• Sonuç bulunamadı

Organic Electrolytes for Graphene-Based Supercapacitor: Liquid, Gel or Solid

N/A
N/A
Protected

Academic year: 2021

Share "Organic Electrolytes for Graphene-Based Supercapacitor: Liquid, Gel or Solid"

Copied!
6
0
0

Yükleniyor.... (view fulltext now)

Tam metin

(1)

ContentslistsavailableatScienceDirect

Materials

Today

Communications

jo u r n al h om ep ag e : w w w . e l s e v i e r . c o m / l o c a t e / m t c o m m

Organic

electrolytes

for

graphene-based

supercapacitor:

Liquid,

gel

or

solid

Evgeniya

Kovalska

,

Coskun

Kocabas

DepartmentofPhysics,BilkentUniversity,06800Ankara,Turkey

a

r

t

i

c

l

e

i

n

f

o

Articlehistory: Received26April2016 Accepted27April2016 Availableonline6May2016 Keywords:

Graphene-basedsupercapacitor Organicelectrolyte

Electricalandelectro-opticalfeatures Opticalmodulator

a

b

s

t

r

a

c

t

Theelectrolyteisanimportantanddecisivefactorinbattery,capacitorandsupercapacitorfabrication. Herewereporthowelectrolyte’sprovenanceandstructureeffectontheelectro-opticalpropertiesof thegraphene-basedsupercapacitor.Thethreeorganicelectrolytesweresynthesized:liquidelectrolyte, whichonthebasisofpropylenecarbonate(PC),gelelectrolyte–polyvinylalcohol(PVA)andsolid electrolyte–polyvinylidenefluoride (PVDF).Asanapplication,wedemonstrateanoptical modula-torusingsupercapacitorstructurebuiltbygrapheneelectrodesandpreparedelectrolytes.Allorganic electrolyte-basedsupercapacitorspotentiateopticalmodulationofgrapheneelectrodesoverabroad rangeofwavelengths,underambientconditions.Werevealhighercapacitance(78␮F/cm2)fora

superca-pacitorwithgelelectrolyteduringvariousbiasvoltages.Werepresenttheincreasingoflighttransmission at3timesusingsolidelectrolyte,incomparisonwithliquidandgelelectrolytesandillustratethe super-capacitorpossibilitywithgelelectrolytetooperateundernegativevoltage.Consequently,wesuggest applyingofsolidelectrolyteasamoreappropriateelectrolyteforfabricationofgraphene-based super-capacitor.Weanticipatethatusingofsolidelectrolyteallowsustogetdesiredelectro-opticalproperties, minimizethesizeofthedeviceandvaryitshape.

©2016ElsevierLtd.Allrightsreserved.

1. Introduction

Thesupercapacitorhistory hasmorethanadozenyears,but

techniquedemandofsuchdevicesstillmakesscientistslookfor

waystoreducethecostoftheirdevelopmentandproduction[1].

Supercapacitor,whichalsowell-knownasultra-orelectric

double-layercapacitorstores energy through reversibleion adsorption

ontoactivematerialswithhighspecificsurfacearea[2]:activated

carbon[3],graphene[4,5],carbonaerogel[6,7],orcarbon

nano-tubes[8,9].Exceptcarbonmaterials,researchersuseelectroactive

oxideorhydroxidefilmsoftransitionmetals(MnO2[10],RuO2[11],

NiO[12],MoO3[13])andconductingpolymers(polypyrrole[14],

polyaniline[15],andpolythiophene[16]etc.).Thecyclicstability

andperformanceofsupercapacitordependonpropertiesof

elec-trolyteaswell.Electrolytes–theseareliquid,gelorsolidsystems

whichmusthavethehighconcentrationofmobileions,low

resis-tance,lowconcentrationofelectricallyactiveimpurities,andbe

chemicallystable[17,18].Forthepurposetogetquality

superca-pacitorwehavetofindtheoptimalcombinationofelectrodeswith

electrolyte.

∗ Correspondingauthor.

E-mailaddress:ikovalska@bilkent.edu.tr(E.Kovalska).

Liquidelectrolytes whichconsist ofwater and organicchains

haveionicconductivityupto1S/cm,highdielectricconstant[18],

andgivehigherspecificcapacitanceofactivematerialsthanthe

organic-basedelectrolyte.Thecellvoltageofsupercapacitorsbased

onaqueouselectrolyteislower(1V)[19]thanorganicelectrolyte

(2.5V)[20].Thus,wewereabletoobtainsignificantlybetterresults

withnon-aqueous[21],biologicalsubstances[22]orpolymersolid

electrolyte[23].Toavoidtheshaperestrictions,leakageordrying

ofelectrolyte(thatinherentofliquids)wecanusegelelectrolyte.

It hasfastcharging/dischargingandhighpowerdensity aswell

[24]. Currently,the majorpolymersfor gelelectrolyte

prepara-tionarepolyethyleneoxide[25],polyacrylonitrile[26],polymethyl

methacrylate[27]polyvinylidenefluoride[28]etc.Relativelynew

electrolyteforsupercapacitordesignissolidelectrolyte[29,30].This

materialoffersmanyadvantages overtheliquidsandgels:

con-ductionofelectricity,duetotheionmovementthroughvoidsor

defects,inowncrystallattice;leakageresistance,duetodispersion

andfixation,intoapolymermatrix;dualfunctionalizationas

sepa-ratorandelectrolyte.Solidelectrolytesimplementinthedesignof

flexibleandnonflexiblesupercapacitorsandshowexcellent

elec-trochemicalperformance[9,31,32].

Inanycase, propertiesofelectrolyteand itsstructure

deter-mine applied aspects of the supercapacitor. Thus, we report

syntheses of liquid, gel and solid organic electrolytes and

http://dx.doi.org/10.1016/j.mtcomm.2016.04.013 2352-4928/©2016ElsevierLtd.Allrightsreserved.

(2)

growthwascarriedoutcoolingdownwithH2 flowinguntilthe

temperaturewasbelow100◦C.Grapheneoncopperwastakenout

oftheCVD-reactorwhenthetemperaturereached50–60◦C.

2.2. TransferofmonolayergrapheneusingS1813

A photoresist S1813 (Shipley Company) supported transfer

methodwasutilizedtotransfergraphene(withtheareaaround

1×2cm)tothepolishquartzwafersforsupercapacitor

fabrica-tion.TheetchingprocesseswereperformedbyFeCl3 forCu-foil

andusingacetoneforremovingofphotoresist.

2.3. Fabricationgraphene-basedsupercapacitor

Supercapacitorcellwasformedusingtwocoveredbygraphene

glasswafers.Afterward,thevastnessbetweentwoelectrodeswas

filledwithanelectrolyteaccordingtoitstype.Wehaveusedthe

pipetteforliquidandgelelectrolytesandtweezersforathin

trans-parentfilmofsolidone.

2.4. Preparationoftheelectrolytes

Differenttypesofelectrolytesystemswhichbasedonorganic

chemicalswereprepared.

LiquidelectrolytewithactiveLi+-ionswereobtainedusinga

sol-ventpropylenecarbonate(PC–C4H6O3,99.7%,Sigma-Aldrich)and

thesourceofpositiveions–lithiumbis(oxalate)borate(LiBOB–

LiB(C2O4)2,powderofcrystals,Sigma-Aldrich).Themixturewas

stirredaround2.Atransparentanddilutedmilkcolorelectrolyte

withaconcentrationofLi+-ions10wt.%.werefinallyobtained.

LiBOBwasusedforgelelectrolytepreparationaswell.Polyvinyl

alcohol (PVA – (CH2CHOH)n, Sigma-Aldrich) with an average

molecularweightof20,000wasdissolvedin10%Li+-ionsaqueous

solution.Glycerin(C3H8O3,Birpa,Ankara)wasaddedasastabilizer.

Lastly,wehavegotgoodpellucidgelelectrolyte.

A solid electrolyte was obtained using polyvinylidene

flu-oride, with nominal Mn=130,000g/mol, Mw=400,000g/mol,

melting point 140–145◦C (PVDF) – molecular structure is

[CH2 CF2]n [CF2 CF(CF3)]m ,Sigma-Aldrich.Thepolymer

solu-tionwas preparedby dissolving10wt.%of PVDF inacetone at

70◦C under magnetic stirring for at least 30min until a clear

homogeneoussolutionwasobtained.Theionicliquidintheratio

1:4(polymer:ionicliquid,respectively)wasaddedtothepolymer

solutionundermagneticstirring andtheydissolvedcompletely

ina few minutes.Thefollowing ionicliquid whichsupplied by

Sigma-Aldrichwereused:1-butyl-3-methylimidazolium

hexaflu-orophosphate–C8H15F6N2P.Thefilmswerepreparedbysolution

castingofthepolymer/ionicliquidmixtureinacetoneonaPetri

dishandbysubsequentsolventevaporationatroomtemperature

for24h.Further,thefilmsweredriedat70◦Cfor4htoguarantee

completeremovalofthevolatilesolvent.

range between500and 1100nm.Thegraphene-based

superca-pacitorwasbiasedusingKeithley2400sourcemeasureunitthe

transmittancemeasurements.

3. Resultanddiscussion

The choice of graphene as an electrode caused by its high

absorptioncoefficientinbroadspectralrange,excellenttransport

propertiesandgate-tunablecarrierdensity.Theabilitytoproduce

high-qualitysingle-layergraphene[33,34],andtransferitonto

sub-stratemakespracticalapplicationofgrapheneforoptoelectronic

devices.Nowadaysgrapheneintegratedwithsiliconphotonicsis

especiallyinteresting[35]andwouldbeofuseforoptical

commu-nicationapplications[36].Forthispurposegraphene-on-graphene

optical modulator with parallel plate geometry was described

[37,38]. However, we would like to consider broadband

opti-calmodulatorwhichconsistsoftwographeneelectrodesonthe

glass/PVCwafersandelectrolytebetweenthem.Thedeviceshave

simpleparallelplategeometryandbasedonthesupercapacitor

structure.

3.1. Graphene-basedsupercapacitor

We present graphene-based supercapacitor which was

fab-ricated using glass wafers, covered with single-layergraphene

(Fig.1),andliquidorgelelectrolytes(Fig.2a);flexible

supercapac-itor,whereissolidelectrolytebetweentwographeneelectrodes

(Fig.2b).

Graphene-based device works on the principle of a typical

supercapacitor(Fig.2c),whichstoreselectricchargedirectlyacross

theinterface.Themechanismofsurfacechargegenerationcanbe

enumeratedassurfacedissociationandionadsorptionfromthe

electrolytesolution.Thecapacitancearisesfroman

electrochemi-caldoublelayeranditsthicknessdependsontheconcentrationof

theelectrolyteandsizeofactiveions.

3.2. Electrolytesforgraphene-basedsupercapacitor

Wetestedelectrolytesofvariouscompositionandstate:thefirst

electrolyteisliquid,thefollowingfive–gelsandremaining–are

solids(Table1).Toavoidleakageofelectrolyteandshape

limita-tionofthedeviceweusepolymericmatrixes:polyvinylalcohol

(PVA)andpolyvinylidenefluoride(PVDF);asasourceofionswe

uselithiumsaltorinorganicacids.Herein,wedistinguishand

com-parethreeelectrolytes,whichinouropinionaremostsuitablefor

supercapacitorsasanopticalmodulators[39].

3.3. Liquidelectrolyte–PC/LiBOB

We prepared the solutionof lithium bis (oxalate) borate in

propylene carbonate (PC/LiBOB) [40]. The choice fell onLiBOB

(3)

Fig.1.SEMimage(a)andtypicalRamanspectra(b)ofsinglelayergraphenefilmcoatedonSi/SiO2substrate.

Fig.2.Schematicexplodedviewofthenon-flexible(a)andflexible(b)opticallytransparentsupercapacitorsformedbytwoparallelgrapheneelectrodestransfer-printed onglass(a)orPVC(b)substratesandtheelectrolytemediumbetweenthem;schematicdrawingofbehaviorofthesupercapacitor(c).

Table1

Electrolytesforgraphene-basedsupercapacitor.

N TypeofEL Ratio Voltage(V) Modulation(%)

1 PC/LiBOB 1/1.1 0–2.0 1.0 2 PVA/H3PO4 1/1.5 0to−3.0/0to3.0 1.6/1.8 3 PVA/H2SO4 1/1.5 0to−3.0/0to3.0 2.3/2.5 4 PVA/LiBOB 3/1 0to−2.8/0to2.8 0.4/2.9 5 PVA/LiBOB/Eth/Ac 1/1 0to−2.4/0to3.0 2.7/3.2 6 PEO – 0to−3.0/0to3.0 1.0/2.3 7 PVDFinacetone/ionicliquid 1/4 0to2.8 3.2 8 PVDFinacetonitrile/ionicliquid 1/4 0to−2.8/0to3.0 1.3/1.5 9 PVDF/PEO 9/1 0to−3.5/0to3.0 2.3/1.3

(4)

Fig.3.Schematicbehaviorbetweenpropylenecarbonateandlithiumbis(oxalate) borate:lithiumcationfindsitselfsurroundedbynegativelychargedoxygenatomsof propylenecarbonate;[BOB]−anionsarelocatedintheelectrolytesolution,thereby determiningitsmobility.

andgoodcharging/dischargingcycles[41],wideelectrochemical

stability window, no erosionto manganese and iron’s cathode

materials,fluorine-free, non-toxic, etc. Furthermore, LiBOB has

weakestcoordinatingability(incomparisonwithcommonlyused

LiPF6[42]),caneffectivelystabilizethegraphiteanodesurfaceeven

inpurePC-basedelectrolytes,and cantolerateashighasabout

100ppmwatercontent[43,44].AproticPChasahighmolecular

dipolemoment(4.9D,duetothiswewereabletoobtain

solu-tionswithvarietysaltsconcentration)andexcellentperformance

atlowtemperatures.Highpolaritypropylenecarbonateallowsto

createaneffectivesolvationshellaroundlithiumcations(Fig.3),

therebyobtainingaconductiveelectrolyte.Accordingly,the

mobil-ityofelectrolytewilldeterminethe[BOB]−anions.

Electricalcharacterizationofa supercapacitorwithPC/LiBOB

electrolyte shows proportional voltage dependence of

capaci-tance/resistance(Fig.4a).Thecapacitance-voltagecurveindicates

highercapacitanceofthedevicearound40␮F/cm2 andminimal

pointat −0.34V.Theminimum valueof thecapacitance

corre-spondsthecharge neutralitypointsofgrapheneelectrodes and

dependsontheresidualchargedensity.Whilethealmost

asym-metricvoltagedependenceoftheresistancerepresentstwodistinct

peaksat9.4and12.7k.Thetotalresistanceofdevicevariedfrom

13to5.5kasabiasvoltagechangefrom−4.4to4.5V.

investigations.

3.4. Gelelectrolyte–PVA/LiBOB

Whereasexistingaproblemofliquidelectrolyteleakagewe

pro-posetousepolymer-basedgelelectrolyte.Obvious,thatgelplays

theroleofacontainerwhichholdssolventand,asaresult,possesses

thecharacteristicsofboth–liquidsandsolids.

TheadditionofLiBOBintopolyvinylalcohol(PVA)increasesthe

amorphousnessoftheelectrolyte[46].Ithappensduetothe

inter-actionofLi+cationofsaltwiththeoxygenatomofthehydroxyl

groupinPVA(Fig.5).ThePVAisabletosolvatealargeamount

ofsaltandprovidesareasonablyhighconductivity.Owingtothe

decompositiontemperatureofPVA(230◦C)andLiBOB(>290◦C)

theelectrolytecanbemorestableinabroadtemperaturerange.

The electrical characterization of a supercapacitor with

PVA/LiBOB shows symmetric voltage dependence of

capaci-tance/resistancecurves(Fig.6a)withabiasvoltagechangefrom

−2.0to1.0V. Thisoccursdue totheinteractionbetweenmore

activeions(Li+)and graphenesurface.Thegrapheneelectrodes

are neutralityat −1.2V that confirmed by one minimum on a

capacitance-voltagecurve.Thehigher capacitanceofthedevice

observesat78␮F/cm2.Analysisoftheresistance-voltagecurve(in

modefrom7.5to12k)showsemergingofthesolepeakat12k.

Theelectro-opticaltestdetectsthegradualgrowinginthe

trans-missionat3and0.4%,duringavarietyofthevoltagebetween0to

+2.8Vand−2.8to0V,respectively(Fig.6b).Thereby,the

superca-pacitorisactiveinoppositedirectionsduetoreactivityofbothions

(Li+andBOB)inthedependenceonsuppliedvoltage.The

modu-lationofeachelectrodeisnegligiblewithawavelengthfrom600

to1100nmanditnormalizesat0V.

Fig.4.Thedependenceofthecapacitanceandresistance(a)andnormalizedchangeofthetransmission(b)ofsupercapacitorwithPC/LiBOBelectrolyteforvariousbias voltages.

(5)

Fig.5. Schematicinteractionbetweenlithiumbis(oxalate)borateandpolyvinyl alcoholviainteractionoflithiumcationsofsaltwiththeoxygenatomsofthe hydroxylgroupinPVA.

Thus,weachievedconductionwhichprovidesbyfreemobile

lithium cations and obtained following benefits: the polymer

matrixprovidesmechanicalstabilityandhelpstoavoidtheleakage

anddryingproblemsofelectrolyte;thesolventactsasaconducting

medium;thesupercapacitorwithPVA/LiBOBelectrolyteissuitable

forvisibleandnear-IRfrequencyinvestigationsinoppositeregions.

3.5. Solidelectrolyte–PVDF/ionicliquid

Toavoidchallengesofliquidandgelelectrolytes,during

super-capacitorfabricationanditstesting,weproposesolidelectrolyte–

polyvinylidenefluoride(PVDF)withionicliquid(Fig.7).Itisa

per-fectcombinationforthepurposeofthefabricationsolid-stateand

flexibledevice.

The PVDFmatrix is promising and suitable polymer due to

itshighdielectric constant (11.38 D), low crystallinity and low

glass transition temperature [47–49]. The (VDF)-phase makes

polymerchemicallystableandplastically[50],thestrong

electron-withdrawingfunctionalgroups( C F)–highlyanodicallystable

[25].

As a doping agent, we use ionic liquid

(1-butyl-3-methylimidazolium hexafluorophosphate), which have been

recognized as an ideal candidate to substitute the traditional

Fig.7. Schematicmolecularstructureandprotonhoppingmechanismbetween polyvinylidenefluorideand1-butyl-3-methylimidazoliumhexafluorophosphate.

electrolytes.Itpossessesuniqueproperties:low vaporpressure,

non-flammability,excellentelectrochemical/thermalstabilityand

unlikeaqueouselectrolyteshaswider electrochemicalwindows

(>1V)[51].

Theprofounddependenceofcapacitance/resistanceof

super-capacitorwithPVDF/ionicliquidelectrolytedemonstrateshigher

capacitanceofadeviceat15.5␮F/cm2andtotalresistancevaried

from4.5to13.5k.(Fig.8a).Applyingvoltagefrom−3to3V,we

obtaintwoclearlyneutralitychargedpointsofgrapheneelectrodes

onthecapacitance-voltagecurve(−0.5and0.5V)andtwoadjacent

peaks(13and11k)ontheresistance-voltagecurve.

Thenopticaltransmissionshift(from500to1100nm)appears

inapositiveregionfrom0to2.8V(Fig.8b).Thesearesymmetrically

changesin3.2%thatindicateamodulationoftwoelectrodes;the

transmissionconditionofsupercapacitornormalizedat0V.

Thus,dopingofpolymerwithionicliquidisagoodapproachto

developelectrolyteinthefilmform.Namely,thenonpolarnature

ofthePVDFprovidesstructuralintegrity and,atthesametime,

formshighionicallyconductivechannels,offeringitssuitabilityas

anelectrolyteinsupercapacitors.

4. Conclusions

Insummary,wereportelectro-opticalfeaturesofa

graphene-basedopticalmodulatorwithsupercapacitorstructureusingliquid,

gel,andsolidelectrolytes.Weestablishedthebestcapacitanceat

Fig.6.Thedependenceofthecapacitanceandresistance(a)andnormalizedchangeofthetransmission(b)ofsupercapacitorwithPVA/LiBOBelectrolyteforvariousbias voltages.

(6)

Fig.8.Thedependenceofthecapacitanceandresistance(a)andnormalizedchangeofthetransmission(b)ofsupercapacitorwithPVDF/ionicliquidelectrolyteforvarious biasvoltages.

78␮F/cm2forgelPVA/LiBOBelectrolyteandshowedits

possibil-itytooperateintwodirectionsaswell,duetothesimultaneous

activityofLi+ and[BOB] ions.We demonstratedcapacitance at

15.5␮F/cm2 and increasingof light transmissionin 3times for

solidPVDF/ionicliquidelectrolyte.Wenotedfollowingchallenges:

leakage/dryingunderanairofliquidPC/LiBOBelectrolyte,

impossi-bilitiesofusingofaqueousgelPVA/LiBOBelectrolyteinmicrowave

frequencyinvestigation.Therefore, wewouldliketodistinguish

mostsuitable electrolyte for graphene-based supercapacitors –

solidPVDF/ionicliquidelectrolytewithsatisfactoryelectro-optical

results,chemical/thermalstability,andflexibility.

We anticipate that application of the proposed electrolytes

togetherwithsimplicityandvarietyofthegraphene-baseddevice

geometrywillenableavarietyofadvancedopticaldevices

rang-ingfromplasmonicstooptoelectronics.Graphenesupercapacitor

can be used as a saturable absorber due to graphene

ultra-widebroadbandcapabilityandlowersaturationintensity.Anovel

supercapacitorwithtransparentgrapheneelectrodesfabricatedon

flexiblesubstratecouldapplyaselectricallyreconfigurableflexible

coatingsorsmartwindowsaswell.

Acknowledgement

This work was supportedby the Scientific and

Technologi-calResearchCouncilofTurkey(TUBITAK)grantno.114F052and

113F278.

References

[1]J.EnergyEng.139(2013)72–79.

[2]G.Wang,L.Zhang,J.Zhang,Chem.Soc.Rev.41(2012)797–828. [3]H.Shen,E.Liu,X.Xiang,Z.Huang,Y.Tian,Y.Wu,Z.Wu,H.Xie,Mater.Res.

Bull.47(2012)662–666.

[4]M.D.Stoller,S.Park,Y.Zhu,J.An,R.S.Ruoff,NanoLett.8(2008)3498–3502. [5]L.L.Zhang,R.Zhou,X.S.Zhao,J.Mater.Chem.20(2010)5983–5992. [6]J.Zou,J.Liu,A.S.Karakoti,A.Kumar,D.Joung,Q.Li,S.I.Khondaker,S.Seal,L.

Zhai,ACSNano4(2010)7293–7302.

[7]H.Hu,Z.Zhao,W.Wan,Y.Gogotsi,J.Qiu,Adv.Mater.25(2013)2219–2223. [8]A.Izadi-Najafabadi,S.Yasuda,K.Kobashi,T.Yamada,D.N.Futaba,H.Hatori,

M.Yumura,S.Iijima,K.Hata,Adv.Mater.22(2010)E235–E241. [9]M.Kaempgen,C.K.Chan,J.Ma,Y.Cui,G.Gruner,NanoLett.9(2009)

1872–1876.

[10]G.Yu,L.Hu,M.Vosgueritchian,H.Wang,X.Xie,J.R.McDonough,X.Cui,Y.Cui, Z.Bao,NanoLett.11(2011)2905–2911.

[11]B.J.Lee,S.R.Sivakkumar,J.M.Ko,J.H.Kim,S.M.Jo,D.Y.Kim,J.PowerSources 168(2007)546–552.

[12]Z.Ruifeng,M.Chuizhou,Z.Feng,L.Qunqing,L.Changhong,F.Shoushan,J. Kaili,Nanotechnology21(2010)345701.

[13]W.Tang,L.Liu,S.Tian,L.Li,Y.Yue,Y.Wu,K.Zhu,Chem.Commun.47(2011) 10058–10060.

[14]H.-H.Chang,C.-K.Chang,Y.-C.Tsai,C.-S.Liao,Carbon50(2012)2331–2336.

[15]Y.-Y.Horng,Y.-C.Lu,Y.-K.Hsu,C.-C.Chen,L.-C.Chen,K.-H.Chen,J.Power Sources195(2010)4418–4422.

[16]M.Mastragostino,C.Arbizzani,F.Soavi,J.PowerSources97–98(2001) 812–815.

[17]V.DiNoto,S.Lavina,G.A.Giffin,E.Negro,B.Scrosati,Electrochim.Acta57 (2011)4–13.

[18]B.E.Conway,W.G.Pell,J.SolidStateElectrochem.7(2003)637–644. [19]A.G.Pandolfo,A.F.Hollenkamp,J.PowerSources157(2006)11–27. [20]M.FrankRose,C.Johnson,T.Owens,B.Stephens,J.PowerSources47(1994)

303–312.

[21]W.Xu,C.A.Angell,Electrochem.SolidStateLett.4(2001)E1–E4. [22]M.D.Glasse,R.Idris,R.J.Latham,R.G.Linford,W.S.Schlindwein,SolidState

Ionics147(2002)289–294.

[23]J.Maranas,Solidpolymerelectrolytes,in:V.GarcíaSakai,C.Alba-Simionesco, S.-H.Chen(Eds.),DynamicsofSoftMatter,Springer,US,2012,pp.123–143. [24]A.ManuelStephan,Eur.Polym.J.42(2006)21–42.

[25]J.Y.Song,Y.Y.Wang,C.C.Wan,J.PowerSources77(1999)183–197. [26]G.Feuillade,P.Perche,J.Appl.Electrochem.5(1975)63–69.

[27]S.Ramesh,K.H.Leen,K.Kumutha,A.K.Arof,Spectrochim.ActaA66(2007) 1237–1242.

[28]F.J.BaltáCalleja,A.G.Arche,T.A.Ezquerra,C.S.Cruz,F.Batallán,B.Frick,E.L. Cabarcos,Structureandpropertiesofferroelectriccopolymersof

poly(vinylidenefluoride),in:H.G.Zachmann(Ed.),StructureinPolymerswith SpecialProperties,SpringerBerlinHeidelberg,1993,pp.1–48.

[29]C.Meng,C.Liu,L.Chen,C.Hu,S.Fan,NanoLett.10(2010)4025–4031. [30]C.Meng,C.Liu,S.Fan,Electrochem.Commun.11(2009)186–189. [31]J.J.Yoo,K.Balakrishnan,J.Huang,V.Meunier,B.G.Sumpter,A.Srivastava,M.

Conway,A.L.MohanaReddy,J.Yu,R.Vajtai,P.M.Ajayan,NanoLett.11(2011) 1423–1427.

[32]K.YuJin,C.Haegeun,H.Chi-Hwan,K.Woong,Nanotechnology23(2012) 065401.

[33]X.Li,W.Cai,J.An,S.Kim,J.Nah,D.Yang,R.Piner,A.Velamakanni,I.Jung,E. Tutuc,S.K.Banerjee,L.Colombo,R.S.Ruoff,Science324(2009)1312–1314. [34]E.O.Polat,O.Balci,N.Kakenov,H.B.Uzlu,C.Kocabas,R.Dahiya,Sci.Rep.5

(2015)16744.

[35]B.Jalali,S.Fathpour,J.LightwaveTechnol.24(2006)4600–4615. [36]D.A.B.Miller,Opt.Express20(2012)A293–A308.

[37]S.J.Koester,M.Li,Appl.Phys.Lett.100(2012)171107. [38]M.Liu,X.Yin,X.Zhang,NanoLett.12(2012)1482–1485. [39]E.O.Polat,C.Kocabas,NanoLett.13(2013)5851–5857.

[40]WuXu,C.AustenAngellz,Electrochem.Solid-StateLett.4(2001)E1–E4. [41]S.Wang,W.Qiu,T.Li,B.Yu,H.Zhao,Int.J.Electrochem.Sci.1(2006)250–257. [42]K.Xu,S.Zhang,T.R.Jow,W.Xu,C.A.Angell,Electrochem.SolidStateLett.5

(2002)A26–A29.

[43]L.Yang,M.M.Furczon,A.Xiao,B.L.Lucht,Z.Zhang,D.P.Abraham,J.Power Sources195(2010)1698–1705.

[44]K.Xu,S.Zhang,B.A.Poese,T.R.Jow,Electrochem.SolidStateLett.5(2002) A259–A262.

[45]Y.V.Pleskov,Russ.J.Electrochem.37(2001)871–872.

[46]I.S.Noor,S.R.Majid,A.K.Arof,Electrochim.Acta102(2013)149–160. [47]F.Wu,T.Feng,Y.Bai,C.Wu,L.Ye,Z.Feng,SolidStateIonics180(2009)

677–680.

[48]H.Xie,Z.Tang,Z.Li,Y.He,Y.Liu,H.Wang,J.SolidStateElectrochem.12 (2008)1497–1502.

[49]S.Ramesh,O.P.Ling,Polym.Chem.1(2010)702–707.

[50]M.Ulaganathan,S.Rajendran,J.Appl.Polym.Sci.118(2010)646–651. [51]T.Abdallah,D.Lemordant,B.Claude-Montigny,J.PowerSources201(2012)

Şekil

Fig. 1. SEM image (a) and typical Raman spectra (b) of single layer graphene film coated on Si/SiO 2 substrate.
Fig. 3. Schematic behavior between propylene carbonate and lithium bis (oxalate) borate: lithium cation finds itself surrounded by negatively charged oxygen atoms of propylene carbonate; [BOB] − anions are located in the electrolyte solution, thereby determ
Fig. 7. Schematic molecular structure and proton hopping mechanism between polyvinylidene fluoride and 1-butyl-3-methylimidazolium hexafluorophosphate.
Fig. 8. The dependence of the capacitance and resistance (a) and normalized change of the transmission (b) of supercapacitor with PVDF/ionic liquid electrolyte for various bias voltages.

Referanslar

Benzer Belgeler

Sistemde bağlayıcıların yüksek sıcaklık performans değerlerinin ve tekerlek izi oluşumuna karşı dayanım parametrelerinin belirlenmesi amacıyla dinamik kayma reometresi

In the second stage this index is used as an instrument to estimate aggregate input demandfor capital, labour and energy along with their price and substitution

Traditional quantum confined Stark effect is well known to lead to strong electroabsorption in multiple quantum well (MQW) structures, yielding only red-shift of the absorption

In this work, we examine some model compact sets having no Markov property, but where a linear continuous exten- sion operator exists for the space of Whitney functions given on

Similarly, a biographical information about Bediüzzaman Said Nursi and his views on the issues related to the notion of civil society will be presented, in so far as

The global cultural memory must still take into account the cultural barbarism of the concentration camps of WW2, the ethically disastrous nationally implemented repression

Starting from precursor graphenelike structures we investigated the stability, energet- ics, and electronic structure of zigzag and armchair tubes using the

[r]