,

0 0 ,

.

Y Y

Y Y

b Y b

 

 

   

 

 

 

 

(7)

(4)

36

It is known [10] that eigenvalues of the parameter

¸ for the problem (7) exist only at

  0,

the corresponding general solution has the form

 

1

cos

2

sin Y yCy C   y

where

C C

1

,

2 are arbitrary constants.

Satisfying the conditions of the problem (7), we obtain the transcendental equation for determination of

:

  .

ctgy  

  

 

(8)

Putting

   b ,

we have

2

1 2

3

P P .

ctg P

 

 

where

P

1

a b

2

, P

2

  , P

3

b      .

Rewrite this equation as the system

2

1 2 1

2

3 3

1 .

ctg

P P P

P P P

 

  

 

 

     

 

(9)

Then points of intersection of two curves give the eigenvalue

2 2

1 .

n

b

  

The first curve is the graph of

  ctg

at

 0, 

and the second one is a hyperbola.

We conclude that the system (9) has infinite set of roots and these roots are real and different, i.e. ¸

 

n

m

 0

if

mn

and

n

 

m as

nm

. Thus,

  

n form an increasing sequence.

These roots are 0 1 and 1

1

, 1, 2,3,... .

2 n n n

    

     

Then eigenvalues have the form 2 1

 

2

1 1 .

n n

b 

 

 Corresponding eigenfunctions have the form

(5)

37

  

sin cos

n n n n n

Y y

 

y

  

y A (10)

where

A

n are constants.

Let’s prove that the system of functions

Y

n

  y

(10) of the problem (7) is orthogonal in the segment

  0,b

.

The orthogonality of the system (10) is proven as the work in [11].

At

nm

, without any loss of generality supposing

A

n

 1

, we obtain

     

 

2 2 2

0 0

2 2

2 2

sin cos

1 sin 2 cos 2 .

2 4 2

b b

n n n n n

n

n n n

n

Y y Y y dy y y dy

b b b b

    

   

     

  

     

 

The general solution of the equation (6) has the form

 

1 k xn 12k xn

2 cos 3 sin

n n n n n n

X x C e e C

x C

x (13)

where 3 , 3 ,

1, 2,3

n n n 2 n in

k

   

k C i

are arbitrary constants.

Then the function

  ,    

n n n

U x yX x Y y

satisfies the equation and conditions (2).

By virtue of linearity and homogeneity of the equation (1), the sum of particular

Solutions

     

1

,

n n

n

U x y X x Y y

 

(14)

will be also the solution of (1).

The function

U x y   , ,

represented by the series (14), satisfies conditions (2) since all the members of the series satisfy them.

Satisfying the boundary conditions (3), we obtain

(6)

38

       

       

       

1

1

2

1

3

1

0, 0 ,

, ,

, ,

xx n n

n

x n n

n

xx n n

n

U y y X Y y

U a y y X a Y y

U a y y X a Y y

 

  

 

   

 

   

(15)

Series (15) are represented the expansion of an arbitrary function

  , 1, 2,3

i

y i

 

eigenvalues of the problem (7). Members

  0 ,   ,  

n n n

X  Xa X  a

are coefficients of this expansion. If functions

 

i

y

are integrable in the segment

  0, b ,

then the expansion (15) behaves with respect to convergence like an usual Fourier trigonometrical series [11].

For determining coefficients of (15), multiply it on

Y

m

  y

and integrate at limits

  0, b ,

then taking into account orthogonality of the system of functions

Y

m

  y

, we obtain

           

     

1 2

2 2

0 0

2 3 0

1 1

0 , ,

1 .

b b

m m m m

m m

b

m m

m

X Y d X a Y d

Y Y

X a Y d

Y

       

   

   

 

 

For convenience, introduce the notations

   

2 0

1 , 1, 2,3.

b

in i n

n

B Y d i

Y    

  

(16)

Then we obtain the system of algebraic equations for determinating coefficients

C

in

i1, 2,3 :

2 2 2

1 2 3 1

1 1

2 2

1 2 3 2

1 1

2 2 2 2 2

1 2 3 3

1 3

2 2

cos sin

3 3

cos sin .

3 3

n n

n

n n

n

n n n n n n n

k a k a

k a

n n n n n n n n n

k a k a

k a

n n n n n n n n n

k C k C k C B

k C e k e a C k e a C B

k e C k e a C k e a C B

 

 

 

 

   



         

    

   

         

    

   

(17)

(7)

39

Calculations shows that

3

5

1

2

3 sin 0.

2 6

n k an

k a

n n

k e e

a

            

Solving the system (17), substituting values of

C

in in (14), we obtain the solution of Problem

A

in the form

 

1 1

 

2 2

 

3 3

   

1

, n n n n n n n

n

U x y B D x B D x B D x Y y

    (18)

where

   

   

  3 1

3 1 2 cos ,

1 2

1 1 3

4 2 2 sin 2 sin 2 sin ,

2 3 3

3 1 2

2 cos

3 6

k a x kn kna x n

Dn x e e na nx

k a x

k a x n k a

kn n n

D n x e na e na e n a x

k a x

kn n

Dn x e na

 

 

1 3

2 sin 2 sin .

3 3

kna x k an

e na e n a x

 

Let’s prove the uniform convergence of the series (18) with respect to both variables.

Let

x y

0

,

0

be an arbitrary point of the domain

D

. Then

0 0

1 1

   

0 0 2 2

   

0 0 3 3

   

0 0

1 1 1

, n n n n n n n n n

n n n

U x y B D x Y y B D x Y y B D x Y y

(19)

what follows

0 0

1

 

0 1

 

0 2

 

0 2

 

0 3

 

0 3

 

0

1 1 1

, n n n n n n n n n .

n n n

U x y B Y y D x B Y y D x B Y y D x

(20) Denoting

0 0

    

0 0 1

, ,

i in in n

n

x y B D x Y y

 

we have

0 0

  

0

 

0 1

, , 1, 2,3.

i in n in

n

x y B Y y D x i

  

Estimate

B Y

in n

  y

0

:

 

0

 

0

 

0 2

   

0

1 .

b

in n n in n i n

n

B Y y Y y B Y y Y d

Y    

  

But

(8)

40

 

0

sin

0

cos

0

.

n n n n n

Y y    y     y     

Then we have

   

2

 

0 2

0

.

b n

in n i

n

B Y y d

Y

  

  

  

Let’s prove that the expression

 

2

2 n

Yn

   is bounded at

: n  

 

 

 

2

2 2

2 2

2 2

2 2

2 2

2

2

2 2

2 2

2

2

1 sin 2 cos 2

2 4 2

2

1 1

sin 2 cos 2

2 2 4 4 2

n n n

n n

n n

n

n n n

n

n n

n n

n n n n n

Y Y

b b b b

b b b b

       

    

   

     

  

 

  

    

    

  

 

     

 

  

     

We obtain from here

 

2 2

2

2

lim 2.

1 2

n

n

n b

Y b

   



  

We conclude from this that for any

n,

 

0

 

0

2 .

b

in n i

B Y y d

b   

 

Under made suppositions concerning

i

  y ,

the following inequalities

 

2i

, 1,3

2

 

3i i

M M

y i y

n n

    

hold (see [9]). Then

(9)

41

 

0 2 2

 

0 3

2 2

, 1,3,

in n n n

B Y y N i B Y y N

n n

  

where

N  max M i

i

,  1, 2,3.

Now estimate the functions Din(x0): Calculations show that we obtain the following

estimations:

   

 

 

0 0

1 0 2

0 0 0

2 0

0

0 0

3 0 2

1 3

1 2

2

2

2

1 ,

1

1 1

1 2 2 2 ,

3

1 1 1

1 2 2 2 ,

3

n

n

n

n

n

n

kn a x e kn e

k a x

kn n kn a x

e e e

k a x

kn n kn a x

e e e

D x x k

a x D x

k

a x D x

k

 

 

 

  

 

  

 

 

     

  

 

   

  

 

 

  

 

   

  

 

 

where

3

1

2

sin .

2 6

k an

e

va  

     

 

Then

     

 

0 0

1 0 0 1 0 1 0 2 2

1 1

0 0

1 10

1 3

1 3

1 2

2

1 12

2

2 1

,

.

n n n

n n n

n

kn a x e kn e

kn a x e kn e

x y B Y y D x N x

n k

x C N

n

 

 

 

 

 

 

 

 

  

 

One can easily be convinced that the series

1

x y

0

,

0

converges absolutely. In exactly the same way, absolute convergence of other series in (19) can be proved.

This implies that the series

U x y

0

,

0

converges absolutely. By virtue of arbitrariness of

x y

0

,

0

, the series (18) converges absolutely in

(10)

42

the domain

D

. And what is more, derivatives with respect to both variables converge since for derivatives with respect to

x

, the equalities

 

 

3

 

 

1

1 12

2

3 1 cos ,

3

p p p

n n n

kn a x ekna x e

D x   k     a x p

 

     

 

1 1 2 4

2

1 2

1 2

1

2 2

1 sin sin

3 3 ,

sin 3 3

p

p n n

p n

n

n

kn a x

e kn e

kn a x e

a x

a x p

D x k

a x p

 

 

 

 

 

   

 

1 1 2 3

3

1 2

1

1 cos 2 sin

3 3 3 ,

sin 3 3

p

p n n

p n

n

n

kn a x

ekn e

kna x e

a x a x p

D x k

a x p

   

hold.

For the functions

D

in p

  x , i1, 2,3,

the estimations

 

 

 

 

 

 

3

1

1

2

2

3

1 3

1 2

2

2 1

2

2 1

2 ,

1 1

2

2 ,

3

1 1

2 2 3

p

p n

n

p

p n

n

p

p n

n

kn a x e kn e

k a x

kn n kn a x

e e e

k a x

kn n kn a x

e e e

k x

D x

k a x

D x

k a x

D x

 

 

 

  

 

  

 

 

   

  

 

    

  

 

 

  

 

    

  

 

 

are valid where

0   x a

and

p  1, 2,3.

Estimate derivates with respect to

x

:

       

           

3

1 1 2 2 3 3

3 1 3

1 0 1 0 2 0 2 0 3 0 3 0

3

1 1 1

,

.

n n n n n n n

n

n n n n n n n n n

n n n

U B D x B D x B D x Y y

x

U B Y y D x B Y y D x B Y y D x

x

        

      

  

(21) Then

(11)

43

0 0

    

0 0 1

, ,

i in in

n

x y B D x Y y

   

       

 

0 0

0 0 0 0 2

1 1

0 0

2 4

1 3

1 3

1 2

2

1 3

1 2

2 , 2

.

n

i in in

n n

n

kn a x

e kn e

kn a x

e kn e

k x

x y B Y y D x N

n

x C N

n



 

 

This series converges that’s why the series

i

x y

0

,

0

converges absolutely. By the same way one can prove absolute convergence of other series in (21). Since

3 2

3 2

,

U U

x y

  

 

the absolute convergence of the second derivative with respect to

y

of the series (18) can beproved analogously.

In all the expressions

D

in p

  x

for

p  3,

the identity

 3

    0, 1, 2,3

in n in

D x   D xi

is valid.

For the function

D

in

  x

, the identity

     

     

     

1 1 1

2 2 2

3 3 3

0 1 0 0

0 0 1 0

0 0 1 0

n n n

n n n

n n n

D D a D a

D D a D a

D D a D a

  

   

       

   

        

 

holds which is verified immediately.

Thus, we have proved the following

Theorem 2. If

i

  yC

1

  0, b , i  1,3, 

2

  yC

2

  0, b ,

and

  0   0, 1, 2,3,

j j

b j

    

then the solution of Problem

A

exists and is represented by the series (18).

(12)

44

Substituting values of

B

in from (16) in (18), we obtain the solution of Problem

A

in the form

 

1

   

1 2

   

2 3

   

3

0 0 0

, , , , , , ,

b b b

U x y

K x y   d

K x y   d

K x y   d where

 

2

   

1

, , 1 .

i in n n

n n

K x y D Y Y y

Y

References

[1]. Abdinazarov S. On a third-order equation. Izvestiya AN UzSSR, ser. phys.-mat., No. 6 (1989). p.3-6 (in Russian)

[2]. Abdinazarov S., Artikov M. On a boundary value problem for the mixed third-order

[3]. equation with multiple characteristics. Proceedings of Intern, Scient. Conference "Partial ifferential equations and related problems of analysis and informatics’. Tashkent, November, 16- 19, 2004. Volume 1, p.12-17 (in Russian)

[4]. Apakov Yu.P. On a boundary value problem for the mixed third- order equation with multiple characteristics. Materials of III Intern. Conference "Non-local boundary value problems and related problems of mathematical biology, informatics and physics". Nalchik, December, 5-8, 2006. p.37-39 (in Russian)

[5]. Apakov Yu.P. On a problem for the mixed third-order equation with multiple characteristics. In: "Investigations on Integro- Differential Equations". Issue 35. Bishkek, Ilim, 2006. p.246-247.

(in Russian)

[6]. Apakov Yu.P. Solving boundary value problems for the third- order equation with multiple characteristics by the method of separation of variables. Uzbek Math. Journal, No. 1 (2007), p.14-23 (in Russian)

[7]. Block H. Sur les equations linares aux derivees partielles a carateristiques multiples. I e II. Arciv for Mat. Astr. Och. Fyzik, Bd.

7 (1912) e (specialmente) III. Ibidem Bd. 8 (1913). p. 3-20.

(13)

45

[8]. Cattabriga L. Potenziali di linea e di domino per equazioni non parabpliche in due variabili e caratteristiche multiple. Rendiconti del seminario matimatico della univ. di Padova, vol. 31 (1961), p. 1-45.

[9]. Khoshimov A.R. On a problem for the mixed equation with multiple characteristics. Uzbek Math. Journal, No. 2 (1995). p.93-97 (in Russian)

[10]. Kudryavtsev L.D. Course of Mathematical Analysis.

Vol.3. Sec. Edt. Moscow, Vysshaya shkola, 1988, 352 p. (in Russian)

[11]. Tikhonov A.N., Samarskiy A.A. Equations of Mathematical Physics. Moscow, Nauka, 1977, 735 p (in Russian)

[12]. Titchmarsh E.Ch. Expansions by Eigenvalues Connected with Second Order Differential Equations. Vol.1. Moscow, IL, 1960, 276 p. (in Russian)

[13]. Del Vecchio E. Sulle equazioni

   

1

, 0,

2

, 0.

xxx y xxx yy

ZZ   x yZZ   x y

Memorie R.

Accad. Sci. Torino, (2) (1915).

[14]. Del Vecchio E. Sur deux problemes d’integration pour les equations paraboliques

Z



Z

 0, Z



Z



 0.

H.Block. Remarque a la note precedente. Arkiv for Mat. Astr. Och.

Fyz., Bd.II (1916).

Referanslar

Benzer Belgeler

Alevîlik meselesini kendine konu edinen kimi romanlarda, tarihsel süreç içe- risinde yaşanan önemli olaylar da ele alınır.. Bunlardan biri Tunceli (Dersim) bölge- sinde

Sonuç olarak; görgü öncesi ve sonrası yerine getirilen hizmetler, yapılan dualar, na- sihatler, telkinler ve saz eşliğinde söylenen deyişler ve semah gibi tüm

Its deliverables in principle included a cash payment to persons whose drinking water was affected, health education and community projects for the benefit of the plaintiff class,

Despite the recent increase of studies that focus on the knowledge management process and techniques in public organizations, studies that exa- mine knowledge management practices

P. Safa’nm yukardaki sözlerini biraz açacak olursak; romancının insan ruhunu hareket noktası olarak kabul etmesi gerekeciğini ve romancının eserinde, içinde

Of note, the transcriptome data revealed that the CpG ODN exerted an opposite effect on expressions of some mTOR-related genes, such as Stat3 and Myc ( Fig. 3 ), just as

Query by image content is the searching of images based on the common, intrin­ sic and high-level properties such as color, texture, shape of objects captured in the images and

In this paper, the inverse problem of finding the time-dependent coefficient of heat capacity together with the solution of heat equation with nonlocal boundary and