• Sonuç bulunamadı

On solution of a certain class of non linear singular integral equations

N/A
N/A
Protected

Academic year: 2021

Share "On solution of a certain class of non linear singular integral equations"

Copied!
18
0
0

Yükleniyor.... (view fulltext now)

Tam metin

(1)

Selçuk J. Appl. Math. Selçuk Journal of Vol. 12. No. 1. pp. 53-70, 2011 Applied Mathematics

On Solution of A Certain Class of Non Linear Singular Integral Equa-tions

Murat Düz

Karabuk University, Faculty of Sciences and Arts, Department of Mathematics, 78050 Karabuk, Turkiye

e-mail:m duz@ karabuk.edu.tr

Received Date: February 22, 2010 Accepted Date: September 2, 2010

Abstract. In this study, the existence of solution of the non-linear singular integral equation system

 () = 1 Ã   ()   ()  1(  ()   ())  Y  1(  ()   ()) ! ()  () = 2 Ã   ()   ()  2(  ()   ())  Y  2(  ()   ()) ! () has been investigated.

Here,

 ()

and Y

 () are Vekua integral operators defined by

 () = − 1  ZZ   ()  −  Y  () = − 1  ZZ   () ( − )2

Key words: Singular integral equations; Holder continuity; fixed point theo-rem; contraction mapping.

(2)

1. Introduction

Let  ⊂  be a simple connected region with smooth boundary. As known, the system of real partial differential equations of the form

− = 1(       ) + = 2(       ) is equivalent to the complex partial differential equation

(1)  =  (  ) where  =  +   =  +  = 1 2 µ  +    ¶  = 1 2 µ   −    ¶  The existence of the solution of the equation (1) satisfying the Dirichlet bound-ary conditions

Re  |= ()  ∈ () Im  (0) = 0 0∈ 

in Holder space ¡¢, under suitable conditions, had been investigated by [1],[4].Let the function  in (1) be a complex valued scalar function defined on the region

 =©(  ) :  ∈    ∈ ª= x2

and let  ∈ ¡¢ In this case, the solutions  of the equation (1) satisfy the system of nonlinear singular integral equations

(2)  () = () +  (  ()   ()) ()  () = 0() +Q (  ()   ()) ()

where  =  and  ()’s are arbitrary holomorphic functions defined on G. In [3], we studied the more general nonlinear singular integral system

(3)  () = 1(  ()   ()  1(  ()   ()) ()) () =  _2( () ()Q2( () ())())

(3)

In [5], the more general than (3) nonlinear singular integral system (4)  () = 1(  ()   ()  1(  ()   ()) 

Q

1(  ()   ())) ()  () = 2(  ()   ()  2(  ()   ()) Q2(  ()   ())) () was studied. In this paper the more general than (4) nonlinear singular integral equation system

(5)  () = 1(  ()   ()  1(  ()   ())  Q

1(  ()   ())) ()  () = 2(  ()   ()  2(  ()   ()) Q2(  ()   ())) () will be discussed for given functions 1 2 1 2 1 2 under some conditions. 2. The Existence, Uniqueness and Determination of The Solution The System of Singular Integral Equations

In this section, some theorems related to the solutions of the system (5 ) under suitable conditions will be presented.

Definition 1.If for every 1 2∈  there are constants   0 and  satisfying the inequality

| (2) −  (1)| ≤  |2− 1| 0    1

then the function  : →  is said to satisfy the Holder condition in the region  or to be Holder continuous.

Let us denote the class of Holder continuous functions defined on  by ¡¢ This class is a vector space. On the other hand, (0)¡¢≡ ¡¢is the class of the continuous functions on  and for  ∈ ¡¢in this class, the norm is defined to be

kk∞= kk() = max ©

| ()| :  ∈ ª On the other hand, if the norm for  ∈ ¡¢is defined as

kk≡ kk()() = kk+  ( ) where  ( ) = sup  n | (1) −  (2)| |1− 2|−: 16= 2 1 2∈  o

then the class ¡¢becomes a Banach space with this norm.

Let us denote the Holder continuous functions defined on  and having partial derivatives of first order with respect to variables z and  by (1)¡¢ This class constitutes a Banach space with norm

(4)

for  ∈ (1)¡¢.Moreover the vector spaces 2¡¢= ¡¢x¡¢=©( ) :   ∈ ¡¢ª ()2¡¢= ()¡¢x()¡¢=n( ) :   ∈ ()¡¢o having norms. k( )k∞2≡ k( )k2() = max { kk kk} k( )k2≡ k( )k(2)() = max { kk kk}

become Banach spaces. We denote these spaces by ³ 2¡¢; k( )k∞2´ and ³()2¡¢; k( )k2´ respectively. Let ¡¢= ⎧ ⎨ ⎩ : ZZ  | ()|  ∞ ⎫ ⎬ ⎭ 1 ≤   ∞ Define for ( ) ∈ 2  ¡ ¢ k( )k2≡ k( )k2 () = max n kk kk o where 2¡¢= ¡¢x¡¢ and kk≡ kk() = ⎛ ⎝ZZ  | ()| ⎞ ⎠ 1   Let  = max 12∈ |1− 2|  Lemma 1.([1]). If ( ) ∈ ()2¡¢ 0    1

then for 1    ∞ and 0   ≤  we have the following inequality: k( )k∞2 ≤ 2k( )k2+

1

(2)1 k( )k2

(5)

Theorem 1. ([1]). For

( ) ∈ ()2¡¢ 0    1 and 1    ∞ the following inequality holds:

k( )k∞2≤  ( ) k( )k 2 2+ 2 k( )k  2+ 2  Here  ( ) = max {1( )  2( )} where  ( ) =¡√ ¢−  2+ 1( ) = 2( ) + ¡ 2( )¢− 1  2( ) = 2√ 4  √ 4 − 1 ( ) 

Definition 2. Let  :  →  where  =  × 4be given. If for every (1 1 1 1 1)  (2 2 2 2 2) ∈ 

there are positive numbers 1 2 3 4satisfying

(6) | (1 1 1 1 1) −  (2 2 2 2 2)| ≤ 1|1− 2| 

+ 2|1− 2| +3|1− 2| + 4|1− 2| + 5|1− 2|

then the function  is said to be of class 111¡1 2 3 4; ¢over  and we write  ∈ 1111¡1 2 3 4 5; ¢

Definition 3. Let ∗ : 

1 →  where 1 =  × 2If for every (1 1 1)  (2 2 2) ∈ 1 there are positive numbers 1 2 3 satisfying

(7) |∗(1 1 1) − ∗(2 2 2)| ≤ 1|1− 2|+ 2|1− 2|+3|1− 2| then the function ∗ is said to be of class 11

¡ 1 2 3 4; 1 ¢ over 1 and we write ∗∈  11 ¡ 1 2 3; 1 ¢  Let for the bounded operators

kk= sup n kk:  ∈ () ¡ ¢ kk 1o ° ° ° ° ° Y  ° ° ° ° °  = supnkk:  ∈  ()¡¢  kk 1 o .

(6)

Lemma 2. Let  ∈ 1111 ¡ 1 2 3 4 5;  ¢   ∈ 11 ¡ 1 2 3; 1 ¢   ∈ 11¡1 2 3; 1¢ ( = 1 2)   = (0 0) and ( ) = n ( ) : k( )k2≤  o  If 0 = max © |( 0 0 0 0)| :  ∈  ª  = max©|( 0 0)| :  ∈ ª = max © |( 0 0)| :  ∈  ª  1= 01+ 11+ 2 (12+ 13)  + [201+ 411+ 4 (12+ 13) ] 14kk+ [201+ 411+ 4 (12+ 13) ] 15 ° ° ° ° ° Y  ° ° ° ° °   2= 02+ 21+ 2 (22+ 23)  + [202+ 421+ 4 (22+ 23) ] 24kk+ [202+ 421+ 4 (22+ 23) ] 25 ° ° ° ° ° Y  ° ° ° ° °  , max {1 2} ≤  then for ˜  () = 1 à   ()   ()  1(  ()   ()) ()  Y  1(  ()   ()) () ! ˜  () = 2 à   ()   ()  2(  ()   ()) ()  Y  2(  ()   ()) () ! the operator  : ()2¡¢→ ()2¡¢ 0    1 ( ) →  ( ) =³ ˜˜ ´ transforms the ball

(; ) into itself.

(7)

Proof. From the definition of ˜ (), | ˜ ()| = ¯ ¯ ¯ ¯ ¯1 à   ()   ()  1(  ()   ()) ()  Y  1(  ()   ()) () !¯¯¯ ¯ ¯ ≤ ¯ ¯ ¯ ¯ ¯1 à   ()   ()  1(  ()   ()) ()  Y  1(  ()   ()) () ! −1 à  0 0 1( 0 0) ()  Y  1( 0 0) () !¯¯¯ ¯ ¯ + ¯ ¯ ¯ ¯ ¯1 à  0 0 1( 0 0) ()  Y  1( 0 0) () ! − 1( 0 0 0 0) ¯ ¯ ¯ ¯ ¯ + |1( 0 0 0 0)| .

From the inequality (6) and (7) we can write

(8)

| ˜ ()| ≤ 12| ()| + 13| ()| +14|[1(  ()   ()) () − 1( 0 0) ()]| +15|Q[1(  ()   ()) () − 1( 0 0) ()]| +14|1( 0 0) ()| + 15|Q1( 0 0) ()| + 01 Now let us obtain a bound for

k1(  ()   ()) − 1( 0 0)k()(1)  For every  1 2∈  (9) |1(  ()   ()) − 1( 0 0)| ≤ 12| ()| +13| ()| ≤ (12+ 13)  and |[1(  ()   ()) − 1( 0 0)] (1) − [1(  ()   ()) − 1( 0 0)] (2)| = |1(1  (1)  (1)) − 1(2  (2)  (2)) − [1(1 0 0) − 1(2 0 0)]| ≤ 11|1− 2|+ 12| (1) −  (2)| + 13| (1) −  (2)| + 11|1− 2| ≤ 211|1− 2|+ 12kk()() |1− 2|+ 13kk()() |1− 2| (10) ≤ [211+ (12+ 13) ] |1− 2| from the inequality (9) and (10), we can write

(11) k1(  ()   ()) − 1( 0 0)k()(

(8)

Now let us obtain a bound for

k1( 0 0)k()(1) 

For any 1 2∈ , since

|1( 0 0) (2) − 1( 0 0) (1)| = |1(2 0 0) − 1(1 0 0)| ≤ 11|1− 2| we can write

(12) k1( 0 0)k()(1) ≤ 11+ 01 Similarly we can obtain

k1(  ()   ()) − 1( 0 0)k()(

1) ≤ 2 [11+ (12+ 13) ]

(13) k1( 0 0)k()(

1) ≤ 11+ 01

Using the inequalities (11), (12), (13) for every  ∈ , we obtain

| ˜ ()| ≤ (12+ 13)  + 14 kk[311+ 2 (12+ 13)  + 01] +15 ° ° ° ° ° Y  ° ° ° ° °  [311+ 2 (12+ 13)  + 01] + 01

Now, let us obtain the Holder constant  ( ˜ )  For every 1 2∈  | ˜ (1) − ˜ (2)| ≤ ¯ ¯ ¯ ¯ ¯1 à 1  (1)   (1)  1(  ()   ()) (1)  Y  1(  ()   ()) ! (1) − 1 à 2  (2)   (2)  1(  ()   ()) (2)  Y  1(  ()   ()) (2) !¯¯ ¯ ¯ ¯ ≤ 11|1− 2|+ 12| (1) −  (2)| + 13| (1) −  (2)| +14|[1(  ()   ()) (1) − 1(  ()   ()) (2)] | +15 ¯ ¯ ¯ ¯ ¯ Y  [1(  ()   ()) (1) − 1(  ()   ()) (2)] ¯ ¯ ¯ ¯ ¯ ≤ [11+ (12+ 13) ] |1− 2|+ 14kkk1(  ()   ())k|1− 2| +15 ° ° ° ° ° Y  ° ° ° ° °  k1(  ()   ())k|1− 2|

(9)

Moreover, for every  1 2∈ 

|1(  ()   ())| ≤ |1(  ()   ()) − 1( 0 0)| + |1( 0 0)| ≤ (12+ 13)  + 01

From the definition of (7)

|1(1  (1)   (1)) − 1(2  (2)   (2))| ≤ [11+ (12+ 13) ] |1− 2| Thus k1(  ()   ())k≤ [01+ 11+ 2 (12+ 13) ]  Similarly |1(  ()   ())| ≤ |1(  ()   ()) − 1( 0 0)| + |1( 0 0)| ≤ (12+ 13)  + 01 and thus k1(  ()   ())k≤ [01+ 11+ 2 (12+ 13) ] Hence, for any 1 2∈ 

| ˜ (2) − ˜ (1)| ≤][11+ (12+ 13)  + 14kk(01+ 11+ 2 (12+ 13) ) +15 ° ° ° ° ° Y  ° ° ° ° °  (01+ 11+ 2 (12+ 13) ) # |1− 2|. or we obtain  ( ˜ ) = [11+ (12+ 13)  + 14kk(01+ 11+ 2 (12+ 13) ) +15 ° ° ° ° ° Y  ° ° ° ° °  (01+ 11+ 2 (12+ 13) ) # Thus, for 1 = 01+ 11+ 2 (12+ 13)  + 14kk[201+ 411+ 4 (12+ 13) ] +15 ° ° ° ° ° Y  ° ° ° ° °  [201+ 411+ 4 (12+ 13) ] we get k ˜k≤ 1 In a similar way, for

2 = 02+ 21+ 2 (22+ 23)  + 24kk[202+ 421+ 4 (22+ 23) ] +25 ° ° ° ° ° Y  ° ° ° ° °  [202+ 421+ 4 (22+ 23) ]

(10)

it can be shown that ° ° °˜°°° ≤ 2 Therefore, ° ° °³ ˜˜ ´°°° 2= max n k ˜k ° ° °˜°°°  o ≤ max {1 2}  If max {1 2} ≤  , then ° ° °³ ˜˜ ´°°° 2≤  , i.e.,  ( ) =³ ˜˜ ´∈ ( ) 

Lemma 3. ([1]) If  ∈ 1¡¢, then the ball 

( ) is compact in ³

2¡¢; k( )k ∞2

´

Corollary 1. The sphere ( ) is a complete subspace of ³ 2¡¢; k( )k∞2´ For ( ) ³ ˜˜ ´∈ ()2¡¢ (0    1) let ∞2h( ) ³ ˜˜ ´i=°°°( ) −³ ˜˜ ´°°° ∞2, and for 1 ≤   ∞ 2 h ( ) ³ ˜˜ ´i=°°°( ) −³ ˜˜ ´°°° 2 , 2 h ( ) ³ ˜˜ ´i=°°°( ) −³ ˜˜ ´°°° 2 . The transformations ∞2 2: ()2 ¡ ¢x()2¡¢→ [0 ∞) define metrics on ()2¡¢ Thus,¡()2¡¢ ; 

∞2 ¢

and¡()2¡¢ ;  2

¢ become metric spaces.

Lemma 4. ([1]) Let 0    1 and 1 ≤   ∞. Then the convergence on the ball ( ) with respect to the metrics ∞2 and 2 are equivalent.

(11)

Lemma 5. Let  ∈ 111 ¡ 1 2 3 4 5;  ¢  and ∈ 11 ¡ 1 2 3; 1 ¢   ∈ 11 ¡ 1 2 3; 1 ¢ , ( = 1 2)  (0    1)

and 1    ∞. In this case, for the operator A defined in Lemma 2, the inequality

(14) 2[ (1 1)   (2 2)] ≤ 3() ∞2[(1 1)  (2 2)] is satisfied for all (1 1)  (2 2) ∈ ( ), where

3() = () 1 max ⎧ ⎨ ⎩12+ 13+ ⎛ ⎝14kk+ 15 ° ° ° ° ° Y  ° ° ° ° °  ⎞ ⎠ (12+ 13)  22+ 23+ ⎛ ⎝24kk+ 25 ° ° ° ° ° Y  ° ° ° ° °  ⎞ ⎠ (22+ 23) ⎫ ⎬ ⎭ .

Proof. For all (1 1)  (2 2) ∈ ( ) and  ∈  using

k (1 1) −  (2 2)k2 = ° ° °³˜1 ˜1 ´ −³˜2 ˜2´°°° 2 = max ½ k ˜1− ˜2k ° ° °˜1− ˜2 ° ° °  ¾

let us turn to account the norms k ˜1− ˜2kand ° ° °˜1− ˜2 ° ° °

 For all  ∈  since | ˜1() − ˜2()| = ¯ ¯ ¯ ¯ ¯1 à  1()  1()  1( 1()  1()) ()  Y  1( 1()  1()) () ! −1 à  2()  2()  1( 2()  2()) ()  Y  1( 2()  2()) () !¯¯¯ ¯ ¯ ≤ 12|1() − 2()| + 13|1() − 2()| +14|(1( 1()  1()) − 1( 2()  2())) ()| +15 ¯ ¯ ¯ ¯ ¯ Y  (1( 1()  1()) − 1( 2()  2())) () ¯ ¯ ¯ ¯ ¯

(12)

from the Minkowski inequality and 1 1 ∈ 11 ¡ 11 12 13; 1 ¢ we ob-tain ⎛ ⎝ZZ  | ˜1() − ˜2()| ⎞ ⎠ 1  ≤ ⎧ ⎨ ⎩ ZZ  [12|1() − 2()| + +13|1() − 2()| + 14|[1( 1()  1()) − 1( 2()  2())]| +15 ¯ ¯ ¯ ¯ ¯ Y  [1( 1()  1()) − 1( 2()  2())] ¯ ¯ ¯ ¯ ¯   )1  ≤ 12k1− 2k+ 13k1− 2k+ +14kkk1( 1()  1()) − 1( 2()  2())k +15 ° ° ° ° ° Y  ° ° ° ° °  k1( 1()  1()) − 1( 2()  2())k ⎞ ⎠ ()1  ≤ ³(12+ 13) max n k1− 2k k1− 2k o +14kk ³ 12k1− 2k+ 13k1− 2k ´ +15 ° ° ° ° ° Y  ° ° ° ° °  ³ 12k1− 2k+ 13k1− 2k ´⎞ ⎠ ()1  ≤ ⎛ ⎝ ⎡ ⎣(12+ 13) + ⎛ ⎝14kk(12+ 13) + 15 ° ° ° ° ° Y  ° ° ° ° °  (12+ 13) ⎞ ⎠ × ⎤ ⎦ × maxnk1− 2k k1− 2k o´ ()1 ≤ ()1 ⎡ ⎣12+ 13+ ⎛ ⎝14kk(12+ 13) + 15 ° ° ° ° ° Y  ° ° ° ° °  (12+ 13) ⎞ ⎠ ⎤ ⎦ × ×∞2[(1 1)  (2 2)] . Thus we get (15) k ˜1− ˜2k≤ () 1  h 12+ 13+ ³ 14kk(12+ 13) +15kQk(12+ 13) ´i ˆ ∞2

(13)

and similarly (16) ° ° °˜1− ˜2 ° ° ° ≤ () 1 h 22+ 23+ ³ 24kk(22+ 23) ´i +25kQk(22+ 23) ´ ˆ ∞2i

where ˆ∞2 = ∞2[(1 1)  (2 2)]  With the help of the inequalities (15) and (16), the required inequality (14) is obtained.

Lemma 6. ([1]) Assume the conditions of the Lemma 2 are satisfied. Let max {1 2} ≤  In this case, the operator  : (; ) → (; ) defined in the Lemma 2, is a continuous operator according to the metric ∞2. Theorem 2. ([1]) Let ∈ 111¡1 2 3 4; ¢,

∈ 11¡1 2 3; 1¢,  ∈ 11¡1 2 3; 1¢( = 1 2) and max {1 2} ≤ 

The nonlinear singular integral system (5) has at least one solution on the sphere ( )  Now, let us study the uniqueness of the solution of the system (5) and how to find it. For this, we use a variant of Banach fixed point theorem: Theorem 3.([2]).Assume that the following hypothesis hold:

(1) Let ( 1) be a compact metric space.

(2) Let 2 be another metric on X such that any sequence converging with respect to 1 is also convergent in 2.

(3) Let the operator  :  →  be a contraction mapping with respect to2, i.e. let for any   ∈  there exist a number 0 ≤   1 such that

2( ) ≤ 2( ) 

Then the equation  =  has a unique solution  and 0 ∈  being any initial element, the sequence ()defined by = −1,  = 1 2  converges to  with speed

2( ∗) ≤ 

1 − 2(1 0) 

Theorem 4. Let the conditions ∈ 1111 ¡ 1 2 3 4 5;  ¢  ∈ 11 ¡ 1 2 3; 1 ¢  ∈ 11 ¡ 1 2 3; 1 ¢ , ( = 1 2)  (0    1), max {1 2} ≤ 

(14)

and  = max ⎧ ⎨ ⎩01+ 13+ ⎛ ⎝14kk+ 15 ° ° ° ° ° Y  ° ° ° ° °  ⎞ ⎠ (12+ 13)  22+ 23+ ⎛ ⎝24kk+ 25 ° ° ° ° ° Y  ° ° ° ° °  ⎞ ⎠ (22+ 23) ⎫ ⎬ ⎭ 1 hold. Then the system (5) of nonlinear singular integral equations has a unique solution ( ) ∈ ( )  This solution is the limit of the sequence ( ) defined by (17) () = 1 Ã  −1()  −1()  1( −1()  −1())  Q 1( −1()  −1()) ! () () = 2 Ã  −1()  −1()  2( −1()  −1())  Q 2( −1()  −1()) ! ()  = 1 2  where (0 0) ∈ ( ) is any initial element. Moreover, the inequality

2[( )  (∗ ∗)] ≤ 

1 − 2[(1 1)  (0 0)] hold.

Proof. Let  = ( ), 1= 2and 2= 2in Theorem 3. Let  be an operator defined in the Lemma 6. Since

max {1 2} ≤ 

, the operator  transform the space ( 2) into itself. Now let us show that when   1 the operator  is a contraction operator on the sphere ( ) with respect to the metric 2 .For

( ) ∈ ( )  ( ) () = (1( ) ()  2( ) ()) where 1( ) () = 1 Ã   ()   ()  1(  ()   ())  Y  1(  ()   ()) () ! 2( ) () = 2 Ã   ()   ()  2(  ()   ())  Y  2(  ()   ()) () !

Thus for any¡(1) (1)¢¡(2) (2)¢∈ (; ) we can write

2 ³ ³(1) (1)´ ³(2) (2)´´= max ½ ° ° °1 ³ (1) (1)´− 1 ³ (2) (2)´°°° 

(15)

° ° °2 ³ (1) (1)´− 2 ³ (2) (2)´°°°  ¾  Since 1∈ 1111¡11 12 13 14 15; ¢ 1∈ 11¡11 12 13; 1¢ 1∈ 11 ¡ 11 12 13; 1 ¢ ° ° °1 ³ (1) (1)´− 1 ³ (2) (2)´°°° = ° ° ° ° °1 à (1) (1)  1 ³  (1) (1)´Y  1 ³  (1) (1)´ ! − −1 à (2) (2) 1 ³  (2) (2)´Y  1 ³  (2) (2) ´!°° ° ° °  = ⎧ ⎨ ⎩ ZZ  [12 ¯ ¯ ¯(1) () − (2)() ¯ ¯ ¯ + 13 ¯ ¯ ¯(1) () − (2)() ¯ ¯ ¯ + +14 ¯ ¯ ¯ ³ 1 ³  (1)()  (1)()´− 1 ³  (2)()  (2)()´´()¯¯¯ +15 ¯ ¯ ¯ ¯ ¯ Y  ³ 1 ³  (1)()  (1)()´− 1 ³  (2)()  (2)()´´() ¯ ¯ ¯ ¯ ¯ #  )1  ≤ 12 ° ° °(1)− (2)°°° + 13 ° ° °(1)− (2)°°°  +14 ⎛ ⎝ZZ  ¯ ¯ ¯ ³ 1 ³  (1)()  (1)()´− 1 ³  (2)()  (2)()´´()¯¯¯ ⎞ ⎠ 1  +15 ⎛ ⎝ZZ  ¯ ¯ ¯ ¯ ¯ Y  ³ 1 ³  (1)()  (1)()´− 1 ³  (2)()  (2)()´´() ¯ ¯ ¯ ¯ ¯   ⎞ ⎠ 1  ≤ 12 ° ° °(1)− (2)°°°+ 13 ° ° °(1)− (2)°°° +14kk ⎛ ⎝ZZ  ¯ ¯ ¯³1 ³  (1)()  (1)()´− 1 ³  (2)()  (2)()´´¯¯¯   ⎞ ⎠ 1 

(16)

+15 ° ° ° ° ° Y  ° ° ° ° °  ⎛ ⎝ZZ  ¯ ¯ ¯³1 ³  (1)()  (1)()´− 1 ³  (2)()  (2)()´´¯¯¯ ⎞ ⎠ 1  ≤ 12 ³³ (1) (1)´³(2) (2)´´ where 1= 12+ 13+ (12+ 13) 14kk+ (12+ 13) 15 ° ° ° ° ° Y  ° ° ° ° °   Similarly ° ° °2 ³ (1) (1)´− 2 ³ (2) (2)´°°°  ≤ 22 ³³ (1) (1)´³(2) (2)´´ where 2= 22+ 23+ (22+ 23) 24kk+ (22+ 23) 25 ° ° ° ° ° Y  ° ° ° ° °  

Thus when  = max {1 2}for every ¡ (1) (1)¢,¡(2) (2)¢∈  ( ) we can write 2 h ³(1) (1)´ ³(2) (2)´i≤ 2 h³ (1) (1)´³(2) (2)´i Thus when   1, the operator  is contraction operator on the sphere ( ) with respect to the metric 2.By Theorem 2, the system (17) has at least one solution in the ball ( ) Now let us show this fact: Since

( ) =  (−1 −1)   = 1 2  we obtain

2[(+1 +1)  ( )] = 2[ ( )   (−1 −1)] ≤ 2[( )  (−1 −1)] Repeating this process consecutively, it follows that

2[(+1 +1)  (0 0)] ≤ 2[(1 1)  (0 0)] .

Thus, for any two natural numbers  and  we can write 2[(+ +)  ( )] ≤  ¡ 1 +  + 2+  + −1¢2[(1 1)  (0 0)] . (18) = 1 −   1 −  2[(1 1)  (0 0)] 

(17)

Since lim →∞

= 0, the sequence {( )}∞1 is Cauchy by (18). Since ( 2) is complete, there is an element

( ) ∈  such that lim

→∞( ) = (∗ ∗) On the other hand,

2[(+1 +1)   (∗ ∗)] = 2[ ( )   (∗ ∗)] . ≤ 2[( )  (∗ ∗)] and lim →∞2[( )  (∗ ∗)] = 0 imply that lim →∞2[(+1 +1)   (∗ ∗)] = 0 and thus lim →∞2(+1 +1) =  (∗ ∗)  So we get ( ) =  ( )

, and this shows that ( ) is a solution to the equation ( ) =  ( ) 

Now let us prove the uniqueness of this solution: Let (∗∗ ∗∗) be another solution of the system (17). In this case, we can write

2[(∗ ∗)  (∗∗ ∗∗)] = 2[ (∗ ∗)   (∗∗ ∗∗)] ≤ 2[(∗ ∗)  (∗∗ ∗∗)]  However, this is possible only if 2[(∗ ∗)  (∗∗ ∗∗)] = 0

Remark 1. Since, by (17), the sequence {( )}∞1 , whose terms are defined by

( ) =  (−1 −1)

is convergent to the solution ( ) in the ball (; ) with respect to the metric 2 , it is also convergent with respect to the metric ∞2. Thus the metrics ∞2 and 2are equivalent on X.

(18)

References

1. Altun, I., Koca, K. and Musayev, B., Existence and uniqueness theorems for a certain class of non-linear singular integral equations, Complex Var. Elliptic Equ., 51 , no. 2, 181-195,2006.

2. Huseynov, A.I. and Muhtarov, H.S., Vvedeniye v teoriyu nelineynh sigulyainh integralnh uravneny (Moscow: Nauka,1980).

3. Musayev, B., Düz, M., Existence and Uniquness Theorems for A Certain Class of Non Linear Singular Integral Equations SJAM Winter — Spring , Volume 10 - Number 1, 2009.

4. Tutschke, W., Lösung nichtlinearer partieller Differentialgleichungssysteme erster Ordnung in der Ebene durch Verwendung einer komplexen Normalform. Mathematis-che Nachrichten, 75, 283-298,1976.

5. Düz M."On Existence and Uniqueness of Solution of A Certain Class of Non Linear Singular Integral Equations", Hacettepe Journal of Mathematics and Statistics, Vol:40(1) (2011), 41-52

Referanslar

Benzer Belgeler

In this work, the temperature of hot electrons (T e ) of the sample and the corresponding power loss (P) have been determined as a function of the applied electric field using the

We also propose two different energy efficient routing topology construction algorithms that complement our sink mobility al- gorithms to further improve lifetime of wireless

Discussing an alternative idea of engagement formulated by maurice Blanchot, roland Barthes, and albert camus, the essay develops a notion of exhausted literature that questions

Such a reliance on the oral distribution of invective verse with the aim of reducing the target’s esteem will be seen again, albeit in a very different context, in Chapters 3 and

figurative art paintings………... Friedman test results for contemporary figurative art paintings………….. Wilcoxon Signed Rank test for contemporary figurative art

Araştırmada; abaküs mental aritmetik eğitimi yaratıcı düşünme programının matematiksel problem çözme becerilerinin geliştirilmesine etkisini incelemek için

Bu doktora tez çalışmasında, özel durumlarda Lyapunov matris denklemlerini içeren, sürekli ve ayrık cebirsel Riccati matris denklemlerinin çözüm matrisleri

Kısacası, modern dünyanın en önemli enerji girdi kaynağı olan petrol, gerek ticari ve ekonomik boyutuyla gerekse de uluslararası denge