# Schrodinger type operators on local generalized Morrey spaces related to certain nonnegative potentials

N/A
N/A
Protected

Share "Schrodinger type operators on local generalized Morrey spaces related to certain nonnegative potentials"

Copied!
20
0
0

Yükleniyor.... (view fulltext now)

Tam metin

(1)

DYNAMICAL SYSTEMS SERIES B

Volume 25, Number 2, February 2020 pp. 671–690

SCHR ¨ODINGER TYPE OPERATORS ON LOCAL GENERALIZED

MORREY SPACES RELATED TO CERTAIN NONNEGATIVE POTENTIALS

Vagif S. Guliyev

S.M. Nikolskii Institute of Mathematics at RUDN University, 117198 Moscow, Russia Department of Mathematics, Dumlupinar University, 43100 Kutahya, Turkey Institute of Mathematics and Mechanics of NAS of Azerbaijan, AZ1141 Baku, Azerbaijan

Ramin V. Guliyev

Department of Mathematics, Dumlupinar University, 43100 Kutahya, Turkey

Mehriban N. Omarova

Institute of Mathematics and Mechanics of NAS of Azerbaijan, AZ1141 Baku, Azerbaijan Baku State University, AZ1141 Baku, Azerbaijan

Maria Alessandra Ragusa∗

Dipartimento di Matematica e Informatica, Universita di Catania, Catania, Italy S.M. Nikolskii Institute of Mathematics at RUDN University, 117198 Moscow, Russia

In honor of the 60-th birthday of Juan J. Nieto

Abstract. We establish the boundedness of some Schr¨odinger type operators on local generalized Morrey spaces related to certain nonnegative potentials belonging to the reverse H¨older class.

1. Introduction and main results. In this paper, we consider the Schr¨odinger differential operator

L = −∆ + V (x) on Rn, n ≥ 3,

where V (x) is a nonnegative potential belonging to the reverse H¨older class RHq

for q ≥ n/2.

A nonnegative locally Lq integrable function V (x) on Rn is said to belong to

RHq, 1 < q ≤ ∞ if there exists C > 0 such that the reverse H¨older inequality

1 |B(x, r)| Z B(x,r) Vq(y)dy !1/q ≤ C |B(x, r)| Z B(x,r) V (y)dy ! (1)

2010 Mathematics Subject Classification. Primary: 42B20, 42B25, 42B35; Secondary: 35J10, 47H50.

Key words and phrases. Fractional integral operator, Schr¨odinger differential operator, frac-tional calculus.

The research of V.S. Guliyev and M. Omarova was partially supported by the grant of 1st Azerbaijan Russia Joint Grant Competition (Grant No. EIF-BGM-4-RFTF-1/2017-21/01/1).

The research of V.S. Guliyev and M.A. Ragusa are partially supported by the Ministry of Education and Science of the Russian Federation (Agreement number N. 02.03.21.0008).

Corresponding author: maragusa@dmi.unict.it (Maria Alessandra Ragusa).

(2)

holds for every x ∈ Rn and 0 < r < ∞, where B(x, r) denotes the ball centered at x with radius r. In particular, if V is a nonnegative polynomial, then V ∈ RH∞.

For x ∈ Rn, the function ρ(x) is defined by (see [25,26])

ρ(x) := 1 mV(x) = sup r>0 ( r : 1 rn−2 Z B(x,r) V (y)dy ≤ 1 ) .

Obviously, 0 < mV(x) < ∞ if V 6= 0. In particular, mV(x) = 1 with V = 1 and

mV(x) ≈ 1 + |x| with V (x) = |x|2.

According to [4], the new BMO space BM Oθ(ρ) with θ ≥ 0 is defined as a set

of all locally integrable functions b such that 1 |B(x, r)| Z B(x,r) |b(y) − bB|dy ≤ C  1 + r ρ(x) θ

for all x ∈ Rn and r > 0, where b

B = |B|1 RBb(y)dy. A norm for b ∈ BM Oθ(ρ),

denoted by [b]θ, is given by the infimum of the constants in the inequalities above.

Clearly, BM O ⊂ BM Oθ(ρ).

For brevity, in the sequel we use the notations Aα,Vp,ϕ(f ; x, r) :=1 + r ρ(x) α r−n/pϕ(x, r)−1kf kLp(B(x,r)) and AW,α,VΦ,ϕ (f ; x, r) :=1 + r ρ(x) α r−n/pϕ(x, r)−1kf kW Lp(B(x,r)).

We now present the definition of generalized Morrey spaces (including weak ver-sion) associated with Schr¨odinger operator, which introduced by first author in [17].

Definition 1.1. Let ϕ(x, r) be a positive measurable function on Rn × (0, ∞),

1 ≤ p < ∞, α ≥ 0, and V ∈ RHq, q > 1. We denote by Mp,ϕα,V = Mp,ϕα,V(Rn)

the generalized Morrey space associated with Schr¨odinger operator, the space of all functions f ∈ Lploc(Rn) with finite quasinorm

kf kMα,V

p,ϕ = sup x∈Rn,r>0

Aα,Vp,ϕ(f ; x, r).

Also W Mα,V

p,ϕ = W Mp,ϕα,V(Rn) we denote the weak generalized Morrey space

associ-ated with Schr¨odinger operator,the space of all functions f ∈ W Lploc(Rn) with

kf kW Mα,V

p,ϕ = sup x∈Rn,r>0

AW,α,Vp,ϕ (f ; x, r) < ∞. Remark 1. (i) When α = 0, and ϕ(x, r) = r(λ−n)/p, Mα,V

p,ϕ (Rn) is the classical

Morrey space Lp,λ(Rn) introduced by Morrey in [22];

(ii) When ϕ(x, r) = r(λ−n)/p, Mα,V

p,ϕ(Rn) is the Morrey space associated with

Schr¨odinger operator Lα,Vp,λ(Rn) studied by Tang and Dong in [34];

(iii) When α = 0, Mα,V

p,ϕ(Rn) is the generalized Morrey space Mp,ϕ(Rn)

intro-duced by Guliyev, Mizuhara and Nakai in [12,21,23].

(iv) The generalized Morrey space associated with Schr¨odinger operator Mα,V p,ϕ (Rn) was introduced by first author in [17].

Morrey spaces Lp,λ(Rn) were originally introduced by Morrey in [22] to study the

(3)

systems. Many classical operators of harmonic analysis were studied, in Morrey-type spaces and similar classes of functions, during the last decades (see e.g. [3] [9], [28], [24], [29], [30], [36]).

Definition 1.2. Let ϕ(x, r) be a positive measurable function on Rn × (0, ∞),

1 ≤ p < ∞, α ≥ 0, and V ∈ RHq, q ≥ 1. For any fixed x0 ∈ Rn we denote by

LMα,V,{x0}

p,ϕ = LMp,ϕα,V,{x0}(Rn) the local generalized Morrey space associated with

Schr¨odinger operator, the space of all functions f ∈ Lloc

p (Rn) with finite norm

kf k LMp,ϕα,V,{x0} = supr>0A α,V p,ϕ(f ; x0, r). Also W LMα,V,{x0} p,ϕ = W LM α,V,{x0}

p,ϕ (Rn) we denote the weak local generalized

Mor-rey space associated with Schr¨odinger operator, the space of all functions f ∈ W Lloc p (Rn) with kf kW LMα,V,{x0} p,ϕ = supr>0A W,α,V p,ϕ (f ; x0, r) < ∞.

The local spaces LMα,V,{x0}

p,ϕ (Rn) and W LM α,V,{x0}

p,ϕ (Rn) are Banach spaces with

respect to the norm

kf kLMα,V,{x0} p,ϕ = supr>0A α,V p,ϕ(f ; x0, r), kf kW LMα,V,{x0} p,ϕ = supr>0A W,α,V p,ϕ (f ; x0, r), respectively.

Remark 2. (i) When α = 0, and ϕ(x, r) = r(λ−n)/p, LMα,V,{x0}

p,ϕ (Rn) is the local

(central) Morrey space LMp,λ{0}(Rn) studied in [2]; (ii) When α = 0, LMα,V,{x0}

p,ϕ (Rn) is the local generalized Morrey space V Mp,ϕ{x0}

(Rn) were introduced by first author in [12], see also [13,15,18] etc.

From [31,37], we know some Schr¨odinger type operators, such as ∇(−∆+V )−1∇ with V ∈ Bn, ∇(−∆ + V )−1/2 with V ∈ Bn, (−∆ + V )−1/2∇ with V ∈ Bn,

(−∆+V )iγ

with γ ∈ R and V ∈ Bn/2, and ∇2(−∆+V )−1where V is a nonnegative

polynomial, are standard Calder´on-Zygmund operators; see [33]. In particular, the kernels K of operators above all satisfy

|K(x, y)| ≤ Ck 1 +|x−y|ρ(x) N

1 |x − y|n

for any N ∈ N. Hence, in the rest of this paper, we always assume that T denotes the above operators.

It is well known that the boundedness of the standard Calder´on-Zygmund oper-ators and their commutoper-ators have been established on the class generalized Morrey spaces (see [14,15,16,21,23,32]). Hence, it will be an interesting question whether we can establish the boundedness of Schr¨odinger type operators on the Morrey spaces related to certain nonnegative potentials (see [17]). The main purpose of this paper is to answer the above question. More precisely, we obtain the following results.

(4)

Theorem 1.3. Let x0 ∈ Rn, V ∈ RHn/2, α ≥ 0, q ≥ n/2, 1 ≤ p < ∞ and

ϕ1, ϕ2∈ Ωα,Vp,loc satisfies the condition

Z ∞ r ess inf t<s<∞ϕ1(x0, s)s n p tnp dt t ≤ c0ϕ2(x0, r), (2)

where c0does not depend on x0and r. Then the operator T is bounded on LM α,V,{x0} p,ϕ1 to LMα,V,{x0}

p,ϕ2 for p > 1 and from LM α,V,{x0}

1,ϕ1 to W LM α,V,{x0} 1,ϕ2 .

Corollary 1. Let V ∈ RHn/2, α ≥ 0, 1 ≤ p < ∞ and ϕ1, ϕ2∈ Ωα,Vp satisfies the

condition Z ∞ r ess inf t<s<∞ϕ1(x, s)s n p tnp dt t ≤ c0ϕ2(x, r), (3)

where c0does not depend on x and r. Then the operator T is bounded on Mp,ϕα,V1 to Mα,V

p,ϕ2 for p > 1 and from M α,V

1,ϕ1 to W M α,V 1,ϕ2.

Theorem 1.4. Let x0 ∈ Rn, V ∈ RHn/2, α ≥ 0, 1 < p < ∞ and ϕ1, ϕ2 ∈ Ω α,V p,loc

satisfies the condition Z ∞ r  1 + lnt r ess inft<s<∞ϕ1(x0, s)s n p tnp dt t ≤ c0ϕ2(x0, r), (4) where c0 does not depend on x0 and r. If b ∈ BM Oθ(ρ), then the operator [b, T ]

is bounded from LMα,V,{x0} p,ϕ1 to LM α,V,{x0} p,ϕ2 and from LM α,V,{x0} Φ,ϕ1 to W LM α,V,{x0} 1,ϕ2 , where Φ(t) = t ln(e+t), kf k

LMΦ,ϕα,V,{x0} = kΦ(|f |)kLM1,ϕα,V,{x0}, and C does not depend

on f .

Corollary 2. Let V ∈ RHn/2, α ≥ 0, 1 < p < ∞ and ϕ1, ϕ2∈ Ωα,Vp satisfies the

condition Z ∞ r  1 + lnt r ess inft<s<∞ϕ1(x, s)s n p tnp dt t ≤ c0ϕ2(x, r), (5)

where c0 does not depend on x and r. If b ∈ BM Oθ(ρ), then the operator [b, T ]

is bounded from Mp,ϕα,V1 to Mp,ϕα,V2 and from MΦ,ϕα,V

1 to W M α,V

1,ϕ2, where kf kMΦ,ϕα,V =

kΦ(|f |)kMα,V 1,ϕ

, and C does not depend on f .

Remark 3. Note that, Theorems1.3 and1.4 in the case of V ≡ 0 was proved in [15, Theorems 4 and 6].

Definition 1.5. Let L = −4 + V with V ∈ RHn/2. The fractional integral

associated with L is defined by

IβLf (x) = L−β/2f (x) = Z ∞

0

e−tL(f )(x) tβ/2−1dt for 0 < β < n. Let b ∈ BM Oθ(ρ). The commutator of IβL is defined by

[b, IβL]f (x) = b(x)IβLf (x) − IβL(bf )(x).

In this paper, we consider the boundedness of the fractional integral operator IL β

on the generalized Morrey spaces Mp,ϕα,V(Rn). When b belongs to the new BM O

space BM Oθ(ρ), we also show that [b, IβL] is bounded on M α,V

p,ϕ (Rn) to Mq,ϕα,V(Rn).

(5)

Theorem 1.6. Let x0 ∈ Rn, V ∈ RHn/2, α ≥ 0, 1 < p < n/β, 1/q = 1/p − β/n

and ϕ1∈ Ωα,Vp,loc, ϕ2∈ Ωα,Vq,loc satisfies the condition

Z ∞ r ess inf t<s<∞ϕ1(x0, s)s n p tnq dt t ≤ c0ϕ2(x0, r), (6)

where c0 does not depend on x0 and r. Then the operator IβL is bounded on

LMα,V,{x0}

p,ϕ1 to LM

α,V,{x0}

q,ϕ2 for p > 1 and from LM α,V,{x0} 1,ϕ1 to W LM α,V,{x0} n n−β,ϕ2 . Corollary 3. Let V ∈ RHn/2, α ≥ 0, 1 < p < n/β, 1/q = 1/p − β/n and

ϕ1∈ Ωα,Vp , ϕ2∈ Ωα,Vq satisfies the condition

Z ∞ r ess inf t<s<∞ϕ1(x, s)s n p tnq dt t ≤ c0ϕ2(x, r), (7)

where c0 does not depend on x and r. Then the operator IβL is bounded on M α,V p,ϕ1 to Mq,ϕα,V2 for p > 1 and from M

α,V 1,ϕ1 to W M α,V n n−β,ϕ2. Theorem 1.7. Let x0 ∈ Rn, V ∈ RHn/2, α ≥ 0, 1 < p < n/β, 1/q = 1/p − β/n and ϕ1∈ Ω α,V p,loc, ϕ2∈ Ω α,V

q,loc satisfies the condition

Z ∞ r  1 + lnt r ess inft<s<∞ϕ1(x0, s)s n p tnq dt t ≤ c0ϕ2(x0, r), (8) where c0 does not depend on x0 and r. If b ∈ BM Oθ(ρ), then the operator [b, IβL]

is bounded from LMα,V,{x0} p,ϕ1 to LM α,V,{x0} q,ϕ2 and from LM α,V,{x0} Ψ,ϕ1 to W LM α,V,{x0} n n−β,ϕ2 , where Ψ(t) = [t ln(e + tβ/n)]n/(n−β), and C does not depend on f .

Remark 4. Note that, Theorems1.6 and1.7 in the case of V ≡ 0 was proved in [16, Theorems 3.6 and 4.5].

Corollary 4. Let V ∈ RHn/2, α ≥ 0, 1 < p < n/β, 1/q = 1/p − β/n and

ϕ1∈ Ωα,Vp , ϕ2∈ Ωα,Vq satisfies the condition

Z ∞ r  1 + lnt r ess inft<s<∞ϕ1(x, s)s n p tnq dt t ≤ c0ϕ2(x, r), (9)

where c0 does not depend on x and r. If b ∈ BM Oθ(ρ), then the operator [b, IβL] is

bounded from Mp,ϕα,V1 to M α,V q,ϕ2 and from M α,V Ψ,ϕ1 to W M α,V n n−β,ϕ2.

Remark 5. Note that, Corollaries 1, 2, 3 and 4 in the case of ϕ(x, r) = r(λ−n)/p

was proved in [34, Theorems 1.1, 1.2, 1.3 and 1.4].

In this paper, we shall use the symbol A . B to indicate that there exists a universal positive constant C, independent of all important parameters, such that A ≤ CB. Moreover, A ≈ B means that A . B and B . A.

2. Some preliminaries. We would like to recall the important properties con-cerning the critical function.

(6)

Lemma 2.1. [31] Let V ∈ RHn/2. For the associated function ρ there exist C and k0≥ 1 such that C−1ρ(x)1 +|x − y| ρ(x) −k0 ≤ ρ(y) ≤ Cρ(x)1 +|x − y| ρ(x) 1+k0k0 (10) for all x, y ∈ Rn.

Lemma 2.2. [1] Suppose x ∈ B(x0, r). Then for k ∈ N we have

1  1 + ρ(x)2kr N . 1  1 +ρ(x2kr 0) N/(k0+1).

We give some inequalities about the new BMO space BM Oθ(ρ).

Lemma 2.3. [4] Let 1 ≤ s < ∞. If b ∈ BM Oθ(ρ), then

 1 |B| Z B |b(y) − bB|sdy 1/s ≤ [b]θ  1 + r ρ(x) θ0

for all B = B(x, r), with x ∈ Rn and r > 0, where θ0 = (k0+ 1)θ and k0 is the

constant appearing in (10).

Lemma 2.4. [4] Let 1 ≤ s < ∞, b ∈ BM Oθ(ρ), and B = B(x, r). Then

 1 |2kB| Z 2kB |b(y) − bB|sdy 1/s ≤ [b]θk  1 + 2 kr ρ(x) θ0 for all k ∈ N, with θ0 as in Lemma2.3.

Let Kβ be the kernel of IβL. The following result give the estimate on the kernel

Kβ(x, y).

Lemma 2.5. [5] If V ∈ RHn/2, then for every N , there exists a constant C such

that |Kβ(x, y)| ≤ C  1 +|x−y|ρ(x)  N 1 |x − y|n−β. (11)

Finally, we recall a relationship between essential supremum and essential infi-mum.

Lemma 2.6. [35] Let f be a real-valued nonnegative function and measurable on E. Then  ess inf x∈E f (x) −1 = ess sup x∈E 1 f (x).

It is natural, first of all, to find conditions ensuring that the spaces LMα,V,{x0} p,ϕ

and Mα,V

p,ϕ are nontrivial, that is consist not only of functions equivalent to 0 on Rn.

Lemma 2.7. Let x0∈ Rn, ϕ(x, r) be a positive measurable function on Rn×(0, ∞),

1 ≤ p < ∞, α ≥ 0, and V ∈ RHq, q ≥ 1. If sup t<r<∞  1 + r ρ(x0) α r− n p ϕ(x0, r) = ∞ for some t > 0, (12) then LMα,V,{x0}

p,ϕ (Rn) = Θ, where Θ is the set of all functions equivalent to 0 on

(7)

Proof. Let (13) be satisfied and f be not equivalent to zero. Then kf kL p(B(x0,t)) > 0, hence kf kLMα,V,{x0} p,ϕ ≥ supt<r<∞  1 + r ρ(x0) α ϕ(x0, r)−1r− n pkf kL p(B(x0,r)) ≥ kf kLp(B(x0,t)) sup t<r<∞  1 + r ρ(x0) α ϕ(x0, r)−1r− n p. Therefore kf kLMα,V,{x0} p,ϕ = ∞.

Lemma 2.8. [1] Let ϕ(x, r) be a positive measurable function on Rn × (0, ∞),

1 ≤ p < ∞, α ≥ 0, and V ∈ RHq, q ≥ 1. (i) If sup t<r<∞  1 + r ρ(x) α r− n p

ϕ(x, r) = ∞ for some t > 0 and for all x ∈ R

n, (13) then Mα,V p,ϕ(Rn) = Θ. (ii) If sup 0<r<τ  1 + r ρ(x) α

ϕ(x, r)−1 = ∞ for some τ > 0 and for all x ∈ Rn, (14) then Mα,V

p,ϕ(Rn) = Θ.

Remark 6. We denote by Ωα,Vp,loc the sets of all positive measurable functions ϕ on Rn× (0, ∞) such that for all t > 0,

sup x∈Rn  1 + r ρ(x) α r− n p ϕ(x, r) L ∞(t,∞) < ∞. Moreover, we denote by Ωα,V

p the sets of all positive measurable functions ϕ on

Rn× (0, ∞) such that for all t > 0,

sup x∈Rn  1 + r ρ(x) α r−np ϕ(x, r) L∞(t,∞) < ∞, and sup x∈Rn  1 + r ρ(x) α ϕ(x, r)−1 L∞(0,t) < ∞.

For the non-triviality of the spaces LMα,V,{x0}

p,ϕ (Rn) and Mp,ϕα,V(R

n) we always

assume that ϕ ∈ Ωα,Vp,locand ϕ ∈ Ωα,V

p , respectively.

3. Proof of Theorem1.3. To prove Theorem1.3, we first investigate the follow-ing local estimate.

Theorem 3.1. Let 1 < p < ∞, then the inequality kT f kLp(B(x0,r)). r n p Z ∞ 2r kf kLp(B(x0,t)) tnp dt t (15)

holds for any ball B(x0, r) and for all f ∈ L p loc(R

n).

Moreover, for p = 1 the inequality kT f kW L1(B(x0,r)). r nZ ∞ 2r kf kL1(B(x0,t)) tn dt t (16)

holds for any ball B(x0, r) and for all f ∈ L1loc(R n).

(8)

Proof. For arbitrary x0∈ Rn, set B = B(x0, r) and λB = B(x0, λr) for any λ > 0.

We write f as f = f1+ f2, where f1(y) = f (y)χB(x0,2r)(y), and χB(x0,2r) denotes the

characteristic function of B(x0, 2r). Then

kT f kLp(B(x0,r))≤ kT f1kLp(B(x0,r))+ kT f2kLp(B(x0,r)).

Since f1∈ Lp(Rn) and from the boundedness of T on Lp(Rn), 1 < p < ∞ (see [31])

it follows that kT f1kLp(B(x0,r)). kf kLp(B(x0,2r)). r n pkf k Lp(B(x0,2r)) Z ∞ 2r dt tnp+1 . rnp Z ∞ 2r kf kLp(B(x0,t)) tnp dt t . (17)

To estimate kT f2kLp(B(x0,2r)) obverse that x ∈ B, y ∈ (2B)

c implies 1

2|x0− y| ≤

|x − y| ≤ 3

2|x0− y|. Then by Lemma2.6for all x ∈ B(x0, r) we have

|T f2(x)| ≤ Z (2B)c |K(x, y)f (y)|dy . Z (2B)c 1 1 + |x−y|ρ(x)N |f (y)| |x − y|ndy . Z (2B)c 1 1 + |x0−y| ρ(x) N |f (y)| |x0− y|n dy.

By H¨older’s inequality and Lemma2.3we get |T f2(x)| . 1 1 +ρ(x)2r N Z (2B)c |f (y)| |x0− y|n dy . 1 1 +ρ(x)2r N ∞ X k=1 (2k+1r)−n Z 2k+1B |f (y)|dy . 1 1 +ρ(x)2r N ∞ X k=1 kf kLp(2k+1B)(2 k+1r)−1−n p Z 2k+1r 2kr dt . 1 1 +ρ(x2r 0) N/(k0+1) ∞ X k=1 Z 2k+1r 2kr kf kLp(B(x0,t)) tnp dt t . 1 1 +ρ(x2r 0) N/(k0+1) Z ∞ 2r kf kLp(B(x0,t)) tnp dt t . Then sup x∈B(x0,r) |T f2(x)| . 1 1 +ρ(x2r 0) N/(k0+1) Z ∞ 2r kf kLp(B(x0,t)) tnp dt t . (18) Taking N ≥ k0+ 1, then kT f2kLp(B(x0,r)). r n p Z ∞ 2r kf kLp(B(x0,t)) tnp dt t (19) holds for 1 ≤ p < ∞.

(9)

Let p = 1. From the weak (1, 1) boundedness of T and (17) it follows that: kT f1kW L1(B(x0,r)). kT f1kW L1(Rn). kf1kL1(Rn) . kf kL1(B(x0,2r)). r nkf k L1(B(x0,2r)) Z ∞ 2r dt tn+1 . rn Z ∞ 2r kf kL1(B(x0,t)) tn dt t . (20)

Then by (20) and (19) we get the inequality (16). This completes the proof of Theorem3.1. Proof of Theorem 1.3. From Lemma2.6, we have

1 ess inf t<s<∞ϕ1(x0, s)s n p = ess sup t<s<∞ 1 ϕ1(x0, s)s n p .

Note the fact that kf kLp(B(x0,t)) is a nondecresing function of t, and LM α,V,{x0} p,ϕ1 , then  1 + t ρ(x0) α kf kLp(B(x0,t)) ess inf t<s<∞ϕ1(x0, s)s n p . ess supt<s<∞  1 + t ρ(x0) α kf kLp(B(x0,t)) ϕ1(x0, s)s n p . sup 0<s<∞  1 + s ρ(x0) α kf kLp(B(x0,s)) ϕ1(x0, s)s n p . kf kLMp,ϕ1α,V,{x0}. (21)

Since α ≥ 0, and (ϕ1, ϕ2) satisfies the condition (7), then

Z ∞ 2r kf kLp(B(x0,t)) tnp dt t = Z ∞ 2r  1 +ρ(xt 0) α kf kLp(B(x0,t)) ess inf t<s<∞ϕ1(x0, s)s n p ess inf t<s<∞ϕ1(x0, s)s n p  1 + ρ(xt 0) α tnp dt t . kf kLMp,ϕ1α,V,{x0} Z ∞ r ess inf t<s<∞ϕ1(x0, s)s n p  1 +ρ(xt 0) α tnp dt t . kf kLMp,ϕ1α,V,{x0}  1 + r ρ(x0) −αZ ∞ r ess inf t<s<∞ϕ1(x0, s)s n p tnp dt t . kf kLMα,V,{x0} p,ϕ1  1 + r ρ(x0) −α ϕ2(x0, r). (22)

Then by Theorem5.1we get kT f kLMα,V,{x0} p,ϕ2 . sup r>0  1 + r ρ(x0) α ϕ2(x0, r)−1r−n/pkT f kLp(B(x0,r)) . sup r>0  1 + r ρ(x0) α ϕ2(x0, r)−1 Z ∞ 2r kf kLp(B(x0,t)) tnp dt t . kf kLMp,ϕ1α,V,{x0}.

(10)

4. Proof of Theorem1.4. Similar to the proof of Theorem3, it suffices to prove the following result.

Theorem 4.1. Let V ∈ RHn/2, b ∈ BM Oθ(ρ). If 1 < p < ∞, then the inequality

k[b, T ]f kLp(B(x0,r)). [b]θr n p Z ∞ 2r  1 + lnt r kf kL p(B(x0,t)) tnp dt t (23)

holds for any ball B(x0, r) and for all f ∈ L p loc(R

n).

Moreover, the inequality

k[b, T ]f kW L1(B(x0,r)). [b]θr n Z ∞ 2r  1 + lnt r kf kL Φ(B(x0,t)) tn dt t (24)

holds for any ball B(x0, r) and for all f ∈ L1loc(Rn), where Φ(t) = t ln(e + t).

Proof. We write f as f = f1+ f2, where f1(y) = f (y)χB(x0,2r)(y). Then

k[b, T ]f kLp(B(x0,r))≤ k[b, T ]f1kLp(B(x0,r))+ k[b, T ]f2kLp(B(x0,r)). By the boundedness of [b, T ] on Lp(Rn) (see [31]) and (17) we get

k[b, T ]f1kLp(B(x0,r)). [b]θkf kLp(B(x0,2r)) . [b]θr n p Z ∞ 2r kf kLp(B(x0,t)) tnp dt t . [b]θr n p Z ∞ 2r  1 + ln t r kf kL p(B(x0,t)) tnp dt t . (25)

We now turn to deal with the term k[b, T ]f2kLp(B(x0,r)). For any given x ∈ B(x0, 2r) we have [b, T ]f2(x) ≤ Z (2B)c

|K(x, y)| |b(x) − b(y)| |f (y)|dy ≤ |b(x) − b2B| T f2(x) + T ((b − b2B)f2)(x) . Then by (18), Lemma2.3, and taking N ≥ (k0+ 1)θ we get

k(b(x) − b2B)T f2kLp(B(x0,r)). [b]θr n p  1 + 2r ρ(x0) θ−N/(k0+1)Z ∞ 2r kf kLp(B(x0,t)) tnp dt t . [b]θr n p Z ∞ 2r  1 + lnt r kf kL p(B(x0,t)) tnp dt t . (26)

Finally, let us estimate kT ((b − b2B)f2)kLp(B(x0,r)). By (11), Lemma2.2 and (18) we have T ((b − b2B)f2)(x) . Z (2B)c 1  1 + |x−y|ρ(x)  N |b(y) − b2B||f (y)| |x0− y|n dy . ∞ X k=1 1 (2kr)n1 + 2kr ρ(x) N Z 2k+1B |b(y) − b2B||f (y)|dy . ∞ X k=1 1 (2kr)n1 + 2kr ρ(x0) N/(k0+1) Z 2k+1B |b(y) − b2B||f (y)|dy.

(11)

Note that Z 2k+1B |b(y) − b2B||f (y)|dy . Z 2k+1B |b(y) − b2B|p 0 dy 1/p0 kf kLp(B(x0,2k+1r)) . [b]θk  1 + 2 kr ρ(x0) θ0 (2kr)p0nkf k Lp(B(x0,2k+1r)). Then sup x∈B(x0,r) T ((b − bB)f2)(x) . [b]θ ∞ X k=1 k  1 + ρ(x2kr 0) N/(k0+1)−θ0(2 kr)−n pkf k Lp(B(x0,2k+1r)) . [b]θ ∞ X k=1 k(2kr)−npkf k Lp(B(x0,2k+1r)). [b]θ ∞ X k=1 k Z 2k+1r 2kr kf kLp(B(x0,t)) tnp dt t . Since 2kr ≤ t ≤ 2k+1r, then k ≈ lnrt. Thus

sup x∈B(x0,r) T ((b − bB)f2)(x) . [b]θ ∞ X k=1 k Z 2k+1r 2kr kf kLp(B(x0,t)) tnp dt t . [b]θ ∞ X k=1 Z 2k+1r 2kr lnt r kf kLp(B(x0,t)) tnp dt t . [b]θ Z ∞ 2r  1 + lnt r kf kL p(B(x0,t)) tnp dt t . Then kT ((b − b2B)f2)kLp(B(x0,r)). [b]θr n p Z ∞ 2r  1 + lnt r kf kLp(B(x0,t)) tnp dt t . (27)

Combining (25), (26) and (27), the proof of Theorem4.1in the case of p > 1 is completed.

To deal with this result in the case p = 1, we split f as above by f = f1+ f2,

which yields

k[b, T ]f kW L1(B)≤ k[b, T ]f1kW L1(B)+ k[b, T ]f2kW L1(B).

From the boundedness of [b, T ] from LΦ(Rn)to W L1(Rn) ( see [27]) it follows that: k[b, T ]f1kW L1(B)≤ k[b, T ]f1kW L1

. kbk∗kf1kLΦ = kbk∗kf kLΦ(2B).

For the last term k[b, T ]f2kW L1(B), by homogeneity it is enough to assume λ = 1 and hence, we only need to prove that

x ∈ B : [b, T ]f2(x) > 1 . |B| Z ∞ 2r kf kLΦ(B(x0,t))|B(x0, t)| −1dt t for all B = B(x0, r). In fact, by [27, Lemma 1.5], we get

{x ∈ B : [b, T ]f2(x) > 1} ≤ sup t>0 1 Φ(1 t) {x ∈ R n: [b, T ]f2(x) > t} = sup t>0 1 Φ(1 t) {x ∈ B : M (Φf2)(x) > t}

(12)

where Φ(t) = t ln(e + t). We use the Fefferman-Stein maximal inequality Z {x∈Rn:M f (x)>t} φ(t)dx ≤ C t Z Rn |f (x)|M φ(x)dx, for any functions f and φ ≥ 0. This yields

x ∈ B : M (Φf2)(x) > t . 1 t Z  x∈Rn:Φf2(x)>t χB(x)dx . 1t Z Rn Φf2(x)M χB(x)dx. Then x ∈ B : [b, T ]f2(x) > 1 . sup t>0 1 Φ(1 t) x ∈ B : M (Φf2)(x) > t . sup t>0 1 tΦ(1t) Z B Φf (x)M χB(x)dx. Theorem4.1is completed.

Proof of Theorem 1.4. Since f ∈ LMα,V,{x0}

p,ϕ1 and (ϕ1, ϕ2) satisfies the condition (4), by (33) we have Z ∞ 2r  1 + lnt r kf kL p(B(x0,t)) tnp dt t = Z ∞ 2r  1 + ρ(xt 0) α kf kLp(B(x0,t)) ess inf t<s<∞ϕ1(x0, s)s n p  1 + lnt r ess inft<s<∞ϕ1(x0, s)s n p  1 +ρ(xt 0) α tnp dt t . kf kLMα,V,{x0} p,ϕ1 Z ∞ 2r  1 + lnt r ess inft<s<∞ϕ1(x0, s)s n p  1 + ρ(xt 0) α tnp dt t . kf kLMα,V,{x0} p,ϕ1  1 + r ρ(x0) −αZ ∞ r  1 + lnt r ess inft<s<∞ϕ1(x0, s)s n p tnp dt t . kf kLMα,V,{x0} p,ϕ1  1 + r ρ(x0) −α ϕ2(x0, r). (28)

Then from Theorem4.1 we get k[b, T ]f kLMα,V,{x0} p,ϕ2 . [b]θsup r>0  1 + r ρ(x0) α ϕ2(x0, r)−1 Z ∞ 2r  1 + lnt r kf kLp(B(x0,t)) tnp dt t . [b]θkf kLMα,V,{x0} p,ϕ1 .

5. Proof of Theorem1.6. We first prove the following conclusions

Theorem 5.1. Let V ∈ RHn/2. If 1 < p < n/β, 1/q = 1/p − β/n then the

inequality kIL β(f )kLq(B(x0,r)). r n q Z ∞ 2r kf kLp(B(x0,t)) tnq dt t

(13)

holds for any ball B(x0, r) and for all f ∈ Lploc(R n).

Moreover, for p = 1 the inequality kIL β(f )kW L n n−β(B(x0,r)). r n−β Z ∞ 2r kf kL1(B(x0,t)) tn−β dt t holds for any ball B(x0, r) and for all f ∈ L1loc(Rn).

Proof. For arbitrary x0∈ Rn, set B = B(x0, r) and λB = B(x0, λr) for any λ > 0.

We write f as f = f1+ f2, where f1(y) = f (y)χB(x0,2r)(y), and χB(x0,2r) denotes the

characteristic function of B(x0, 2r). Then

kIβL(f )kLq(B(x0,r))≤ kI L

βf1kLq(B(x0,r))+ kI L

βf2kLq(B(x0,r)).

Since f1 ∈ Lp(Rn) and from the boundedness of IβL from Lp(Rn) to Lq(Rn) (see

[33]) it follows that kIL βf1kLq(B(x0,r)). kf kLp(B(x0,2r)). r n qkf k Lp(B(x0,2r)) Z ∞ 2r dt tnq+1 . rnq Z ∞ 2r kf kLp(B(x0,t)) tnq dt t . (29) To estimate kIL βf2kLp(B(x0,r)), obverse that x ∈ B, y ∈ (2B) c implies |x − y| ≈

|x0− y|. Then by (11) we have

sup x∈B |IL βf2(x)| ≤ Z (2B)c |Kβ(x, y)f (y)|dy . Z (2B)c |f (y)| |x0− y|n−βdy . ∞ X k=1 (2k+1r)−n+β Z 2k+1B |f (y)|dy. By H¨older’s inequality we get

sup x∈B |IβLf2(x)| . ∞ X k=1 kf kLp(2k+1B)(2 k+1 r)−1−np+β Z 2k+1r 2kr dt . ∞ X k=1 Z 2k+1r 2kr kf kLp(B(x0,t)) tnq dt t . Z ∞ 2r kf kLp(B(x0,t)) tnq dt t . (30) Then kIL βf2kLq(B(x0,r)). r n q Z ∞ 2r kf kLp(B(x0,t)) tnq dt t (31)

holds for 1 ≤ p < n/β. Therefore, by (29) and (31) we get kIL β(f )kLq(B(x0,r)). r n q Z ∞ 2r kf kLp(B(x0,t)) tnq dt t (32) holds for 1 ≤ p < n/β.

When p = 1, by the boundedness of IL

β from L1(Rn) to W L n n−β(R n), we get kIL βf1kW L n n−β(B(x0,r)). kf kL1(B(x0,2r)). r n−β Z ∞ 2r kf kL1(B(x0,t)) tn−β dt t . By (31) we have kIL βf2kW L n n−β(B(x0,r)) ≤ kIL βf2kL n n−β(B(x0,2r)). r n−β Z ∞ 2r kf kL1(B(x0,t)) tn−β dt t .

(14)

Then kIL β(f )kW L n n−β(B(x0,r)). r n−βZ ∞ 2r kf kL1(B(x0,t)) tn−β dt t .

Proof of Theorem 3. Note the fact that kf kLp(B(x0,t)) is a nondecresing function of t, and f ∈ LMα,V,{x0} p,ϕ1 , then  1 +ρ(xt 0) α kf kLp(B(x0,t)) ess inf t<s<∞ϕ1(x0, s)s n p . ess supt<s<∞  1 + ρ(xt 0) α kf kLp(B(x0,t)) ϕ1(x0, s)s n p . sup 0<s<∞  1 + ρ(xs 0) α kf kLp(B(x0,s)) ϕ1(x0, s)s n p . kf kLMp,ϕ1α,V,{x0} . Since α ≥ 0, and (ϕ1, ϕ2) satisfies the condition (6), then

Z ∞ 2r kf kLp(B(x0,t)) tnq dt t = Z ∞ 2r  1 +ρ(xt 0) α kf kLp(B(x0,t)) ess inf t<s<∞ϕ1(x0, s)s n p ess inf t<s<∞ϕ1(x0, s)s n p  1 + ρ(xt 0) α tnq dt t . kf kLMα,V,{x0} p,ϕ1 Z ∞ 2r ess inf t<s<∞ϕ1(x0, s)s n p  1 +ρ(xt 0) α tnq dt t . kf kLMα,V,{x0} p,ϕ1  1 + r ρ(x0) −αZ ∞ r ess inf t<s<∞ϕ1(x0, s)s n p tnq dt t . kf kLMα,V,{x0} p,ϕ1  1 + r ρ(x0) −α ϕ2(x0, r). (33)

Then by Theorem5.1we get kIL β(f )kLMα,V,{x0} q,ϕ2 . supr>0  1 + r ρ(x0) α ϕ2(x0, r)−1 Z ∞ 2r kf kLp(B(x0,t)) tnq dt t . kf kLMα,V,{x0} p,ϕ1 .

Let q = n−βn , similar to the estimates of (33) we have Z ∞ 2r kf kL1(B(x0,t)) tn−β dt t . kf kLM1,ϕ1α,V,{x0}  1 + r ρ(x0) −α ϕ2(x0, r).

Thus by Theorem5.1we get kIL β(f )kW LMα,V,{x0} n n−β,ϕ2 . sup r>0  1 + r ρ(x0) α ϕ2(x0, r)−1 Z ∞ 2r kf kL1(B(x0,t)) tn−β dt t . kf kLMα,V,{x0} 1,ϕ1 .

(15)

6. Proof of Theorem 4. As the proof of Theorem 3, it suffices to prove the following result.

Theorem 6.1. Let V ∈ RHn/2, b ∈ BM Oθ(ρ). If 1 < p < n/β, 1/q = 1/p − β/n

then the inequality k[b, IL β(f )]kLq(B(x0,r)). [b]θr n q Z ∞ 2r  1 + ln t r kf kL p(B(x0,t)) tnq dt t (34)

holds for any f ∈ Lploc(Rn).

Moreover, the inequality k[b, IL β(f )kW L n n−β(B(x0,r)) . [b]θr n−β Z ∞ 2r  1 + ln t r kf kL Ψ(B(x0,t)) tn−β dt t (35)

holds for any ball B(x0, r) and for all f ∈ L1loc(R

n), where

Ψ(t) = [t ln(e+tβ/n)]n/n−β. Proof. We write f as f = f1+ f2, where f1(y) = f (y)χB(x0,2r)(y). Then

k[b, IL β](f )kLq(B(x0,r))≤ k[b, I L β]f1kLq(B(x0,r))+ k[b, I L β]f2kLq(B(x0,r)). By the boundedness of [b, IL

β] on Lp(Rn) to Lq(Rn) (see [34]) and (29) we get

k[b, IL β]f1kLq(B(x0,r)). [b]θkf kLp(B(x0,2r)) . [b]θr n q Z ∞ 2r kf kLp(B(x0,t)) tnq dt t . [b]θr n q Z ∞ 2r  1 + ln t r kf kL p(B(x0,t)) tnq dt t . (36)

We now turn to deal with the term k[b, IL

β]f2kLq(B(x0,r)). For any given x ∈ B(x0, r) we have

|[b, IL

β]f2(x)| ≤ |b(x) − b2B| |IβLf2(x)| + |IβL((b − b2B)f2)(x)|.

Then by (30), Lemma2.3, and taking N ≥ (k0+ 1)θ we get

k(b(x) − b2B)IβLf2kLq(B(x0,r)) . [b]θr n q  1 + 2r ρ(x0) θ−N/(k0+1)Z ∞ 2r kf kLp(B(x0,t)) tnq dt t . [b]θr n q Z ∞ 2r  1 + lnt r kf kL p(B(x0,t)) tnq dt t . (37)

Finally, let us estimate kIL

β((b − b2B)f2)kLq(B(x0,r)). By (11), Lemma 2.2 and (30) we have sup x∈β |IL β((b − b2B)f2)(x)| . Z (2B)c 1  1 + |x−y|ρ(x)  N |b(y) − b2B||f (y)| |x0− y|n−β dy

(16)

. ∞ X k=1 1 (2kr)n−β1 + 2kr ρ(x) N Z 2k+1B |b(y) − b2B||f (y)|dy . ∞ X k=1 1 (2kr)n−β1 + 2kr ρ(x0) N/(k0+1) Z 2k+1B |b(y) − b2B||f (y)|dy. Note that Z 2k+1B |b(y) − b2B||f (y)|dy . Z 2k+1B |b(y) − b2B|p 01/p0 kf kLp(B(x0,2k+1r)) . [b]θk  1 + 2 kr ρ(x0) θ0 (2kr)p0nkf k Lp(B(x0,2k+1r)). Then sup x∈B |IL β((b − b2B)f2)(x)| . [b]θ ∞ X k=1 k(2kr)−n p+β  1 + ρ(x2kr 0) N/(k0+1)−θ0kf kLp(B(x0,2k+1r)) . [b]θ ∞ X k=1 k(2kr)−nqkf k Lp(B(x0,2k+1r)) . [b]θ ∞ X k=1 k Z 2k+1r 2kr kf kLp(B(x0,t)) tnq dt t . Since 2kr ≤ t ≤ 2k+1r, then k ≈ lnt r. Thus sup x∈B |IβL((b − b2B)f2)(x)| . [b]θ ∞ X k=1 k Z 2k+1r 2kr kf kLp(B(x0,t)) tnq dt t . [b]θ ∞ X k=1 Z 2k+1r 2kr lnt r kf kLp(B(x0,t)) tnq dt t . [b]θ Z ∞ 2r  1 + ln t r kf kL p(B(x0,t)) tnq dt t . Then kIβL((b − b2B)f2)kLq(B(x0,r)). [b]θr n q Z ∞ 2r  1 + ln t r kf kLp(B(x0,t)) tnq dt t . (38) Combining (36), (37) and (38), in the case of 1 < p < n/β, 1/q = 1/p − β/n the proof of Theorem6.1is completed.

In the case p = 1 and q = n/(n − β) the proof of the inequlity (35) goes along the came line as that of the case 1 < p < n/β, 1/q = 1/p − β/n once we use the lemmatas 2.7 and 2.9 in [10].

Thus the proof of Theorem6.1is completed. Proof of Theorem4. Since f ∈ LMα,V,{x0}

p,ϕ1 and (ϕ1, ϕ2) satisfies the condition (8), by (33) we have Z ∞ 2r  1 + ln t r kf kL p(B(x0,t)) tnq dt t

(17)

= Z ∞ 2r  1 + ρ(xt 0) α kf kLp(B(x0,t)) ess inf t<s<∞ϕ1(x0, s)s n p  1 + lnt r ess inft<s<∞ϕ1(x0, s)s n p  1 +ρ(xt 0) α tnq dt t . kf kLMα,V,{x0} p,ϕ1 Z ∞ 2r  1 + lnt r ess inft<s<∞ϕ1(x0, s)s n p  1 + ρ(xt 0) α tnq dt t . kf kLMα,V,{x0} p,ϕ1  1 + r ρ(x0) −αZ ∞ r  1 + lnt r ess inft<s<∞ϕ1(x0, s)s n p tnq dt t . kf kLMα,V,{x0} p,ϕ1  1 + r ρ(x0) −α ϕ2(x0, r). (39)

Then from Theorem6.1 we get k[b, IL β]f kLMα,V,{x0} q,ϕ2 . [b]θsup r>0  1 + r ρ(x0) α ϕ2(x0, r)−1 Z ∞ 2r  1 + lnt r kf kL p(B(x0,t)) tnq dt t . [b]θkf kLMα,V,{x0} p,ϕ1 .

7. The Calder´on-Zygmund inequality. For the open set Ω ⊂ Rn, x0 ∈ Ω,

1 ≤ p < ∞ and V ∈ RHn/2, we say f ∈ LM α,V,{x0} p,ϕ (Ω) and f ∈ Mp,ϕα,V(Ω), if kf kp LMp,ϕα,V,{x0}(Ω) = sup r>0 (1 + r/ρ(x0))αϕ(x0, r)−1 Z B(x0,r)∩Ω |f (x)|pdx < ∞ and kf kp Mp,ϕα,V(Ω) = sup x0∈Ω, r>0 (1 + r/ρ(x0))αϕ(x0, r)−1 Z B(x0,r)∩Ω |f (x)|pdx < ∞, respectively.

In this section, we consider the behavior of the solution of the following Sch¨ondinger equation (−∆ + V )u = f (x), a.e. x ∈ Ω, where f ∈ LMα,V,{x0} p,ϕ (Ω), ϕ ∈ Ωα,Vp,loc or f ∈ M α,V p,ϕ(Ω), ϕ ∈ Ω α,V p .

Theorem 7.1. Let Ω be an open set in Rn, x

0 ∈ Ω, V ∈ RHn/2, α ∈ (−∞, ∞),

1 < p < n/2, 1/p − 1/q = 2/n, and ϕ1∈ Ωα,Vp,loc, ϕ2∈ Ωα,Vq,loc satisfies the condition

(6). If f ∈ LMα,V,{x0}

p,ϕ1 (Ω), then there exists a function u ∈ LM α,V,{x0} q,ϕ2 (Ω), such that (−∆ + V )u = f (x), a.e. x ∈ Ω. Furthermore, kukLMα,V,{x0} q,ϕ2 (Ω). kf kLMp,ϕ1α,V,{x0}(Ω). (40) Proof. From the proof of Theorem3, we have

kukLMα,V,{x0} q,ϕ2 (Ω). kI L 2f kLMα,V,{x0} q,ϕ2 (Ω). kf kLMp,ϕ1α,V,{x0}(Ω). Thus, (40) hold.

(18)

Corollary 5. Let Ω be an open set in Rn, V ∈ RHn/2, α ∈ (−∞, ∞), 1 < p <

n/2, 1/p − 1/q = 2/n, and ϕ1 ∈ Ωα,Vp , ϕ2 ∈ Ωα,Vq satisfies the condition (7). If

f ∈ Mα,V

p,ϕ1(Ω), then there exists a function u ∈ M α,V q,ϕ2(Ω), such that (−∆ + V )u = f (x), a.e. x ∈ Ω. Furthermore, kukMα,V q,ϕ2(Ω). kf kMp,ϕ1α,V(Ω).

Theorem 7.2. Let Ω be an open set in Rn, x0 ∈ Ω, V ∈ RHn/2, α ∈ (−∞, ∞),

1 < p < n, 1/p − 1/q = 1/n, and ϕ1∈ Ωα,Vp,loc, ϕ2∈ Ωα,Vq,loc satisfies the condition (6).

If f ∈ LMα,V,{x0}

p,ϕ1 (Ω), then there exists a function Du ∈ LM α,V,{x0} q,ϕ2 (Ω), such that (−∆ + V )u = f (x), a.e. x ∈ Ω. Furthermore, kDukLMα,V,{x0} q,ϕ2 (Ω). kf kLMp,ϕ1α,V,{x0}(Ω). (41) Proof. From page 543 in [31], we know

|DxΓ(x, y)| ≤ CN  1 +|x−y|ρ(x)  N 1 |x − y|n−1, (42)

where Γ(x, y) is the fundamental solution for L = −∆ + V .

Using (42) and adapting the argument for Theorem3, we then have kDukLMα,V,{x0}

q,ϕ2 (Ω). kDL −1f k

LMq,ϕ2α,V,{x0}(Ω). kf kLMp,ϕ1α,V,{x0}(Ω).

Thus, (41) hold.

Corollary 6. Let Ω be an open set in Rn, V ∈ RH

n/2, α ∈ (−∞, ∞), 1 < p < n,

1/p − 1/q = 1/n, and ϕ1 ∈ Ωα,Vp , ϕ2 ∈ Ωα,Vq satisfies the condition (7). If f ∈

Mp,ϕα,V1(Ω), then there exists a function Du ∈ M α,V q,ϕ2(Ω), such that (−∆ + V )u = f (x), a.e. x ∈ Ω. Furthermore, kDukMα,V q,ϕ2(Ω). kf kMp,ϕ1α,V (Ω). Theorem 7.3. Let Ω be an open set in Rn, x

0 ∈ Ω, V ∈ RHn/2, α ∈ (−∞, ∞),

1 < p < ∞, and ϕ1, ϕ2 ∈ Ωα,Vp,loc satisfies the condition (2). If f ∈ LM α,V,{x0} p,ϕ1 (Ω), then there exists a function D2u ∈ LMα,V,{x0}

p,ϕ2 (Ω), such that (−∆ + V )u = f (x), a.e. x ∈ Ω. Furthermore,

kD2uk

LMp,ϕ2α,V,{x0}(Ω). kf kLMp,ϕ1α,V,{x0}(Ω). (43)

Proof. From the proof of Theorem1, we have kD2uk

LMq,ϕ2α,V,{x0}(Ω). kD 2L−1f k

LMp,ϕ2α,V,{x0}(Ω). kf kLMp,ϕ1α,V,{x0}(Ω).

(19)

Corollary 7. Let Ω be an open set in Rn, V ∈ RHn/2, α ∈ (−∞, ∞), 1 < p < ∞,

and ϕ1, ϕ2∈ Ωα,Vp satisfies the condition (3). If f ∈ Mp,ϕα,V1(Ω), then there exists a function D2u ∈ Mα,V p,ϕ2(Ω), such that (−∆ + V )u = f (x), a.e. x ∈ Ω. Furthermore, kD2uk Mp,ϕ2α,V(Ω). kf kMp,ϕ1α,V(Ω).

Remark 7. Note that, Corollaries5,6and7in the case of ϕ(x, r) = r(λ−n)/p was

proved in [34, Theorem 4.1].

Acknowledgments. We would like to express our gratitude to professor Juan J. Nieto to give us the opportunity to dedicate him these results.

REFERENCES

[1] A. Akbulut, V. S. Guliyev and M. N. Omarova, Marcinkiewicz integrals associated with Schr¨odinger operators and their commutators on vanishing generalized Morrey spaces, Bound. Value Probl., (2017), Paper No. 121, 16 pp.

[2] J. Alvarez, J. Lakey and M. Guzman-Partida, Spaces of bounded λ-central mean oscillation, Morrey spaces, and λ-central Carleson measures, Collect. Math., 51 (2000), 1–47.

[3] A. S. Berdyshev, B. J. Kadirkulov and J. J. Nieto,Solvability of an elliptic partial differential equation with boundary condition involving fractional derivatives, Complex Var. Elliptic Equ., 59 (2014), 680–692.

[4] B. Bongioanni, E. Harboure and O. Salinas, Commutators of Riesz transforms related to Sch¨odinger operators, J. Fourier Anal. Appl., 17 (2011), 115–134.

[5] T. Bui,Weighted estimates for commutators of some singular integrals related to Schr¨odinger operators, Bull. Sci. Math., 138 (2014), 270–292.

[6] D. Chen and L. Song, The boundedness of the commutator for Riesz potential associated with Schr¨odinger operator on Morrey spaces, Anal. Theory Appl., 30 (2014), 363–368.

[7] F. Chiarenza and M. Frasca, Morrey spaces and Hardy-Littlewood maximal function, Rend. Mat. Appl., 7 (1987), 273–279.

[8] D. Cruz-Uribe and A. Fiorenza,Endpoint estimates and weighted norm inequalities for com-mutators of fractional integrals, Publ. Mat., 47 (2003), 103–131.

[9] G. Di Fazio and M. A. Ragusa,Interior estimates in Morrey spaces for strong solutions to nondivergence form equations with discontinuous coefficients, J. Funct. Anal., 112 (1993), 241–256.

[10] Y. Ding, S. Z. Lu and P. Zhang, Weak estimates for commutators of fractional integral operators, Sci. China Ser. A, 44 (2001), 877–887.

[11] D. Fan, S. Lu and D. Yang, Boundedness of operators in Morrey spaces on homogeneous spaces and its applications, Acta Math. Sinica (N.S.), 14 (1998), 625–634.

[12] V. S. Guliyev, Integral Operators on Function Spaces on the Homogeneous Groups and on Domains in Rn, Doctoral dissertation, Mat. Inst. Steklov, Moscow, 1994.

[13] V. S. Guliyev, Function Spaces, Integral Operators and two Weighted Inequalities on Homo-geneous Groups. Some Applications, Baku, Elm, 1999.

[14] V. S. Guliyev, Boundedness of the maximal, potential and singular operators in the generalized Morrey spaces, J. Inequal. Appl., (2009), Art. ID 503948, 20 pp.

[15] V. S. Guliyev, Local generalized Morrey spaces and singular integrals with rough kernel, Azerb. J. Math., 3 (2013), 79–94.

[16] V. S. Guliyev,Generalized local Morrey spaces and fractional integral operators with rough kernel, J. Math. Sci. (N.Y.), 193 (2013), 211–227.

[17] V. S. Guliyev, Function spaces and integral operators associated with Schr¨odinger operators: An overview, Proc. Inst. Math. Mech. Natl. Acad. Sci. Azerb., 40 (2014), 178–202.

[18] V. S. Guliyev, M. N. Omarova, M. A. Ragusa and A. Scapellato,Commutators and generalized local Morrey spaces, J. Math. Anal. Appl., 457 (2018), 1388–1402.

[19] V. S. Guliyev and L. Softova,Global regularity in generalized Morrey spaces of solutions to nondivergence elliptic equations with VMO coefficients, Potential Anal., 38 (2013), 843–862.

(20)

[20] V. S. Guliyev and L. Softova,Generalized Morrey estimates for the gradient of divergence form parabolic operators with discontinuous coefficients, J. Differential Equations, 259 (2015), 2368–2387.

[21] T. Mizuhara, Boundedness of some classical operators on generalized Morrey spaces, Har-monic Analysis (Sendai, 1990), ICM 90 Satellite Proceedings, Springer-Verlag, Tokyo, 1991, 183–189.

[22] C. Morrey,On the solutions of quasi-linear elliptic partial differential equations, Trans. Amer. Math. Soc., 43 (1938), 126–166.

[23] E. Nakai,Hardy-Littlewood maximal operator, singular integral operators and the Riesz po-tentials on generalized Morrey spaces, Math. Nachr., 166 (1994), 95–103.

[24] J. J. Nieto and C. C. Tisdell, Existence and uniqueness of solutions to first-order systems of nonlinear impulsive boundary-value problems with sub-, super-linear or linear growth, Electron. J. Differential Equations, 2007 (2007), 1–14.

[25] M. Otelbaev, Imbedding theorems for spaces with weight and their use in investigating the spectrum of the Schr¨odinger operator, Trudy Mat. Inst. Steklov., 150 (1979), 265–305. [26] M. Otelbaev, Spectrum Estimates of the Sturm-Liouville Operator, Alma Ata, Gylym, 1990.

[27] C. Perez,Endpoint estimates for commutators of singular integral operators, J. Funct. Anal., 128 (1995), 163–185.

[28] S. Polidoro and M. A. Ragusa,H¨older regularity for solutions of ultraparabolic equations in divergence form, Potential Anal., 14 (2001), 341–350.

[29] M. A. Ragusa,Local H¨older regularity for solutions of elliptic systems, Duke Math. J., 113 (2002), 385–397.

[30] M. A. Ragusa and A. Tachikawa,On continuity of minimizers for certain quadratic growth functionals, J. Math. Soc. Japan, 57 (2005), 691–700.

[31] Z. Shen,Lpestimates for Schr¨odinger operators with certain potentials, Ann. Inst. Fourier (Grenoble), 45 (1995), 513–546.

[32] L. Softova,Singular integrals and commutators in generalized Morrey spaces, Acta Math. Sin. (Engl. Ser.), 22 (2006), 757–766.

[33] E. M. Stein, Harmonic Analysis: Real-variable Methods, Orthogonality, and Oscillatory In-tegrals, Princeton Mathematical Series, 43, Princeton University Press, Princeton, NJ, 1993.

[34] L. Tang and J. Dong, Boundedness for some Schr¨odinger type operator on Morrey spaces related to certain nonnegative potentials, J. Math. Anal. Appl., 355 (2009), 101–109.

[35] R. Wheeden and A. Zygmund, Measure and Integral, An Introduction to Real Analysis, Pure and Applied Mathematics, 43, Marcel Dekker, Inc., New York-Basel, 1977.

[36] H. K. Xu and J. J. Nieto,Extremal solutions of a class of nonlinear integro-differential equa-tions in Banach spaces, Proc. Amer. Math. Soc., 125 (1997), 2605–2614.

[37] J. Zhong, Harmonic Analysis for some Schr¨odinger Type Operators, Ph.D. thesis, Princeton University, 1993.

Received February 2018; revised October 2018.

Referanslar

Benzer Belgeler

91 adet noktanın tamamı YKN olarak kullanıldığında yatay düzlemdeki karesel ortalama hata değeri 2.14m iken 30 adet KN 61 adet DN ile dengeleme yapıldığında

1996 – 2013 yıllarına ait veriler kullanılarak, Antalya’ya en çok turist gönderen on ülkeden gelen turist sayıları Antalya uluslararası turizm talebinin

In order to generalize this method and thus obtain bound states and wave functions of hydrogen atom in MGECSC potential in presence of external electric field, which is used as a

Sempozyum Gaziosmanpaşa Üniversitesi Konferans Salonu ile Fen- Edebiyat Fakültesi salon ve dersliklerinde aynı anda 6 salon ve her bir salonda dört tebliğci olmak üzere

Bu katıldığınız çalışma bilimsel bir araştırma olup, araştırmanın adı ‘14-16 Yaş Grubu Erkek Basketbolcularda Uygulanan 8 Haftalık Direnç

Suçun faili, diğer eş veya çocuklar ya da aynı çatı altında yaşayan aile bireylerinden birine veya hepsine karşı aile içi şiddete yönelik davranışlarda bulunan ve

GÜNGÖR GÜNER B E R İL ANILANMERT GÜL DERMAN SEYHUN TOPUZ JALE (NEJDET) ERZEN MERİÇ HIZAL (BAŞOL) NADİDE AKDENİZ GÜLSÜN KARAMUSTAFA AYTAÇ MARMARA KATI TÜLİN

gazetesiyle teîıika edilmişti Heı türlü huku­. ku