• Sonuç bulunamadı

Evaluation of antioxidant activity of dilute acid hydrolysate of wheat straw during xylose production

N/A
N/A
Protected

Academic year: 2021

Share "Evaluation of antioxidant activity of dilute acid hydrolysate of wheat straw during xylose production"

Copied!
6
0
0

Yükleniyor.... (view fulltext now)

Tam metin

(1)

ContentslistsavailableatSciVerseScienceDirect

Industrial

Crops

and

Products

j o u r n al hom ep a g e :w w w . e l s e v i e r . c o m / l o c a t e / i n d c r o p

Evaluation

of

antioxidant

activity

of

dilute

acid

hydrolysate

of

wheat

straw

during

xylose

production

Ozlem

Akpinar

a,∗

,

Serdal

Sabanci

a

,

Okan

Levent

a

,

Abdulvahit

Sayaslan

b

aGaziosmanpasaUniversity,DepartmentofFoodEngineering,Taslıciftlik60100,Tokat,Turkey

bKaramanogluMehmetBeyUniversity,Karaman,Turkey

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received12November2011

Receivedinrevisedform1February2012

Accepted24February2012 Keywords: Xylose Xylitol Antioxidant Phenolic

a

b

s

t

r

a

c

t

Wheatstraw,alignocellulosicwastematerial,canbeusedasarawmaterialfortheproductionof high-valueproductssuchasxyloseforxylitolproductionorphenoliccompoundsthathaveantioxidantactivity. Thereisagrowinginterestintheuseoflignocellulosicwastesforconversionintovariouschemicals becauseoftheirlowcostandthefactthattheyarerenewableandabundant.Theobjectiveofthisstudy wastodeterminetheeffectsofH2SO4concentration,temperatureandreactiontimeontheproduction

ofsugars(xylose)andphenoliccompounds.Responsesurfacemethodology(RSM)wasusedtooptimize thehydrolysisprocesstoobtainhighxyloseyieldandphenoliccompounds.Theoptimumreaction tem-perature,reactiontimeandacidconcentrationwere120◦C,45minand4.7%respectively.Underthese

conditions,xyloseandphenolicofthehydrolysatewasfoundtobe0.16g/g-wheatstrawand0.014g-gallic acid/g-wheatstraw,respectively.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Mildacidtreatmentsoflignocellulosicmaterialsinthe

pres-ence of mineral acid (which acts as a catalyst) are currently

usedforconvertingthehemicellulosicfractionoflignocellulose

into monosaccharides. The main component of the

hemicellu-losicfractionisxylan,aheteropolysaccharidewithhomopolymeric

backbone of xylose units, which can be a source for

produc-tionofchemicals,includingfood-relatedproducts,suchasxylose

orxylitol(Saha,2003).Acidhydrolysis processnot onlybreaks

down the hemicellulose to monosaccharides, but also cleaves

the␤-1-4 alkyl-aryl linkages in ligninand lignin-hemicellulose

linkages to form soluble phenolic compounds (Garrote et al.,

2004; Nabarlatz et al.,2007).Lignin is eithercovalently linked

topolysaccharidesviasugar residues,orphenolic acidsesterify

topolysaccharides.Althoughmostoftheligninisacid-insoluble

(klason lignin), a part of it can be solubilized in acidic media

(acid-soluble lignin).While hot watercanextract thefree

phe-nolicacids,acidhydrolysiscanreleasesimpleesterifiedphenolic

acids. These phenolics, considered as the byproducts of acid

hydrolysisoflignocellulosicmaterials,havepotentialapplication

asfoodadditiveswithantioxidantactivity(Moureet al.,2008).

Theacid-solubleligninfractionssuchasp-hydroxybenzoicacid,

∗ Correspondingauthor.Tel.:+903562521613x2894;fax:+903562521729.

E-mailaddresses:ozlem.akpinar@gop.edu.tr,akpinar99@yahoo.com

(O.Akpinar).

ferulicacid,vanillicacid,syringicacid,coumaricacid,

syringalde-hyde,p-hydroxybenzaldehydeandvanillinarewellknown.Among

them, ferulic acid has received enormous attention due to its

potential application in food (preservative agent, gel-forming

properties, flavor precursor), health (antioxidant, antimicrobial,

anti-inflammatory)andcosmetic(photoprotectingagent)

indus-tries(Barberousseetal.,2009).

Hemicellulosehydrolysisofdifferentlignocellulosicmaterials

usingdiluteacidhasbeenstudiedbymanyresearchers(Rahman

etal.,2007;Robertoetal.,2003;Canettierietal.,2007).Theresults

showedthattheyield ofsugarand sugardehydration products

suchasfurfuralandsolublephenoliccompoundsisdependenton

thetypeofmaterialandtheoperationalconditions(measuredby

theseverityfactor)(Rahmanetal.,2007).Thepresenceofphenolic

compoundsandsugardegradationproductswithxyloseis

unde-sirablebecausetheyeitherdecreasethepurityofxyloseorinhibit

itsmicrobialmetabolism.Toovercomethisproblem,itisnecessary

torunthehydrolysisreactionatlesssevereconditionstokeepthe

degradationproductsatlowconcentration.

Wheatstrawisoneofthemostwidelydistributedandabundant

lignocellulosicwastefoundinTurkey(Bascetinceliketal.,2006).

Utilizationofwheatstrawforindustrialpurposesasarenewable

materialfortheproductionofvalue-addedproductsisreceiving

interestduetoitshugeamountofpolymers(celluloseand

hemicel-lulose),lowcost,wideavailabilityandreductionofenvironmental

pollution.

Theaimofthepresentinvestigationwastoevaluatetheeffectof

operationalconditions(temperature,timeandacidconcentration)

0926-6690/$–seefrontmatter © 2012 Elsevier B.V. All rights reserved.

(2)

ontheproductionofsugars(xylose,glucose,arabinoseandsugar

dehydrationproducts)and phenoliccompounds,anddetermine

theantioxidantactivityofacidhydrolysateofwheatstraw.

2. Materialsandmethods

2.1. Materials

Wheat straw was collected from local farmers in Turkey,

air-dried and milled to obtain particles of 1–5mm length

and 1mm thickness. Aminex HPX 87H column (dimension:

300mm×7.8mm;averageparticlesize:9␮m)andcationH

car-tridgewerepurchasedfromBio-RadLaboratories,CA,USA.Allthe

chemicalswere of analytical grade obtainedeither fromSigma

ChemicalCompany,MO,USAorMerckKGaA,Germany.

2.2. Acidhydrolysis

Hydrolysisexperimentswereperformedina100-ml

stainless-steelpressure batchreactor.Thereactorwasloadedwith2gof

wheatstrawand20mlofsulfuricacidsolution.Thereactionswere

carriedoutintherangeof100–140◦Cunderdifferentsulfuricacid

concentrations (2–6% H2SO4)and residence times (15–45min).

Afterthereactionwascomplete,thesolidmaterialwasseparated

byfiltrationandthefiltratewasanalyzedforxylose,glucose,acetic

acidandfurfural.

Hydrolysate samples were analyzed using HPLC system

equippedwitharefractiveindexdetector(PerkinElmerSeries200),

andcolumnoven(PerkinElmerSeries200)onAminexHPX87H

(300mm×7.8mm), which was preceded by its complimentary

cationHcartridgeonAminexHPX87H(300mm×7.8mm),which

wasprecededbyitscomplimentarycationHcartridge.Sugarsand

aceticacidwereelutedwith5mmol/lH2SO4fromthecolumnat

45◦Cwithaflowrateof0.5ml/min(Canettierietal.,2007).A

com-pleteanalysiswascarriedoutin70min.Theirconcentrationwas

quantifiedusingtheaveragepeakareaswhencomparedwiththe

mixtureofstandard (xylose, glucose,arabinose, acetic acidand

furfural)andexpressedasg/lsugar.

2.3. Ferulicacid

Thedeterminationofferulicacidwascarriedoutfollowingthe

methoddevelopedbySaulnieretal.(1995).Atotalof0.1mlofthe

solutionfromtheacidhydrolysateofwheatstrawwasmixedwith

abufferofpH10(0.1Msodiumtetraborate–0.1Mglycinebuffer

atpH10).Theamountoffreeandesterifiedferulicacidwere

cal-culatedfromtheabsorptions(A)at375and345nmusingmolar

absorptioncoefficients(ε345=19,662,ε375=7630for freeferulic

acid;andε345=23,064,ε=31,430foresterifiedferulicacid).The

concentrationsforbothfree[FA]fandesterified[FA]eferulicacid

werecalculatedusingthefollowingequations:

[FA]e= [(A375×ε345)−(A345×ε375)] [(ε 375×ε345)−(ε345×ε375)] [FA]f= [A345−(ε345×[FA]e)] [ε345]

2.4. Determinationoftotalphenoliccontent

The phenolic content was measured by the Folin–Ciocalteu

method (Singleton and Rossi, 1965) with slight modifications

andexpressedasgramsof gallicacidequivalents.Thesamples,

0.1ml and 2.3ml of distilled water were mixed with0.1ml of

Folin–Ciocalteureagentandincubatedfor8min,followedbythe

additionof1mlof70g/lsodiumcarbonatesolutionwith2mlof

water.Themixturewasallowedtostandfor2hatroom

tempera-turebeforereadingtheabsorbanceat750nm.

2.5. Antioxidantactivity

2.5.1. Ferric-reducingantioxidantpower(FRAP)

Solutionsof300mMacetatebuffer(pH3.6),10mmol/lTPTZand

20mmol/lFeCl3·6H2Owereprepared,andfreshworkingsolutions

wereusedbymixingstocksolutionsinaratioof10:1:1to

pre-paretheFRAPreagent.TheFRAPreagent(2900␮l)wasmixedwith

100␮lofthesampleorstandard,andthemixtureswerekeptat

roomtemperatureunderdarkfor30min.Theabsorbanceofferrous

tripyridyltriazinecomplexwasmeasuredat593nmwitha

spec-trophotometer.Astandardcalibrationcurvewaspreparedusing

Troloxataconcentrationrangebetween10and50␮M(Benzieand

Strain,1996).

2.5.2. Troloxequivalentantioxidantcapacity(TEAC)

Solutions of2,2-azinobis(3-ethyl-benzothiazoline-6-sulfonic

acid) (ABTS) (7mM)and potassium persulfate(2.45mM) were

mixed and allowed tostand for 12–16h togenerate the ABTS

2,2-azinobis(3-ethyl-benzothiazoline-6-sulfonate)radicalcation

(ABTS•+). The ABTS•+ stock solution was diluted with 20mM

sodiumacetatebuffer(pH4.5)toobtain0.7absorbancereading

at734nm.Theantioxidantcapacitywasmeasuredbymixing2ml

of thesample with0.2ml of radical solution and by following

thedeclineintheabsorbancefor10minwithappropriatesolvent

blanksforeachaddition.Theradicalscavengingcapacitywas

com-paredwiththatofTroloxandtheresultswereexpressedasTEAC

values(mmolTrolox)(Reetal.,1999).

2.6. Experimentaldesignandresponsesurfacemethodology

(RSM)

A23 rotatablecentralcompositedesign(CCD)wasusedtofit

asecond-ordermodel.Thedesignconsistedof20setsof

experi-ments.Thequadraticmodelwasselectedforpredictingtheoptimal

pointandexpressedas:

Y = b0+b1X1+b2X2+b3X3+b11X12+b22X22+b33X32+b12X1X2

+b13X1X3+b23X2X3 (1)

whereYrepresentstheresponse variables(xyloseand phenolic

yield);b0istheinterceptioncoefficient;b1,b2,andb3arethelinear

terms;b11,b22,andb33arethequadraticterms;andX1,X2,andX3

representthevariablesstudied.

TheDesignExpertv.7(Stat-EaseInc.,Minneapolis)wasusedfor

regressionandthegraphicalanalysesofthedataobtained.Fischer’s

testwasusedforthedeterminationofthetypeofmodelequation,

whilethestudent’st-testwasperformedforthedeterminationof

statisticalsignificanceofregressioncoefficients.

3. Resultsanddiscussion

3.1. Sugarandbyproducts

Inthepreviousstudy,glucan(37%)wasreportedasamajor

com-ponentofwheatstrawfollowedbyxylan(23%)andlignin(klason

lignin:20%andacid-solublelignin:2%).Therestofitscomponents

werearabinan(2%),acetylgroups(1%),uronicacid(3%),protein

(3%),ash(6%)andextractives(3%)(Akpinaretal.,2010a).

Theconcentrationsofxyloseandotherdegradationproducts

showeddependence onthe experimentaloperating conditions,

which werealsoexplainedbytheseverityfactor (R0)(Fig.1A).

Severityfactorcombinestheexperimentaleffectsoftemperature,

reaction time and acid concentration to make the comparison

oftheresultseasy (Kabelet al.,2007).Thehighestxyloseyield

was0.169g/g-wheat straw, achievedat 140◦C for 15min with

(3)

0.000 0.005 0.010 0.015 0.020 0.025 2.08 1.99 1.62 1.62 1.39 1.21 1.13 1.08 1.07 1.05 1.03 1.01 0.88 0.86 0.27 0.23 0.19 0.38 -0.02 -0.08 (LogRo) Severity factor

Total phenolic (g gallic acid/g wheat straw) FRAP (mmol trolox/g wheat straw) TEAC (mmol trolox/g wheat straw)

Esterified ferulic acid (g ferulic acid/g wheat straw) Free ferulic acid (g ferulic acid/g wheat straw)

B

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.18 0.20 2.08 1.99 1.62 1.62 1.39 1.21 1.13 1.08 1.07 1.05 1.05 1.03 1.01 0.88 0.44 0.38 0.27 0.23 -0.02 -0.08

Severity factor (LogRo)

g/g wheat straw

Xylose Glucose Arabinose Acetic acid Furfural

A

Fig.1.(A)Formationofxylose,glucose,arabinose,aceticacidandfurfuralunderselectedhydrolysisconditions;(B)phenolic,freeandesterifiedferulicacidcontent,and

antioxidantactivityofacidhydrolysateunderselectedhydrolysisconditions.Severityfactor:R0=[10−pH×t×exp(T−100)/14.75]ofthepretreatmentscalculatedfrompH

ofhydrolysate.

agriculturalwastes,othersugars,mainlyglucose,werereleased,

whichwereproducedeitherfromcellulosicfractionorfromsome

heteropolymers of hemicellulosic fraction. The level of glucose

in the fermentation media is important due to its the advers

effectonxylosebioconversiontootherchemicalssuchasxylitol

(Robertoetal.,2003).Inaddition,duringtheproductionofxylose,

anotherreactiontakesplace,whichisthedehydrationofxylose

tofurfural. Furfural formation not only decreases

monosaccha-rideyieldbutalsocausesproblemsassociatedwiththeinhibition

offermentationofthesugarsto,e.g.,ethanolorxylitol(Karimia

etal.,2006).Whentheoperatingtemperatureandreactiontime

were 153.3◦C and 30min respectively and the acid

concentra-tion was maintained at 4% (LogR0=1.99), glucose (0.063

g/g-wheat straw) and furfural (0.037g/g-wheat straw) yields were

maximum.

In all the experiments, arabinose yield remained between

0.01and0.02g/g-wheatstrawandaceticacidyieldwasbetween

0.002 and 0.014g/g-wheat straw. Low concentration of acetic

acid in the hydrolysate is particularly important for xylose

bioconversionbecausethisacidisoneofthepotentialinhibitors

ofthemicrobialmetabolism(Robertoetal.,2003).

3.2. Antioxidantactivityandphenoliccontent

TheFolin–Ciocalteutest,usedasameasureoftotalphenolics

valueinthehydrolysate,indicatestheamountreleasedfromthe

extractivesandligninfractionduringmildacidtreatment.TheABTS

scavengingtestwasselectedbecauseitisoneofthewidelyused

andsimpletechniques,andhasbeenproposedasoneofthe

meth-odsconsideredforstandardizationofantioxidantactivityinfood

andnutraceuticals(Prioretal.,2005).Astheantioxidantcapacity

of a lignin fractionis related to itsreducing ability, the

ferric-reducing powerwasselectedto measurethereducing capacity

(Castroetal.,2008).Theamountsoffreeandesterifiedferulicacid

werealsoevaluatedintheacidhydrolysateofwheatstrawbecause

theyhavepowerfulantioxidanteffect.Itwasreportedthat

esteri-fiedferulicacidshowshigherantioxidantcharacteristicsthanfree

(4)

0.0000 0.0050 0.0100 0.0150 0.0200 0.0250 4% 4% 4% 7.3% 4% 0.7% 4% 4% 4% 55 min 30 min 5 min 30 min 30 min 30 min 30 min 30 min 30 min 120 oC 120 oC 120 oC 120 oC 120 oC 120 oC 153.3 oC 120 oC 86.7 oC

Total phenolic (g gallic acid/g wheat straw) FRAP (mmol trolox/g wheat straw) TEAC (mmol trolox/g wheat straw)

Esterified ferulic acid (g ferulic acid/g wheat straw) Free ferulic acid (g ferulic acid/g wheat straw)

Fig.2.Theeffectoftemperature,timeandacidconcentrationofpenolic,freeandesterifiedferulicacidcontent,andantioxidantactivityofacidhydrolysate.

Table1

Experimentalrangeandlevelsofindependentprocessvariables.

Independentvariable Symbol Rangeandlevels

−˛ −1 0 +1 +˛

Temperature(◦C) X1 86.7 100 120 140 153.3

Reactiontime(min) X2 5 15 30 45 55

Acidconcentration(%) X3 0.7 2 4 6 7.3

Table2

Experimentaldesignandresultsobtainedbyhydrolysisofwheatstrawandseverityfactorofthepretreatments.

Runs LogR0 Variables Responses

X1 X2 X3 Y1(g-xylose/g-wheatstraw) Y2(g-gallicacid/g-wheatstraw)

1 −0.08 100 15 2 0.005 0.0084 2 −0.02 86.7 30 4 0.021 0.0071 3 0.19 100 45 2 0.033 0.0093 4 0.23 120 5 4 0.156 0.0104 5 0.27 120 30 0.7 0.080 0.0113 6 0.38 100 15 6 0.045 0.0121 7 0.86 120 30 4 0.168 0.0138 8 0.88 100 45 6 0.120 0.0110 9 1.01 120 30 4 0.128 0.0134 10 1.03 120 30 4 0.153 0.0145 11 1.05 120 30 4 0.164 0.0128 12 1.07 120 30 4 0.128 0.0146 13 1.08 120 30 4 0.143 0.0130 14 1.13 140 15 2 0.169 0.0143 15 1.21 120 55 4 0.155 0.0125 16 1.39 120 30 7.3 0.134 0.0141 17 1.62 140 45 2 0.124 0.0167 18 1.62 140 15 6 0.142 0.0175 19 1.99 153.3 30 4 0.119 0.0227 20 2.08 140 45 6 0.089 0.0199

Y1,xyloseyield(g-xylose/g-wheatstraw);Y2,totalphenolic(g-gallicacid/g-wheatstraw);R0:severityfactors(R0=[10−pH×t×exp(T−100)/14.75]).

Table3

Analysisofvarianceforxyloseyieldandtotalphenolicscontent.

Source Sumofsquares Degressoffreedom Meansquare F-value P-value

Y1 Y2 Y1 Y2 Y1 Y2 Y1 Y2 Y1 Y2 Model 0.046 0.00025 7 5 0.0066 0.00005 23.03 27.36 <0.0001 <0.0001 Residual 0.0034 0.000014 12 14 0.00029 0.000001 Lackoffit 0.0019 0.000012 7 9 0.00028 0.0000013 0.91 2.62 0.5597 0.1913 Pureerror 0.0015 0.0000028 5 5 0.00030 0.00000057 Total 0.05 0.00026 19 19 R2 0.93 0.95

(5)

Fig.3. (A)EffectofH2SO4concentrationandreactiontemperatureonxyloseyieldwhentimewassetat30minasthecenterpoint.(B)Effectofreactiontemperatureand

timeonxyloseyieldwhenacidconcentrationwassetat4%asthecenterpoint.(C)EffectofH2SO4concentrationandreactiontemperatureonphenoliccontentwhentime

wassetat30minasthecenterpoint.(D)Effectofreactiontemperatureandtimeonphenoliccontentwhenacidconcentrationwassetat4%asthecenterpoint.

reduced the oxidation of low-density lipoproteins (Li et al.,

2008).

Themostactiveradicalscavengerofwheatstrawhydrolysate

wasgeneratedat153.3◦Cfor30minwith4%acidconcentration.

TheredoxpotentialofFe3+saltsusedintheFRAPassaywas

com-parablewiththatoftheTEACvalue,andcorrelationwithphenolic

contentwasobserved(Fig.1B).Esterifiedferulicacidwashighestat

140◦Cfor15minand2%acidconcentration(LogR0=1.13),andits

amountwashigherthanfreeferulicacid.Whentheseverityofthe

operationconditionswasincreased,theamountoffreeferulicacid

startedtoincreaseandthevaluebecamehigherthantheesterified

one.

Theyieldinphenoliccompound,includingantioxidantactivity

andfreeandesterifiedferulicacid,wasnotaffectedsignificantly

bythesulfuricacidconcentrationandthereactiontimeusedinthe

acidhydrolysisstage,butwasstronglyaffectedbythe

tempera-ture.Thehighestphenoliccontentwas0.0227g-gallicacid/g-wheat

straw,achievedat153.3◦Cfor30minwith4%acidconcentration

(LogR0=1.99)(Fig.2).

3.3. Statisticalmodeling

Theexperimental range and levelsof independent variables

investigatedaregiveninTable1.Thedesignofthisresearch,

includ-ingthedependentvariables orresponses,xyloseyield(Y1)and

phenoliccontent(Y2),isgivenin Table2.Thequadraticmodels

withcodedvariablesareshowninEqs.(2)and(3),which

repre-sentthexyloseyield(Y1)andphenoliccontent(Y2)asafunctionof

temperature(X1),time(X2)andacidconcentration(X3).

Y1 =0.15+0.035X1+0.00026X2+0.012X3−0.03X12 −0.023X2 3−0.025X1X2−0.024X1X3 (2) Y2 =0.013+0.0039X1+0.00060X2+0.0013X3+0.00057X12 −0.00064X2 2 (3)

Regression analysiswasperformedtofit theresponse

func-tionandexperimentaldata.Thesecond-ordermodelsforxylose

andphenolicyieldwereevaluatedbyANOVA,whichareshown

inTable3.Forbothresponses,theregressionwasstatistically

sig-nificantat95%confidencelevel.Themodelforbothresponsesdid

notshowlackoffit.Thedeterminationcoefficient(R2)forthefirst

(Y1)andthesecondresponse(Y2)was0.93and0.95respectively,

explainingthe93and95%ofvariabilityintheresponses.

Fig.3showstheresponsesurfacestoestimatethexyloseand

phenolicyieldovertheindependentvariablesoftemperature(X1),

time(X2)andacidconcentration(X3).Whenthereactiontimewas

setat30minascenterpoint,asshown inFig.3AandC,it was

interpretedthatthemaximumxyloseyield(0.16g/g-wheatstraw)

wasobtainedwitha3.8%acidconcentrationand129◦Creaction

temperature.Themaximumphenolic contentwas0.019g-gallic

acid/g-wheatstrawat6%acidconcentrationwith140◦Creaction

temperature.Fig.3BandDshowstheeffectoftemperatureand

timeonxyloseyieldandthephenoliccontentofthehydrolysate

whenthereactiontimewassetacidconcentrationwas4%asthe

center point.Themaximumxyloseyield(0.18g/g-wheatstraw)

wasobtainedat140◦Cand15minreactiontime,andthe

maxi-mumphenoliccontent(0.018g-gallicacid/g-wheatstraw)ofthe

hydrolysatewasobtainedat140◦Cand45minreactiontime.

Whentheoverallxyloseyieldandphenoliccontentoftheacid

hydrolysateofwheatstrawwerecomparedwiththoseobtained

from previousstudies carried out for theproduction of xylose

(Robertoet al.,2003; Akpinaret al.,2010b)and phenolic

com-pounds(Moureetal.,2008)fromlignocellulosicmaterialswithacid

hydrolysis,itwasfoundthatthexyloseyieldandthephenolic

(6)

100.00 115.00 130.00 145.00 160.00 0.00 15.00 30.00 45.00 60.00 A: Temperature B: Time Y1: 0.12 Y1: 0.12 Y1: 0.16946 Y2: 0.012 Y2: 0.0227

Fig.4.Overlayingplotsofxyloseyieldandphenoliccontentoftheacidhydrolysate

ofwheatstraw.

thehydrolysisconditionsofwheatstrawresultedwithincreasein

phenolicyieldsanddecreaseinxyloseyield.

Basedonthetwomodels,a graphicaloptimizationthat

con-sisted of overlaying thecontour plots of both the modelswas

conducted.Theoptimalworkingconditionsbasedonhighlevel

xylose yield and phenolic content were chosen using the

fol-lowingcriteria:xyloseyield>0.12g/g-wheatstrawandphenolic

content>0.012g-gallicacid/g-wheatstraw.Intheoverlayingplot

(Fig.4),theregionswitha shadedareadonotfit the

optimiza-tioncriteria,whilethenon-shadedareameetstheoptimization

criteria. As an optimum point, 4.7% acid concentration, 120◦C

and45minwereselected.Underthiscondition,theseverity

fac-torofthe treatment,calculated as LogR0,wasfoundto be1.2.

Undertheseconditions,thexyloseyieldandphenoliccontentwere

predictedas0.15g/g-wheatstrawand0.014g-gallicacid/g-wheat

straw,respectively.Toconfirmtheseresults,hydrolysisrunswere

conductedundertheseoptimizedconditions,thexyloseand

phe-nolicyieldofwheatstrawwereobtainedas0.16g/g-wheatstraw

and0.014g-gallicacid/g-wheatstraw,respectively.

4. Conclusion

Higherseveritiesofconditionsresultedinimprovedyieldsof

phenolic contentof the acidhyrolysate of wheat straw, but in

decreased xylose yield. The optimum reaction conditions were

foundas 4.7%acid concentration,120◦C and 45minfor wheat

straw.Underselectedhydrolysisconditions,wheatstrawproved

tobeapromisingsourceofhighyieldxylose,whichcouldbeused

fortheproductionofdifferentchemicals,mainlyxylitoland

phe-noliccompoundswhichexhibitedhighantioxidantactivities.The

resultsshowedthatwheatstrawhadthepotentialapplicationsarea

forthepolysaccharide-basedantioxidantsinfood,pharmacyand

cosmetics.

Acknowledgment

ThisworkwaspartiallysupportedbyTheScientificand

Tech-nologicalResearchCouncilofTurkey.

References

Akpinar,O.,Gunay,K.,Yilmaz,Y.,Levent,O.,Bostancı,S.,2010a.Enzymatic

pro-cessingandantioxidantactivityofagriculturalwasteautohydroysisliquors.

Bioresources5,699–711.

Akpinar,O.,Levent,O.,Bostanci,S.,Bakir,U.,Yilmaz,L.,2010b.Theoptimizationof

diluteacidhydrolysisofcottonstalkinxyloseproduction.AppliedBiochemistry

andBiotechnology163,313–325.

Barberousse, H., Kamoun,A., Chaabouni, M.,Giet, J., Roiseux, O.,Paquot, M.,

Deroanne,C.,Blecker,C.,2009.Optimizationofenzymaticextractionofferulic

acidfromwheatbran,usingresponsesurfacemethodology,and

characteriza-tionoftheresultingfractions.JournaloftheScienceofFoodandAgriculture89,

1634–1641.

Bascetincelik,A.,Ozturk,H.H.,Karaca,C.,Kacira,M.,Ekinci,K.,Kaya,D.,Banan,A.,

Gunes,K.,Komitti,N.,Barnes,I.,Nieminen,M.,2006.GuideonExploitationof

AgriculturalResiduesinTurkeyLife03TCY/TR/000061.

Benzie,I.F.F.,Strain,J.J.,1996.Theferricreducingabilityofplasma(FRAP)asa

measureof“antioxidantpower”:theFRAPassay.AnalyticalBiochemistry239,

70–76.

Canettieri,E.V.,MoraesRocho,G.J.,CarvalhoJr.,K.A.,AlmeidaeSilva,J.B.,2007.

OptimizationofacidhydrolysisfromthehemicellulosicfractionofEucalyptus

grandisresidueusingresponsesurfacemethodology.BioresourceTechnology

98,422–428.

Castro,E.,Conde,E.,Moure,A.,Cara,C.,Dominguez,H.,Parajo,J.C.,2008.

Antiox-idantactivityofliquorsfrompretreatedolivetreewood.WoodScienceand

Technology42,579–592.

Garrote,G.,Cruz,J.M.,Moure,A.,Dominguez,H.,Parajo,J.C.,2004.Antioxidant

activityofbyproductsfromthehydrolyticprocessingofselectedlignocellulosic

materials.TrendsinFoodScienceTechnology15,191–200.

Kabel, M.A., Bos, G., Zeevalking, J., Voragen, A.G.J., Schols, H.A., 2007. Effect

of pretreatment severity on xylan solubility and enzymatic breakdown

oftheremaining cellulose fromwheatstraw. BioresourceTechnology98,

2034–2042.

Karimia, K., Kheradmandiniaa, S., Taherzadeh, M.J., 2006. Conversion of rice

straw to sugars by dilute-acid hydrolysis. Biomass and Bioenergy 30,

247–253.

Li,K.Y.,Lai,P.,Lu,S.,Fang,Y.T.,Chen,H.C.,2008.Optimizationofacid

hydrol-ysis conditions for feruloylated oligosaccharides from rice bran through

responsesurfacemethodology.JournalofAgriculturalandFoodChemistry56,

8975–8978.

Moure,A.,Dominguez,H.,Parajo,J.C.,2008.Antioxidantactivityoffractionsfrom

acidhydrolysateofalmondshells.JournalofFoodProcessEngineering31,

817–832.

Nabarlatz,D.,Ebringerova,A.,Montane,D.,2007.Autohydrolysisofagricultural

by-productsforproductionofxylooligosaccharides.CarbohydratePolymers69,

20–28.

Prior,R.L.,Wu,X.,Schaich,K.,2005.Standardizedmethodsforthedeterminationof

antioxidantcapacityandphenolicsinfoodsanddietarysupplements.Journalof

AgriculturalandFoodChemistry53,4290–4302.

Rahman,S.H.A.,Choudhury,J.P.,Ahmad,A.L.,Kamaruddin,A.H.,2007.Optimization

studiesonacidhydrolysisofoilpalmemptyfruitbunchfiberforproductionof

xylose.BioresourceTechnology98,554–559.

Re,R.,Pellegrini,N.,Proteggente,A.,Pannala,A.,Yang,M.,Rice-Evans,C.,1999.

AntioxidantactivityapplyinganimprovedABTSradicalcationdecolorization

assay.FreeRadicalBiologyandMedicine26,1231–1237.

Roberto,I.C.,Mussatto,S.I.,Rodrigues,R.C.L.B.,2003.Dilute-acidhydrolysisfor

opti-mizationofxyloserecoveryfromricestrawinasemi-pilotreactor.Industrial

CropandProducts17,171–176.

Saha,B.C.,2003.Hemicellulosebioconversion.JournalofIndustrialMicrobiology

andBiotechnology30,279–291.

Saulnier,L.,Vigouroux,J.,Thibault,J.,1995.Isolationandpartialcharacterization

offeruloylatedoligosaccharidesfrommaizebran.CarbohydrateResearch272,

241–253.

Singleton, V.L., Rossi, J.A., 1965. Colorimetry of total phenolics with

phosphomolybdic–phosphotungstic acid reagents. American Journal of

Şekil

Fig. 1. (A) Formation of xylose, glucose, arabinose, acetic acid and furfural under selected hydrolysis conditions; (B) phenolic, free and esterified ferulic acid content, and antioxidant activity of acid hydrolysate under selected hydrolysis conditions
Fig. 2. The effect of temperature, time and acid concentration of penolic, free and esterified ferulic acid content, and antioxidant activity of acid hydrolysate.
Fig. 3. (A) Effect of H 2 SO 4 concentration and reaction temperature on xylose yield when time was set at 30 min as the center point
Fig. 4. Overlaying plots of xylose yield and phenolic content of the acid hydrolysate of wheat straw.

Referanslar

Benzer Belgeler

Bugün, uzun ve sabırlı bir yürüyüşün ortasında, birkaç adımda bir durup bakacağımız silueti oluşturan köhne, cepheleri eprimiş binalar, cumhuriyet tabelâlarının

1958 de Roma Üniversitesi Senatosu seçimini kazanarak Mimarlık Fakültesi doktorasına ve Roma Güzel Sanatlar Akademisi doktora üstü PERFEZİONA- MENTO çalışmasına

Bir odada ebru kâğıdı boyanmakta, öbüründe tezhipler altınlanmakta, yanıbaşındakinde minyatür çizilmekte, bir ötesinde hat çekilmekte ve kalem işi

The scavenging activities of GalA–NHOH against DPPH radicals (half-inhibition concentration, IC50, was 82 μM), hydroxyl radicals detected by electron spin resonance (IC50 was 0.227

Marştan sonra K ız Öğretmen okulu ede­ biyat öğretmeni Cahide Boran; şairin ha­ yatını çok canlı bir surette anlatıyor ve Hâmidi tanıyan ve

Sonuç olarak Kassandra Damgası’nın vaka zamanı, yeryüzü-gökyüzü-uzay şeklinde gittikçe genişleyen bir mekân dairesinde ama çok kısa bir zaman dilimi içinde

Abide ve Yapı İşleri Dairesi Başkanlığı, mülkiyeti VGM ile mazbut vakıflara ait vakıf ta- şınmaz kültür varlıklarının korunmasına yönelik eylemlerden sorumlu iken,

tilmesini veya silinmesini talep etme ve amaçları doğrultusunda kullanılıp kullanılmadığını öğrenmeyi de kapsar. Kişisel veriler, ancak kanunda öngö- rülen