• Sonuç bulunamadı

Some Estimates on Whitney Inequality for Differentiable Functions

N/A
N/A
Protected

Academic year: 2021

Share "Some Estimates on Whitney Inequality for Differentiable Functions"

Copied!
9
0
0

Yükleniyor.... (view fulltext now)

Tam metin

(1)

C.Ü. Fen-Edebiyat Fakültesi

Fen Bilimleri Dergisi (2008)Cilt 29 Sayı 2

Some Estimates on Whitney Inequality for Differentiable Functions

Tuncay TUNÇ

Mersin University, Department of Mathematics, 33343, Mersin/TURKEY E-mail: ttunc77@hotmail.com

Received: 11.08.2008, Accepted: 06.11.2008

Abstract: In this study, we are interested in finding some estimates of the constants W k r( ), ( ,k r∈¥), in the well-known Whitney Inequality for differentiable functions on the closed interval [ ]−1,1 :

[ ]

(

)

( ) ( )

[ ]

1 2 2 , 1,1 , , , 1,1 r r k r k E f W k r f k ω k + − − ≤     −     .

Key Words: Whitney Inequality, divided differences, interpolation.

Diferansiyellenebilir Fonksiyonlar için Whitney Eşitsizliği Üzerine Bazı Sonuçlar

Özet: Bu çalışmada,

[ ]

−1,1 kapalı aralığı üzerinde diferansiyellenebilir fonksiyonlar için Whitney Eşitsizliği olarak bilinen:

[ ]

(

)

( ) ( )

[ ]

1 2 2 , 1,1 , , , 1,1 r r k r k E f W k r f k ω k + − − ≤     −     

eşitsizliğindeki W k r( ) (, , k r, ∈¥ , sabitleri için üst sınırların bulunması üzerinde durulmuştur. )

(2)

1. Introduction and Main Results

Let ¥ denote the set of natural numbers, ¥0:= ∪¥

{ }

0 . We denote by 0

, n n∈¥

P , the space of algebraic polynomials of total degree at most n, by C a b

[ ]

, the space of the real valued continuous functions on the closed interval

[ ]

a b, equipped with the uniform norm:

[ ], : max[ ],

( )

C a b x a b

f f x

=

and by Cr

[ ]

a b, , r∈¥0, the set all r−times continuously differentiable functions

[ ]

,

fC a b ; 0

[ ]

[ ]

, : ,

C a b =C a b . The deviation of fC a b

[ ]

, from P is defined by n

[ ]

(

, ,

)

: inf [ ], n n n n C a b P E f a b f P ∈ = − P .

The purpose of the paper is to estimate the constants W k r

( )

, , k r, ∈¥, in the well known Whitney Inequality: If fC a b

[ ]

, , fCr

[ ]

a b, , then

[ ]

(

)

( )

( )

[ ]

1 , , , , , , r r k r k b a b a E f a b W k r f a b k ω k + − ≤  −   −      where

(

[ ]

)

[ , ]

( )

, , , sup sup k k h h t x a b kh t g a b g x ω 0< ≤ ∈ − = ∆

is the k−th modulus of smoothness of the function g, and

( )

( )

(

)

0 1 k k j k h j k g x g x jh j − =   ∆ = −   +  

is an k−th finite difference of g.

Many mathematicians have studied to estimate the Whitney constants: see, say, [1-8] for the references. Burkill [1] obtained the only known precise result:

(2, 0) 1 2

W = . Whitney [2] proved that 1 2≤W k

( )

, 0 < ∞ for each k∈¥ and gave

numerical estimates for W k

( )

, 0 when k≤5. In 1982, Sendov [3] conjectured that

( )

, 0 1

W k ≤ for all k . However, this conjecture has been proved only for "small" k ’s:

Whitney [2] for k=3, Kryakin [4] for k=4 and Zhelnov [5-6] for k=5, 6, 7,8. In general case, the most recent result is due to Gilewicz, Kryakin and Shevchuk [7] who

(3)

( )

2 , 0 2 1

W k ≤ + e .

It follows from Lemma 3 in [8] that

( ) ( )

,1 1 k ,

W k k∈¥

where σk = +1 1 2 ... 1+ + k. For r=2, 3, 4, the estimates of W k r

( )

, were obtained in [9]:

( )

1 , , r k r r W k r k + −   ≤ ∈   ¥.

Besides, in [9], the following estimates of W k r( , ) are obtained:

( )

( ) 2 1 2 1 1 1, , , !2 r cos r W r r r + π+ ≤ ∈¥

( )

* 2 2 * 1 2, , !2 cosr r W r r r π ≤ ∈¥,

where r* : 2= «©

(

r+1 2

)

®¬+1, where

§ ¨

a stands for the integral part of the number a. The main results of the paper are the following.

Theorem 1. For any fCr

[ ]

−1,1 , there is a polynomial Pk r+ −1∈Pk r+ −1 such that

( )

( )

(

2

)

( )

(

( )

)

1 3 1 2 , ,[ 1,1] . 2 ! ! 2 k r k r k k r k k f x P x x x k f k r ω + −  +  − ≤ − Π + −   l

[ ]

1,1 x∈ − , where l «:=©

(

r+1 2

)

¨ and

( )

(

)

0 1 2 k j x = x j k Π =

+ − . Theorem 2. We have

( )

(

)

1 1 1 , ! k k W k r r + + +   ≤     l l l if 1 2 1 k> l+ + .

In Section 2, will be given some relevant facts on divided differences, and in Section 3, we shall prove the Theorems 1 and 2.

2. Some Relevant Facts

In this section we shall give some auxiliary facts and notations which we will need in the proofs of the theorems.

(4)

Let k∈¥ and { }yj kj=0be a collection of distinct points yj∈[ , ]a b . Recall, the divided difference of a function g:[ , ]a b →¡ at the points {yj}kj=0 is defined by

[

]

(

)

0 1 0 0, ( ) , , , ; . k j k k j j i i i j g y y y y g y y = = ≠ = −

∑∏

L

By the definition, it can be easily seen that the equality

[

0, 1, , ; (· , )

]

[ 0, 1, , ; (·, ) ]

d d

k k

c y y y h y dy = y y y c h y dy

L L

(2.1)

holds for any continuous function h defined on the rectangle R: [ , ] [ , ]= a b × c d .

Denote by L x g y y

(

; ; 0, 1,L,yk

)

the Lagrange interpolation polynomial of degree

k

≤ that interpolates the function g at the points yj, j=0,k. Then, as well known

(

0 1

)

[

0 1

]

(

)

0 ( ) ; ; , , , , , , , ; . k k k j j g x L x g y y y x y y y g x y = − L = L

Now, let n∈¥ and { } 0 n i i

x = be a collection of points xi∈[ , ]a b that may coincide. Let 0

{ }yj kj= be a collection of distinct points yj∈[ , ]a b such that each of n+1 points x i coincides with one of the points yj. Let a point yj coincides exactly with sj pointsx , i

then the number pj = −sj 1 is called multiplicity of the point yj. Clearly,

0 1 k j j= s = +n

, that is 0 k j j= p = −n k

. Let a function gC a b[ , ] have pj first derivatives at a neighborhood of each point yj. The generalized divided difference of order n of the function g at the pointsx , i i=0,1,...,n, is defined by

[

]

[

]

0 1 0 1 0 1 0 0 1 1 , , , ; : , ,..., ; . ! k n k k n p p p k j j k x x x g y y y g p y y y − =   =  ∂ ∂ ∂ 

 L L

For n=0, set

[

x g0;

]

:=g x

( )

0 . The generalized divided differences possess the same properties as the ordinary divided differences. Say, if x0xn, then

(

)

1 2 0 1 1 0 1 0 [ , , , ; ] [ , , , ; ] [ , , , ; ] n n , n n x x x g x x x g x x x g x x − − = − L L L (2.2)

and let L x g x x

(

; ; 0, ,1 L,xn

)

be the Hermite-Lagrange interpolation polynomial of degree ≤n, that interpolates the function g at the points y y, ,L,y and interpolates

(5)

L( )s

(

x g x x; ; 0, ,1 L,xn

)

=g( )s (yj), j=0, ,k s=0,pj where (0) ( ) : ( ) g x =g x , then

(

0 1

)

[

0 1

]

(

)

0 ( ) ; ; , ,..., , , , , ; . k k k j j g x L x g x x x x x x x g x x = − = L

− (2.3)

The following lemma which proved in [9] enables to generalize the Lemma 3 of Zhuk and Natanson in [8].

Lemma 1. Let r0¥ , n0¥, r0n and

{ }

xi ni=0 be an arbitrary collection of points

[ , ] i

xa b . If a function fC a b[ , ] has the r0−1-st absolutely continuous derivative on

[ , ]a b , then

[ , ,x x0 1 L,xn; ] [ ,f = x xr r+1,L,xn;fr], (2.4)

holds for each r=0,1,L , where ,r0 f x0( ) := f x( ),

1 1( ) : 0 ( (1 ) 0) f x =

f xt′ + −t x dt and, forr>1, 1 1 1 ( ) 1 1 1 0 1 0 0 0 ( ) : ( ( ) (1 ) ) . r t t r r r r r r r f x f xt t t x t x dt dt − − − =

∫ ∫ ∫

L + − + + −L L 3. Proofs of Theorems

Throughout this section, [ , ] : [ 1,1]a b = − , l «:=©

(

r 1 / 2+

)

¨ where

§ ¨

a stands for the integral part of a, and

( 1) , , 1, 2, , 2 2 1 , 0,1, , . s j j k s s x j j k k  − = + =  = − + =  L l L

To shorten notation, we write ‖ ‖ and g ωk( )g instead of ‖ ‖g C[ 1,1] and (2 / , ,[ 1,1])

k k g

ω − , respectively.

Prof of Theorem 1. Let Lk+2l be the Hermite-Lagrange interpolation polynomial of degree ≤ +k 2l, which interpolates the function f at the pointsx x0, ,1L,xk+2l. By Newton's Formula, the coefficients of k 2

x +l and k 2 1

x + −l in the polynomial Lk+2l are Ak+2l=[ , ,x x0 1 L,xk+2l; ],f

(6)

2 1 0 1 2 1 2 0 1 2 1 0 1 2 2 2 [ , , , ; ] [ , , , ; ] [ , , , , ; ] , 2 k k k k k k A x x x f A x x x f x x x x f + − + − + + − + − + = + + = l l l l l l L L L respectively.

Consider the polynomial

2 2 1 1( ) 2 ( ) 2 1 2 ( ) (2 ) 2 2 2 1( ), 2 2 k k k r k k k k k A A P+ − x =L+ l x+ −+ll T+ l x − l−r + −+ −ll T+ −l x

of degree ≤ + −k r 1, where T xn( )=cos

(

narccosx

)

is the n-th Chebyshev polynomial. The polynomial Pk r+ −1 is the desired one in Theorem 1. Let r be odd, i.e.r=2l−1. Since Tn =1, we conclude that

( ) 1( ) ( ) 2 ( ) 22 1 22 21 :1 2 3. 2 2 k k k r k k k A A f xP+ − xf xL+ l x + + −+ll + + −+ −ll = + +i i i

First we estimate i2+i3. By using (2.2), (2.4) and (2.1), we obtain

(

)

1 1 2 0 1 2 2 2 0 1 2 1 1 0 1 0 1 1 0 0 0 1 [ , , , , ; ] [ , , , ; ] 2 1 ([ , , , ; ] , 2 r k k k k t t k r A x x x x f x x x f x x x g g dt dt − + = + − + − + − =

∫ ∫ ∫

− l L l l L l L L L

and similar arguments provide 1 1 1 2 1 0 1 0 1 1 0 0 0 1 [ , , , ; ] 2 r t t k k r A x x x g g dt dt − + −l =

∫ ∫ ∫

L L + L where 1 ( ) 1 1 2 ( ) : (1 ) 2 ( 1) (1 )( 1) r r j i i r j j g x f x t t t t − =   = + − − + + − −

, i=0,1. Since, for bothi=0,1,

[

]

( )

( )

( )

0 1 2/ 0 ( ) ( ) , , , ; 2 ! 2 ! 2 , ,[ 1,1] 2 ! 2 ! k k k k i k k i k k i k k r r k r k k k k k x x x g g x g k k k k t f f k k k ω ω ω = ∆ ≤   = ≤   L Then

( )

( )

1 1 2 2 1 2 3 2 1 2 2 1 2 2 3 r 3 k k k k t t k k A A i i kω k ω + + − + − + − + = + ≤

∫ ∫ ∫

= l l l l L L

(7)

Let us now estimate i . By using 1 (2.2), (2.3), (2.4) and (2.1), we obtain

(

)

[

]

(

)

(

[

]

[

] [

]

)

2 2 0 1 2 2 0 1 2 4 2 2 2 0 1 2 2 0 1 2 3 2 1 ( ) ( ) 1 ( ) , , , , ; 1 ( ) , ,..., , , , ; 4 2 , ,..., , ; , ,..., , , ; k k k k k k k k f x L x x x x x x x f x x x x x x x x f x x x x f x x x x x f + + + − + − + + − + − + − − = − Π − Π = − + l l l l l l l l l l L

( )

2 1 1 1

[

]

0 1 2 3 4 1 0 0 0 1 ( ) , ,..., ; 2 . 4 r t t k r x x x x x g g g dt dt − − Π =

∫∫ ∫

− + l L L where g ui( )= f( )r

(

utr−2(tr1tr2+ +L t4)+ −(1 x t)3+ai

)

2, 3, 4

i= , where a2 = − −1 (1 x t)2, a3 = −1 2t1+ +(1 x t)2 and a4 = +(1 x t)2−1. Therefore, as in the estimation ofi2+i3, we obtain

(

)

( )

( )

2 ( ) 1 2 1 ( ) ( ) , 2 ! ! k r k k k k x x i f x L x f k r ω + − Π = − ≤ l l

which completes the proof for the case r is odd, but the same conclusion can be drawn for the case r is even, in this manner, Theorem 1 is proved.

The following lemma will be needed in the proof Theorem 2. Set h=2 /k, and recall, the logarithm with base a> ≠0 ( 1), is defined by loga x: log / log= x a,x>0. Lemma 2. Let k ≥2. For l+ <1 log (2 k−1), the equality

(

2

)

(

2

)

[ 1,1] [ 1, 1 2 ] max 1 ( ) max 1 ( ) x∈ − x − Π x =x∈ − − + h x − Π x l l holds.

Proof. For− + ≤ ≤ −1 h y h/ 2, consider the function

(

)

(

)

(

)

2 2 2 ( ) 1 ( ) (1 ) (2 ) ( ) : 1 . (1 ) 1 1 ( ) y h y h y h h y h H y y y y y   + − Π + + + +   = = − − − Π l l l

Since H(−h/ 2)=1, H′ −( h/ 2)>0 and H′ has only one zero in [ 1− + −h, h/ 2] forl≤ −(k 2)(k+1) / (2 )k , it is sufficient to show that H( 1− + ≤h) 1. Indeed,

( 1 ) 2 2( 2) 1, 1 1 k H h k k −   − + = ≤ −  −  l

(8)

for l+ <1 log (2 k−1). The proof is complete, since log (2 k− − < −1) 1 (k 2)(k+1) / (2 )k , for allk≥2.

Proof of Theorem 2. In order to prove Theorem 2 it is enough to check the inequality

(

)

1 2 3 1 ( 1) 1 ( ) , 2 ! ! 2 ! k r k r k r k k k x x k r r + + + + +  +   Π +≤       l l l l (3.1)

[ ]

1,1

x∈ − . First, we prove the estimate

( )

(

)

(

)

2 1 1 2 1 ( ) 1 4( 1) 1 4( 1) max , , 2 ! 2 / 2 / k k k k x x k k ek σ k e ek σ k + + − − Π  + + + − +         l l l l l l l (3.2)

for all x∈ −[ 1,1] and l+ <1 log (2 k−1). Let Ck,l denote the right hand of (3.2). If − < < − +1 x 1 h and u=k x( +1) / 2 then 0< <u 1 and

(

)

(

)

( )

(

)

2 1 2 1 1 1 2 1 1 1 1 / 2 1 1 1 1 ( ) 2 1 1 1 1 2 ! 1 2 1 / 2 1 2 1 4( 1) . 2 / k k k k k k u k x x u u u u u k k k k k u k u k k u e k ek k σ σ σ + + + − + + + + + + − + + + + − Π     =   −       +   ≤ +    +  ≤ ≤  +   l l l l l l l l l l l l l l L l l l l

On the other hand, applying similar arguments to the case − + < < − +1 h x 1 2h, and using Lemma 2, we obtain (3.2).

Now, taking into account (3.2) and the inequality !kk ekk 2πk which follows from Stirling's formula, we get

, 3 ! ( , ) . 2 4 2 r k r k k r k e k r W k r C k π +   ≤  +   l

It is easy to check that 1 , 3 ( 1) , 2 4 2 r k r k k r k k e k k C e k σ π + + +  +    + ≤       l l l l forl+ <1 log (2 k−1). Thus, Theorem 2 is proved.

(9)

References

[1] H. Burkill, H., Proc. Lond. Math. Soc., 1952, 3, 150-174. [2] H. Whitney, J. Math. Pures Appl., 1957, 36, 67-95. [3] Bl. Sendov, C. R. Acad. Bulgare. Sci., 1982, 35, 1-11.

[4] Yu. V. Kryakin, Izv. Ross. Akad. Nauk Ser. Mat. 1997, 61(2), 95-100. [5] O.D. Zhelnov, East J. Approx., 2002, 8(1), 1-14.

[6] O.D. Zhelnov, Whitney inequality and its generalization, (Dissertation), Inst. of Math.Nat. Ac. of Sci. of Ukraine, Kiev, 2004, p. 129.

[7] Z.J. Gilewicz, Yu.V. Kryakin, and I. A. Shevchuk, J. Approx. Theory, 2002, 119, 271-290.

[8] V.V. Zhuk, G.I. Natanson, Vestnik Leningrad Univ., 1984, 1, 5-11.

[9] T. Tunc, Methods of Functional Analysis and Topology, 2007, 13(1), 95-100, [10] R.A. DeVore, G.G. Lorentz, Constructive Approximation, Springer-Verlag, Berlin Heidelberg, 1993, p.452.

Referanslar

Benzer Belgeler

In the Fig. 4.5 it is shown the signal at the gate of the main switch of the amplifier. In the Tab. 4.1 the rise and fall times, power dissipation of simulation and experimental

共Color online兲 Excited-state absorption within valence and conduction states of Si NCs per excited carrier and at unity filling factor under three dif- ferent optical pumping

The diffraction loss of our new knife-edge diffraction method is compared with the results obtained from the Delta-Bullington method and the measurement data existing in

Since there is no need to erase the written hologram explicitly, the system is ready for another frame in a short time where this duration is limited only by the propagation speed

The instruction activity, which aimed to form meaning, was effective in changing this student's idea on conservation of angular momentum and the permanent conceptual

İlk aşamada, 1900-1950 yılları arasında toplumsal ve kültürel yapı, kadının toplumsal konumu, gelişen endüstri, teknolojik yenilikler, sanat akımları ve tasarım

Orman endüstrisinin bir alt sektörü olan levha endüstrisinin Düzce ili oransal talep trendinin kaplama ve parke alt sektörlerine benzer, kereste alt sektörünün

Burada tanıtımını yapacağımız eser, Milli Mücadele döneminin farklı bir kişiliği olarak nitelendirilen ve bugün kendisi hakkında farklı yorumlarda bulunulan,