• Sonuç bulunamadı

On 2-quasi-umbilical pseudosymmetric hypersurfaces in the Euclidean space

N/A
N/A
Protected

Academic year: 2021

Share "On 2-quasi-umbilical pseudosymmetric hypersurfaces in the Euclidean space"

Copied!
10
0
0

Yükleniyor.... (view fulltext now)

Tam metin

(1)

BULLETIN of the Bull . Malays . Math . Sci . Soc .(2)30(1)(2007), 37endash − f our2 Malaysian Mathematical

Sciences Society http : / / math . usm . my / bullet i n

On 2 - Quasi - Umbilical Pseudosymmetric Hypersurfaces

in

the Euclidean Space

Cihan ¨Ozg ¨ur

Balikesir University , Faculty of Art and Sciences , Department of Mathematics , 10 145 Balikesir , Turkey

cozgur @balikesir . edu . tr

Abstract . In this paper , we investigate 2 quasi umbilical pseudosymmetric hy -persurfaces in the Euclidean space En+1.We find the curvature characterization

of pseudosymmetric hypersurfaces in the Euclidean space En + 1.

2000 Mathematics Subject Classification : 53 C 40 , 53 C 42 , 53 C 25 , 53 B 50 Key words and phrases : Hypersurface , pseudosymmetry type manifolds . 1 . Introduction

Let (M, g) be an n− dimensional , n ≥ 3, connected Riemannian manifold of class

C ∞

. W e denote by ∇, R, C, S and κ the Levi Civita connection , the Riemann -Christoffel curvature tensor , the Weyl conformal curvature tensor , the Ricci tensor and the scalar curvature of (M, g) respectively . The Ricci operator S is defined by g(SX, Y ) = S(X, Y ), where X, Y ∈ χ(M ), χ(M ) being Lie algebra of vector fields on M. We next define endomorphisms X ∧ Y, R(X, Y ) and C(X, Y ) of χ(M ) by

(X ∧ Y )Z = g(Y, Z)X − g(X, Z)Y, (1.1) R(X, Y )Z = ∇X∇YZ − ∇Y∇XZ − ∇[X,Y ]Z, (1.2) C(X, Y )Z = R(X, Y )Z − 1 n − 2(X ∧ SY + SX ∧ Y − κ n − 1X ∧ Y )Z, (1.3) respectively, whereX, Y, Z ∈ χ(M ).

The Riemannian Christoffel curvature tensor R and the Weyl conformal curvature tensor C of (M, g) are defined by

R(X, Y, Z, W ) = g(R(X, Y )Z, W ), (1.4) C(X, Y, Z, W ) = g(C(X, Y )Z, W ), (1.5)

respectively, whereW ∈ χ(M ).

(2)

38 C i − hn−a ¨O

zg ¨u r

For a (0, k)− tensor field T, k ≥ 1, on (M, g) we define the tensors R.T and Q(g, T ) by (R(X, Y ) · T )(X1, ..., Xk) = −T (R(X, Y )X1, X2, ..., Xk) − · · · −T (X1, ..., Xk−1, R(X, Y )Xk), (1.6) Q(g, T )(X1, ..., Xk; X, Y ) = −T ((X ∧ Y )X1, X2, ..., Xk) − · · · −T (X1, ..., Xk−1, (X ∧ Y )Xk), (1.7) respectively .

If the tensors R · R and Q(g, R) are linearly dependent then M is called pseu -dosymmetric . This is equivalent to

R · R = LRQ(g, R) (1.8)

holding on the set UR = {x | Q(g, R) 6= 0 at x}, where LR is some function on UR. If

R · R = 0 then M is called s emisymmetric ( see Deszcz [ 3 ] ) .

If the tensors R · S and Q(g, S) are linearly dependent then M is called Ricci -pseudosymmetric . This is equivalent to

R · S = LSQ(g, S) (1.9)

holding on the set US = {x | S 6= κng at x}, where LS is some function on US. Every

pseudosymmetric manifold is Ricci pseudosymmetric but the converse statement is not true . If R · S = 0 then M is called Ricci - s emisymmetric ( see Deszcz [ 3 ] ) .

If the tensors R · C and Q(g, C) are linearly dependent then M is called Weyl -pseudosymmetric . This is equivalent to

R · C = LCQ(g, C) (1.10)

holding on the set UC = {x | C 6= 0 at x}. Every pseudosymmetric manifold is Weyl

pseudosymmetric but the converse st atement is not true . If R · C = 0 then M is called Weyl - s emisymmetric ( see Deszcz [ 3 ] ) .

The manifold M is a manifold with pseudosymmetric Weyl t ensor if and only if

C · C = LCQ(g, C) (1.11)

holds on the set UC, where LC is some function on UC( see Deszcz , Verstraelen , and

Yaprak , [ 4 ] ) . The tensor C · C is defined in the same way as the tensor R · R. 2 . 2 - quasi umbilical hypersurfaces

Let Mn be an n ≥ 3 dimensional connected hypersurface immersed isometrically in the

Euclidean space En+1. We denote by e∇ and ∇ the Levi - Civita connections

corresponding to En+1 and Mn, respectively . Let ξ be a lo cal unit normal vector field

on Mn

in En+1. We can present the Gauss formula and the Weingarten formula of Mn

in En+1 of the form :

e

∇XY = ∇XY + h(X, Y ) and e∇Xξ = −Aξ(X)+

DXξ, respectively , where X, Y are vector fields tangent to Mn and D is the normal

(3)

For the plane section ei∧ ej of the tangent bundle T Mn spanned by the vectors

n

ei and ej(i 6= j) the scalar curvature of Mn is defined by κ = P K(ei∧ ej) where

i, j = 1

K denotes the sectional curvature of Mn. We denote by shortly K

(4)

On 2 - Quasi - Umbilical Pseudosymmetric Hypersurfaces i − nh − te Euclide a − nSpace 39

Hypersurface Mn with three distinct principal curvatures , their multiplicities are 1 , 1 and n − 2, is said to be 2 - quasi umbilical . So the shape operator of a 2 - quasi - umbilical hypersurface is of the form

Aξ=             a 0 0 0 · · · 0 0 b 0 0 · · · 0 0 0 c 0 · · · 0 0 0 0 c · · · 0 . . . . . . . . . . . . 0 0 0 0 · · · c             . (2.1)

2 - quasi - umbilical hypersurfaces are the extended class of quasi - umbilical hyper - surfaces . It is well - known that a hypersurface Mn which has a principal curvature

with multiplicity ≥ n − 1 is said to be quasi - umbilical . The well - known result of E . Cartan gives us “ A hypersurface Mn, n ≥ 4, isometrically in the Euclidean space

En+1, is conformally flat if and only if it is quasi umbilical

00

. In ¨Ozgu¨r[8], the present author studied conformally flat submanifolds with flat normal connection .

By ( 2 . 1 ) for a 2 - quasi - umbilical hypersurface , one can get easily the following

corollaries :

Corollary 2 . 1 . Let Mn be a 2 - quasi - umbilical hypersurface of

En+1, n ≥ 4, then K12= ab, KK1j 2j ==acbc , , ((jj> >22) ) (2.2) Kij = c2, (i, j > 2).

where i, j > 2. Furthermore , R(ei, ej)ek= 0 if i, j and k are mutually different .

Theorem 2 . 1 . [ 5 ] . Any 2 - quasi - umbilical hypersurface Mn, dimMn≥ 4, immersed

is ometrically in a s emi - Riemannian conformally flat manifold N is a manifold with pseudosymmetric Weyl t ensor .

On the other hand , it is known that in a hypersurface Mn of a Riemannian space of

constant curvature Nn+1(c), n ≥ 4, if Mn is a Ricci - pseudosymmetric manifold with

pseudosymmetric Weyl tensor then it is a pseudosymmetric manifold ( see Deszcz , Verstraelen , and Yaprak [ 4 ] ) . Moreover from Arslan , Deszcz , and Yaprak [ 1 ] , we know that , in a hypersurface Mn of a Riemannian space of constant

curvature

Nn+1(c), n ≥ 4, the Weyl pseudosymmetry and the pseudosymmetry conditions are

equivalent . So using the previous facts and Theorem 2 . 1 one can obtain the following corollary .

Corollary 2 . 2 . In the class of 2 - quasi - umbilical hypersurfaces of th e Euclidean space

(5)

En+1, n ≥ 4, the conditions of th e pseudosymmetry , Ricci pseudosymmetry and Weyl pseudosymmetry are equivalent .

In ¨Ozgu¨r and Arslan [ 9 ] , the present author and K . Arslan studied pseudosym

-metry type hypersurfaces in the Euclidean space satisfying Chen ’ s equality . It is known that , a hypersurface satisfying Chen ’ s equality is a special 2 - quasi - umbilical hypersurface .

(6)

40 C i − hn−a ¨O

zg ¨u r

In this study , our aim is to generalize the study ¨Ozgu¨r and Arslan [ 9 ] and to

find the characterization of 2 quasi umbilical hypersurfaces satisfying pseudosymme -try curvature condition . Since pseudosymmetry , Ricci - pseudosymmetry and Weyl - pseudosymmetry curvature conditions for a 2 - quasi - umbilical hypersurface in the Euclidean space En+1, are equivalent , it is sufficient to investigate only pseudosym

-metry curvature condition .

Firstly we have :

Lemma 2 . 1 . Let Mn be a 2 - quasi - umbilical hypersurface of

En+1, n ≥ 4. Then

(R(e1, e3) · R)(e2, e3)e1= abc[c − a]e2, (2.3)

(R(e2, e3) · R)(e1, e3)e2= abc[c − b]e1. (2.4)

Proof . Using ( 1 . 6 ) we have

(R(e1, e3) · R)(e2, e3)e1

= R(e1, e3)(R(e2, e3)e1) − R(R(e1, e3)e2, e3)e1 (2.5)

−R(e2, R(e1, e3)e3)e1− R(e2, e3)(R(e1, e3)e1)

and

(R(e2, e3) · R)(e1, e3)e2

= R(e2, e3)(R(e1, e3)e2) − R(R(e2, e3)e1, e3)e2 (2.6)

−R(e1, R(e2, e3)e3)e2− R(e1, e3)(R(e2, e3)e2).

Since R(ei, ej)ek = (Aξei∧ Aξej)ek, using ( 2 . 2 ) , one can get

R(e1, e3)e1= −K13e3, R(e1, e3)e3= K13e1

R(e2, e1)e1= K12e2, R(e2, e1)e2= −K12e1 (2.7)

R(e2, e3)e2= −K23e3, R(e2, e3)e3= K23e2.

So substituting ( 2 . 7 ) and ( 2 . 2 ) into ( 2 . 5 ) and ( 2 . 6 ) , respectively we obtain ( 2 . 3 ) and

( 2 . 4 ) . Lemma 2 . 2 . Let M be a 2 - quasi - umbilical hypersurface of En+1, n ≥ 4. Then

Q(g, R)(e2, e3, e1; e1, e3) = b[c − a]e2, (2.8)

Q(g, R)(e1, e3, e2; e2, e3) = a[c − b]e1. (2.9)

Proof . Using the relation ( 1 . 7 ) we obtain

Q(g, R)(e2, e3, e1; e1, e3)

= (e1∧ e3)R(e2, e3)e1− R((e1∧ e3)e2, e3)e1 (2.10)

(7)

and

Q(g, R)(e2, e3, e2; e2, e3)

= (e2∧ e3)R(e2, e3)e2− R((e2∧ e3)e2, e3)e2 (2.11)

(8)

On 2 - Quasi - Umbilical Pseudosymmetric Hypersurfaces i − nh − te Euclide a − nSpace 4 1

So substituting ( 2 . 7 ) and ( 2 . 2 ) into ( 2 . 1 0 ) and ( 2 . 1 1 , respectively we obtain ( 2 . 8 )

and ( 2 . 9 ) .

Using Lemma 2 . 1 and Lemma 2 . 2 we have the following theorem : Theorem 2 . 2 . Let Mn be a 2 - quasi - umbilical hypersurface of

En+1, n ≥ 4. Then

Mn is proper pseudosymmetric if and only if a = b and LR= ac holds on M

n . Proof . Let Mn be a pseudosymmetric hypersurface in En+1. Then by definition one can write

(R(e1, e3) · R)(e2, e3)e1= LRQ(g, R)(e2, e3, e1; e1, e3) (2.12)

and

(R(e2, e3) · R)(e1, e3)e2= LRQ(g, R)(e2, e3, e2; e2, e3). (2.13)

Since Mn is 2 - quasi - umbilical then by Lemma 2 . 1 and Lemma 2 . 2 the equations

( 2 . 1 2 ) and ( 2 . 1 3 ) turn into respectively

b(c − a)(LR− ac) = 0 (2.14)

and

a(c − b)(LR− bc) = 0, (2.15)

respectively . Extracting the equations ( 2 . 1 4 ) and ( 2 . 1 5 ) we get

cLR(b − a) = 0. (2.16)

Since Mn is proper pseudosymmetric , it is not semisymmetric . Then the equation ( 2 . 1 6 ) gives us b = a. So the principal curvatures of Mn must be of the form (a, a, c, ..., c), which gives us

(R(e1, e3) · R)(e2, e3)e1= a2c[c − a]e2, (2.17)

Q(g, R)(e2, e3, e1; e1, e3) = a[c − a]e2, (2.18)

(R(e2, e3) · R)(e1, e3)e2= a2c[c − a]e1, (2.19)

and

Q(g, R)(e1, e3, e2; e2, e3) = a[c − a]e1. (2.20)

So from ( 2 . 1 7 ) – ( 2 . 1 8 ) and ( 2 . 1 9 ) – ( 2 . 20 ) we obtain LR = ac. This

completes the proof of the theorem . References

(9)

[ 1 ] K . Arslan , R . Deszcz and S..Yaprak , On Weyl pseudosymmetric hypersurfaces , Colloq . Math

. 72 ( 2 ) ( 1 997 ) , 353 – 36 1 . [ 2 ] B . Chen , Geometry of Submanifolds and its Applications , Sci . Univ . Tokyo , Tokyo , 1 98 1 . [ 3 ] R . Deszcz , On pseudosymmetric spaces , Bull . Soc . Math . Belg . S e´r . A 44 ( 1 ) ( 1 992 ) , 1 – 34 . [ 4 ] R . Deszcz , L . Verstraelen and S.. Yaprak

, On hypersurfaces with pseudosymmetric Weyl tensor , in Geometry and topology of submanifolds , VIII ( Brussels , 1 995 / Nordfjordeid , 1 995 ) , 1 1 1 – 1 20 , World Sci . Publ . , River Edge , NJ . [ 5 ] R . Deszcz , L . Verstraelen and S..Yaprak , On 2 - quasi - umbilical hypersurfaces in conformally

(10)

4 2 C i − hn−a ¨O

zg ¨u r

[ 6 ] R . Deszcz , L . Verstraelen and S..Yaprak , Hypersurfaces with pseudosymmetric Weyl ten - sor

in conformally flat manifolds , in Geometry and topology of submanifolds , IX ( Valenci - ennes / Lyon / Leuven , 1 997 ) , 108 – 1 1 7 , World Sci . Publ . , River Edge , NJ . [ 7 ] F . Dillen , M . Petrovic and L . Verstraelen , Einstein , conformally flat and semi - symmetric sub - manifolds satisfying Chen ’ s equality , Israel J . Math . 1 0 ( 1 997 ) , 1 63 – 1 69 . [ 8 ] C . ¨Ozgu¨r, Submanifolds satisfying

some curvature conditions imposed on the Weyl tensor , Bull . Austral . Math . Soc . 67 ( 1 ) ( 2003 ) , 95 – 10 1 .

[ 9 ] C . ¨Ozgu¨rand K . Arslan , On some class of hypersurfaces in En+1satisfying Chen ’ s equality ,

Referanslar

Benzer Belgeler

Araştırma sonuçlarına gore okul yöneticilerinin karar verme stillerinin alt boyutları cinsiyet değişkenine incelendiğinde dikkatli, kaçıngan, erteleyici karar

In this study, the relationship between inflation and unemployment rates belon- ging to Turkish Economy between 1990 and 2011 has been tried to analyze with quarterly

1 mm kanat kalınlığı, 3 mm kanat yüksekliği, 2 mm kanatlar arası boşluk ve 0.85 m/s atık gaz hızı şartları altında atık gaz sıcaklığı değişiminin sayısal

In the next six theorems, we obtain the differential equations of a slant helix according to the tangent vector field T , principal normal vector field N and binormal vector field B

Bu bağlamda, öğrencilerinin matematiksel anlamaları ile matematiğe yönelik tutumları arasında yüksek düzeyde pozitif ve anlamlı bir ilişkinin olduğu,

ZSD3 (0-100 sayı doğrusu) ise MÖG risk grubunu birinci sınıflarda diğer gruplardan; NB ve YB’dan ikinci, üçüncü ve dördüncü sınıflarda daha tutarlı bir biçimde

gemileri ziyaret etmekteydi. İzmirle bağlantılı transit ticaret yolu üzerinde yer alan Rodos adasına yelkenli gemiler uğrarken sanayi devriminin ardından adada ticaret giderek

Kullanımdaki Dizin (Current Folder) Penceresi; Matlab’ın herhangi bir anda aktif olarak kullandığı geçerli dizin yolunu değiştirmek, içinde bulunulan klasör içerisinde