• Sonuç bulunamadı

Chemical deactivation by phosphorous under lean hydrothermal conditions over Cu/BEA NH3-SCR catalysts

N/A
N/A
Protected

Academic year: 2021

Share "Chemical deactivation by phosphorous under lean hydrothermal conditions over Cu/BEA NH3-SCR catalysts"

Copied!
13
0
0

Yükleniyor.... (view fulltext now)

Tam metin

(1)

ContentslistsavailableatScienceDirect

Applied

Catalysis

B:

Environmental

j ou rn a l h om epa g e : w w w . e l s e v i e r . c o m / l o c a t e / a p c a t b

Chemical

deactivation

by

phosphorous

under

lean

hydrothermal

conditions

over

Cu/BEA

NH

3

-SCR

catalysts

Stanislava

Andonova

a

,

Evgeny

Vovk

b,c

,

Jonas

Sjöblom

d

,

Emrah

Ozensoy

b

,

Louise

Olsson

a,∗

aCompetenceCentreforCatalysis,ChemicalEngineering,ChalmersUniversity,41296Gothenburg,Sweden bChemistryDepartment,BilkentUniversity,06800Bilkent,Ankara,Turkey

cBoreskovInstituteofCatalysis,630090Novosibirsk,RussianFederation dAppliedMechanics,ChalmersUniversity,41296Gothenburg,Sweden

a

r

t

i

c

l

e

i

n

f

o

Articlehistory: Received5July2013 Accepted27August2013 Available online 1 September 2013 Keywords: NH3SCR NOxreduction Cu/BEAcatalysts Ppoisoning Deactivation.

a

b

s

t

r

a

c

t

ToobtainabetterunderstandingofthedeactivationofSCRcatalyststhatmaybeencountereddueto thepresenceofP-containingimpuritiesindieselexhausts,theeffectsinducedbyPoverCu/BEANH3

-SCRcatalystswerestudiedasfunctionsofthetemperatureofpoisoningandPconcentrationinthe feed.Cu/BEAcatalystswithdifferentCuloadings(4and1.3wt%Cu)wereexposedtoPbycontrolled evaporationofH3PO4inthepresenceof8%O2and5%H2Oat573and773K.Thereactionstudieswere

performedbyNH3-storage/TPD,NH3/NOoxidationandstandardNH3-SCR.Inaddition,acombinationof

severalcharacterisationtechniques(ICP–AES,BETsurfacearea,poresizedistribution,H2-TPRandXPS)

wasappliedtoprovideusefulinformationregardingthemechanismofPdeactivation.Porecondensation ofH3PO4incombinationwithporeblockingwasobserved.However,themeasuredoveralldeactivation

wasfoundtooccurmostlybychemicaldeactivationreducingthenumberoftheactiveCuspeciesand hencedeterioratingtheredoxpropertiesoftheCu/BEAcatalysts.TheprocessofPaccumulationonthe surfacepreferentiallyoccursonthe“overexchanged”Cuactivesiteswiththeformationofphosphate species.Thisislikelythereasonforthemoreseveredeactivationofthe4%Cu/BEAcomparedto1.3% Cu/BEA.Further,thehigherNOxreductionperformanceat773KoftheP-poisonedCu/BEAcatalystswas

foundtooriginatefromthelowerselectivitytowardsNH3oxidation,whichoccurspredominatelyonthe

“over-exchanged”sites.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

In thelast decade, the selectivecatalytic reduction (SCR) of nitrogenoxides(NOx)hasreceivedsignificantattentionduetoits

numerousapplicationstoreduceNOxemissionsintheexhaustof

stationarypowerplants,industryprocessesandrecentlyalsofrom automotivesources[1–3].ThecurrentstrategyofSCRbyusingNH3,

inparticularfordiesel-equippedvehicles[4–6]isnowadays con-sideredasoneofthemosteconomicalandeffectiveNOxabatement

catalytictechnology.

Vanadia-basedcatalysts(V2O5/WO3/TiO2)arethemost

com-monlyused and widely investigated for SCR [7]. However,the inadequatestabilityofthesecatalystsathightemperaturesand athighspacevelocities,incombinationwithtoxicity,shiftedthe focusoftheinvestigationstoanothergroupofmaterialsbasedon transition-metalion-exchangedzeoliteswhichofferanadvantage

∗ Correspondingauthor.Tel.:+4631-7724390;fax:+4631-7723035. E-mailaddress:louise.olsson@chalmers.se(L.Olsson).

ofimprovedNOxreductionperformanceandthermalstabilityina

widetemperaturerange.Hence,differentexperimentaland theo-reticalstudies[8–13]werefocussedontheeffectofthemetal(Fe, Cu,Cr,Ce,CoandRh)andthetypeofthezeolites[5,14,15](ZSM-5, MFI,FER,BEA,SSZ-13andSAPO-34)onthestabilityandtheoverall SCRperformanceoftheexhaustzeolite-basedcatalysts.Ingeneral, Fe-andCu-basedzeolitesareselectedasthemostactiveandstable SCRcatalystsforNOxreduction.Inparticular,itwasfound[16–22]

thatCu-ionexchangedzeolitesarecharacterisedbysuperiorlow temperatureNOxconversionand N2 selectivityin NH3-SCRand

directNOdecomposition.

Poisoningof thedieselexhaust catalystscausedby accumu-lationofimpuritiesintheformofsignificantamountofoil-and fuel-derived contaminants (P,Zn, Ca, K, Naand Mg) deposited onthesurface[23–30]isoneoftheproblemsthathavenotbeen totallysolvedwiththecurrentSCRtechnology.Inparticular,the effectsinducedbyphosphorous(P)areoneofthemajorproblems inpracticalapplicationsoftheSCRcatalystsduetotheir deacti-vation byP-containing impurities in biodiesel and lubricantoil additives[24].Ithasbeenshown[31,32]thatPcangreatlyimpair 0926-3373/$–seefrontmatter © 2013 Elsevier B.V. All rights reserved.

(2)

theeffectivenessoftheNOxemissioncontrolsystemsduetoits

cumulativeinfluenceover V2O5-WO3/TiO2 catalysts.Thus, even

verylowlevelsofPinthefuelmayleadtodeteriorationovertime, especiallywhenanengineconsumesasignificantamountof con-taminatedfuel.Itwasshown[33,34]thatthePcontaminationcan depositonthesurfaceoftheusedautomotivecatalysts,intheform ofdifferentphosphatespeciessuchasaglassy/amorphousphaseof Pb,ZnandCaphosphates.Inaddition,itwasfound[35–39]thatPis usuallyconcentratedintheforward-mostsectionofthemonolithic three-wayconverters(TWC).Adecreaseincatalyticactivityand changesincharacteristics,suchasalossofsurfacearea,inthefront sectionoftheTWC catalyticsystems havebeenassociated [36]

withextensivephosphorusdeposition.Inaddition,itwasreported

[40]thattheexposureofFe-zeoliteSCRcatalysttoPcanleadtoa lossofNOxconversionandanincreaseinNH3slip.Thiswaspartly

attributedtoalossofNH3storageabilityduetoPphysicalblockage.

Severalstudies [24,31,32,41–44] focussedonthe effect of P deactivation on both model V2O5-TiO2 and commercial V2O5

-WO3-TiO2catalysts.ThePpoisoningwasinvestigated[42,43]using

wetimpregnation of thecatalysts withan aqueoussolution of H3PO4.Thepoisoningstrengthwasfound[42]toberelativelylarge

atlowerreactiontemperaturesduetotheformationofdifferent deactivatingspeciesonthesurface.ThedecreaseinSCRactivity wasalsoobservedonV-basedcatalystswiththeadditionofH3PO4

asanextrusionbinder[45].InanattempttostudytheP poison-ingeffectbyusingdifferentapproachesforchemicaldeactivation

[24,31,32,46],itwasconcluded[42,43]that therealmechanism ofdeactivation cannotbereproduced bythe wetimpregnation methodoftenemployed.

Despitethenumerousinvestigations[24,31,32,41–44]carried outwithpoisonedV-basedcatalysts,theindividualeffectsofPas wellastheinfluenceofsimultaneouspoisoninginhydrothermal conditionsarestillnotsufficientlyknown.Thereexistsonlyafew studiesintheliterature[40,47,48]addressingtheimpactof differ-entinorganicpoisons(P,Ca,Mg,Zn,K)ontheperformanceofFe zeolites-basedNH3-SCRcatalysts.Itwasfoundthattheexposure

ofFe-zeolitestoPleadstoastrongdeactivationofthecatalysts. However,adetailedknowledgeabouttheeffectsrelatedtoP deac-tivationofCuzeolitesforNH3-SCRcatalysisisstilllacking.

Inthelight ofthesefindings,theeffortsinthecurrentwork werefocussedonstudyingthe effectsinduced byP onCu/BEA NH3-SCRcatalystsbyclarifyingtheirmechanismofdeactivation

under well-defined and more realistic conditions of poisoning. Themonolithsampleswereexposed toPat different tempera-turesbycontrolledevaporationofH3PO4 in thepresenceof5%

H2Oand 8%O2. Theoverall SCRoperationwastestedover the

freshCu/BEAcatalystswithdifferentCucontent(4and1.3wt%Cu) andcomparedtoP-poisonedCu/BEAsamples.Thereactionstudies duringNH3-storage/temperature-programmeddesorption(TPD),

NH3/NOoxidationandstandardNH3-SCRwereperformedinflow

reactorexperimentsintherangeof423–773K.Inaddition,a com-binationofseveralcharacterisationtechniqueswasapplied,such asinductivelycoupledplasmaatomicspectroscopy(ICP–AES), sur-faceareameasurements,pore sizedistribution,H2-temperature

programmedreduction(H2-TPR) andX-rayphotoelectron

spec-troscopy(XPS).Theanalysiswasdirectedtowardsclarifyingthe mechanismofPdeactivationofthecatalysts,byfocussingthe stud-iesonthenatureoftheformeddeactivatingspeciesonthesurface.

2. Experimental

2.1. Catalystpreparation

Cu/BEAcatalystswithdifferentCucontent(1.3and4wt%Cu) werepreparedfollowing theprocedureof ionexchange ofBEA

zeolite(SiO2/Al2O3=38,ZeolystInternational)withNaNO3(Merck)

andthenwithCu(CH3COO)2(Merck).Inthefirststep,theNa-form

ofBEAsampleswaspreparedbyexchanging50gofthezeoliteina solutionofNaNO3byvaryingtheconcentrationofthesolution(21.6

and108mMNaNO3,respectively).Theexchangewascarriedoutby

agitatingtheslurryatroomtemperaturefor1h,withtheinitialpH adjustedto6.6andkeptconstantusingNH4OH.Thesolidwasthen

filteredandwasheduntiltheneutralpHofthefiltratewasreached. Theaboveprocessincludingtheion-exchange,filteringand wash-ingwasrepeatedtwotimes.Inthesecondstage,theNa-formof BEAsamplesdriedat353Kfor12h,wereusedforthenextstep ofCuionexchangewithCu(CH3COO)2byvaryingtheCu

precur-sorconcentration(2.2and11mMCu(CH3COO)2,respectively).The

exchangewascarriedoutbyagitatingtheslurryatroom temper-aturefor1h,withtheinitialpHadjustedto6.0andkeptconstant duringthestirring.Afterfiltrationandwashingtheaboveprocess ofCuion-exchangewasrepeatedtwomoretimestogiveatotalof threeexchanges.Finally,theresultingpowderwasdriedat353K for12handcalcinedat723Kfor3h.

The calcined powder catalysts were used to coat cordierite monoliths. The monoliths were cut from a commercial honey-combcordieritestructure(length=20mm,diameter=22mmand celldensityof400cpsi)andheatedto773Kfor2h.Asolidphaseof 5wt%boehmite(DisperalD,Sasol,GmbH)dissolvedinaslurry mix-tureconsistingoftheliquidphase(distilledwater/ethanol=50/50) wasfirstusedfortheimpregnationofthecalcinedmonolithsin ordertoenhancetheattachmentof theion exchangedcatalyst. Thealumina-coatedmonolithswerecalcinedat773Kfor2h.Then, theprocedureconsistedofimmersingthemonolithsintoaslurry composedofaliquidphaseofequalamountsofdistilledwaterand ethanolandasolidphaseof5wt%boehmiteand95wt%catalyst. Thesolidintheslurrywas20%w/w.Theprocedureofthe immer-sion,blowingawaytheexcessslurry,drying(363Kfor2min)and heating(823Kfor2min)inairwasrepeatedseveraltimesuntil themonolithwascoatedwiththedesiredamountof washcoat (∼700mg).Finally,thewash-coated monolithswerecalcinedat 773Kfor2h.

2.2. PexposureofCu/BEAcatalystsinleanhydrothermal conditions

ThePpoisoningoftheCu/BEAmonolithsampleswasperformed byusingtheexperimentalset-upwhichhasbeendescribedindetail elsewhere[49,50].Themonolithcatalystwasinsertedinthemiddle oftheheatedzoneofahorizontalquartztubereactor,whichwas equippedwithaninsulatedheatingwirecontrolledbyEurotherm temperature-controller. The temperature was measuredwith a thermocouplepositionedabout10mminfrontofthemonolithand asecondoneplacedinthecentreofthemonolith.TosimulateP poisoninginleanhydrothermalconditions,anaqueoussolutionof H3PO4intheformofsteamwasfedintothequartzreactor(byusing

acontrolledevaporationandmixingviaaBronkhorstsystem)inthe presenceof5%H2O,8%O2andAr.Thetotalgasflowratewasheld

constantat3500mlmin−1,givingaspacevelocityof30,300h−1, basedonmonolithvolume.Theresultingmixturewasthenpassed overthemonolithsamples.Theprocedurewasdevelopedto com-paretheeffectsofpoisoningattwodifferenttemperaturesat573 and773K,whilethedurationoftheexposure(4.4h)waskept con-stant.Themonolithswerefirstexposedat573Kto50ppmPand thento100ppmPbyincreasingtheamountofH3PO4inthefeed.In

asimilarway,thePpoisoningatthehighertemperature(773K)was carriedoutbyusinganewmonolithsample.Todeterminetheeffect ofchangingthePconcentrationandthetemperatureof poison-ing,theactivitymeasurements(describedbelow)wereperformed overthefreshandP-poisonedcatalystsaftereachstepofP expo-sure.Topreventtheformationof(NH4)3PO4,aftertheprocedure

(3)

ofPpoisoning,anextensivecleaningofthereactorwascarriedout beforestartingtheactivitymeasurementsoverthepoisoned cata-lysts.Alllineswereheatedandmaintainedattemperaturesabove 423KtopreventwaterandH3PO4condensation.

2.3. Catalystcharacterisation

Theelementalanalysisof thefreshand P-poisonedcatalysts (crushedmonoliths)wasdeterminedbyanICP–AESafterLiBO2

-fusionandaciddigestionofthesamples.

The textural properties of the monolith samples previ-ously degassed at 523K for 3h were measured based on N2

adsorption–desorptionisothermsusingaMicromeriticsASAP2000 apparatus.BETsurfacearea(SBET)andtotalporevolume(Vpores)

werecalculatedusingtheBETand Barret–Joyner–Halenda(BJH) method, respectively. Pore size distributions were obtained by applyingtheBJHmodeltoN2desorptiondata.

Theexperimentalset-upusedfortheH2-TPRexperiments

com-prisesaverticalquartztubereactormountedinanelectricfurnace, partoftheassemblyoftheheat-fluxdifferentialscanning calorime-try(SetaramSensysDSC)instrument.Thegasflowintothereactor wascontrolledbyusingasystemofBronkhorstmassflow con-trollers.Priortoeachmeasurement,thecatalyst(approximately 0.1gofpowderofcrushedmonolithsamplesplaced onthe sin-teredbedofthequartztube)wasfirsttreatedwithamixtureof5% O2inArat773Kfor2h.Thetemperaturewasthendecreasedto

323Kunderthesamegasenvironment.AfterflushingwithonlyAr at323Kfor30min,aflowof1%H2/Ar(20mlmin−1)waspassed

throughthesampleat323Kfor20minandthenthetemperature inthepresenceof1%H2/Arwasraisedatarateof10Kmin−1upto

1073K.TheeffluentfromthereactorwasmonitoredusingaHiden HPR20quadrupolemassspectrometer(MS)equippedwitha capil-laryprobeconnecteddirectlytotheexitofthereactor.Theanalysis wasperformedbyrecordingtheMSsignalswithmasstocharge ratio(m/e)equalto2,18,20and32inpressureversustimemode. XPSdatawererecordedwithaThermofisherK-Alpha spectrom-eterusingnon-monochromaticAlK␣X-rayirradiation.Thepowder sampleswereaffixedonaCu-basedelectricallyconductingtape beforetheXPSanalysis.Ane-beamfloodgunwasusedforcharge compensationduringthespectralacquisition.Thebindingenergies (BE)ofallXPspectrawerecalibratedbyutilisingthereferenceC1s signallocatedat284.6eVandtheXPintensitieswerenormalised usingtheintensityoftheO1ssignalofeachXPspectrum.

2.4. Flowreactormeasurementswithmonolithcatalysts

Thereactionstudiesonthemonolithcatalystswereperformed ontheexperimentalset-updescribedabovefor thePpoisoning experiments.Approximately700mgcatalystwashcoatedonthe monolithwas usedin each experiment yielding a space veloc-ityof30,300h−1,basedonmonolithvolume.Thetotalgasflow washeldconstantat3500mlmin−1andcontrolledbyasystemof Bronkhorstmassflowcontrollers.Thewaterintheformofsteam wasintroducedintothereactor byusinga controlled evapora-tionandBronkhorstmixingsystem.Themonolithswerewrapped withquartzwooltoensurethatnogasslippedaroundthesample. Theoutletgascompositionfromthereactorflowwasmonitored andanalysedon-linewithrespecttoNO,NO2,N2O,NH3,andH2O

contentbyusing MKSMultiGas2030HSFTIRspectrometer.To maintaina constant catalytic behaviourover thecourseof the study,thecatalystsweredegreenedbyincreasingthetemperature to773KinAr;thenthesampleswerecleaned/conditionedwith 8%O2inArfor15minandthenthecatalystsweretreatedwitha

gasmixtureof400ppmNO+400ppmNH3+8%O2+5%H2Oand

balancingamountsofArfor30min.Priortoeachexperiment,the catalystswerepre-treatedat773KinArand8%O2for15min.

Table1

Flowreactormeasurementsperformedinapredefinedsequenceofstepsoverthe freshandP-poisonedCu/BEAmonolithcatalysts.

Samples Reactionstudies Fresh 1.NH3storage/TPD 2.NH3-SCR 3.NOoxidation 4.NH3oxidation P–poisoned 1.NH3-SCRupto573K 2.NOoxidationupto573K 3.NH3oxidationupto773K 4.NH3-SCRupto773K 5.NH3storage/TPD 6.NOoxidationupto773K 7.NH3oxidationupto773K(rep.)

ThefollowingexperimentsoverthefreshandP-poisoned cata-lystswerecarriedout:

(a)NH3storagetestsandTPDinthepresenceofH2O–Thecatalysts wereinitiallyexposedto400ppmNH3inthepresenceof5% H2Ofor40minat423K.AfterflushingwithAr+5%H2Ofor 30min,thetemperaturewasraisedto773Kwitharampspeed of10Kmin−1.TheoutletNH3concentrationwasmonitoredas afunctionoftimeandthenconvertedtothecumulativeNH3 storedduringtheuptakeperiodasapercentageoftheNH3fed, byintegratingtheareaincludedbetweentheinletNH3andthe outletNH3concentrationcurve.

(b)Flowreactorstudies–Theactivitymeasurementswerecarried outat423,473,523,573,673and773K.Theresultsforeach temperature wereobtained afterthe systemhad reacheda steady-stateandthenthereactortemperaturewasincreasedto thenexttargettestreactiontemperature.Inthisway,the exper-imentswereconductedwithin423–773Kwhilethereaction mixturewascontinuouslyfedduringthewholetemperature range.TheexperimentsofNH3orNOoxidationunderlean con-ditionswereperformedwithaninletgasmixtureconsistingof 8%O2,400ppmNH3(or400ppmNO),5%H2Oandabalanceof Ar.ThereactionstudiesofSCRwithNH3wereperformedwith aninletgasmixtureconsistingof8%O2,400ppmNH3,400ppm NO,5%H2OandabalanceofAr.

Forcomparisonoftheresults,thereactionstudiespriortoand after P poisoning were performedin a predefined sequence of experiments, presentedin Table 1.In the firststage, the activ-itymeasurementsofNH3storage/TPD,standardNH3-SCR,NOand

NH3oxidationwereconductedoverthefreshdegreenedcatalysts.

Then,thesamplesweresubjectedtoPpoisoningwith50/100ppm Pat573K,followedbyactivitymeasurementsbetweeneachstep ofexposurewiththedifferentconcentrationofH3PO4.Ina

sim-ilarway,theexperimentsofPpoisoningathighertemperatures (773K)wereperformedbyusinganotherfreshmonolithsample. DuetothepossibilityofformationoflooselyboundPspecieswhich caneasilyberemovedbyheatingthesampleathightemperatures, theP-poisonedsampleswerefirsttestedinstandardNH3-SCRand

NOoxidationupto573K(Table1).Then,theexperimentswere repeatedatvarioustemperatureswithin423–773K.

ToevaluatetheoverallSCRperformanceofthecatalysts,the outletconcentrationcurveswereusedtodeterminetheactivityper Cusite,expressedasaratiooftheamount(kmol)ofNOxreducedor

NH3convertedspeciespermolofCusitespersecond.Theresults

foreachtemperaturewereobtainedafterthesystemhadreached asteady-state.TheoutletNH3andNOxconcentrationsduringNH3

oxidationandNH3-SCRweremonitoredasafunctionoftimeand

thenconvertedtoNOxandNH3reacted,accordingtoEq.(1):

(4)

(NOin)and(NHin

3)aretheNOandNH3concentrationsatthereactor

inlet;(NOoutx )and(NHout3 )aretotalNOxandNH3concentrationsat

thereactoroutlet,respectively.

TheamountofreactedNOx(orNH3)perCusite,definedasthe

numberofNOx(NH3)molecules(kmol)convertedpermoleofCu

persecond(overthefreshandP-poisonedcatalysts)wascalculated byusingEq.(2),as:

kmolNOx(NH3)reactedpermolCu=



NOreactedx (NHreacted3 )(ppm×s)×TF(ml×min−1)×10−6(ppm−1)





22414(ml×kmol−1)×60(s×min−1)×mwashcoat(g)×Cu(mol×g−1cat)



×100 (2)

where, TF (mlmin−1)is the gas flow rate (3500mlmin−1) and mwashcoat(g)isthemassofthewashcoatonthemonolith.

To estimatethe degree of deactivation of thecatalysts, the reductionofNOxconversioninthereactionofNH3-SCRduetoP

poisoningwasestimatedbyusingEq.(3): ReductionofNOxafterpoisoning

=



NOreactedx (kmol)



Fresh−



NOreactedx (kmol)



Aged



NOreactedx (kmol)



Fresh

×100 (3)



NOreactedx



Freshand



NOxreacted



Agedaretheamounts(kmol)oftotal NOxconvertedpermolofCusitesoverthefreshandP-poisoned

catalystspersecond.

Ina similarway,thedecreasein theNH3 conversionduring

NH3-SCRwascalculatedaccordingtoEq.(3),byusingtheamounts

(kmol)ofNH3convertedoverthefreshandP-poisonedcatalysts.

3. Resultsanddiscussion

3.1. Chemicalcompositionandtexturalcharacteristicsofthe catalysts

3.1.1. ICP,BETsurfaceareaandporesizedistribution

TheICP–AESanalysisoftheCu/BEAcatalystswascarriedoutto quantifytheamountofCu,AlandSionallofthepowdersamples beforetheirwashcoating,whilePanalysiswasonlyperformedfor P-poisonedmonolithsamples.TheresultsarelistedinTable2.The composition-dependentchangesofthetexturalproperties(SBET,

Vpore)ofthefreshandP-poisonedCu/BEAcatalystswithdifferent

CuloadingsarealsosummarisedinTable2.Inaddition,BJHpore sizedistributionsfordifferentmonolithsarealsopresentedinFig.1. InthecaseofBEAion-exchangedsampleswithdifferentCu con-tent,theICP–AESanalysisindicatedthatthesynthesiswhichwas controlledbychangingtheconcentrationofCuintheion-exchange solutionhasresultedinCu/BEAcatalystswithCucontentsof4.0 and1.3wt%Cu.Inourpreviousstudy[10],elementalanalysisof thepowdercatalystsbeforetheirwashcoatingshowedthattheCu ionexchangelevelin4Cu/BEAsampleiscloseto88%.This sam-plecanberegardedasanover-exchangedsystemcomparedtothe 1.3Cu/BEAsamplewithalowerCucontentandalowerCuexchange levelof∼30%.Thisisalsoinagreementwithotherstudies[12,51]

intheliterature,wheretheCu/BEAcatalystshavebeenconsidered as“over-exchanged”whentheexchangedlevelbasedontheCu/Al ratiois morethan50%.It isworthmentioningthat,thecurrent ICP–AESanalysisshowedthatSi/Alratiotypicallyremainssimilar fortheanalysedsamples,whiletraceamountsofP(i.e. compara-bletotheinstrumentaldetectionlimit)werealsoobservedonthe freshsamples.

Conversely,PcontenttotheP-poisoned4Cu/BEAsampleswas noticeablyhigherthanthefreshcatalysts,indicatingthatthe expo-sureofthemonolithsampleswithH3PO4 inlean hydrothermal

conditionshasresultedtotheaccumulationofPinthesamples.The Pcontentdetectedforboth4Cu/BEAsamplesexposedtoH3PO4at

573K(P1)and773K(P2)was11.3and11.9%,respectively.Onthe

otherhand,onthe1.3Cu/BEAsamplewiththelowerCucontent, whichwaspoisonedunderidenticalconditionsasforthe4Cu/BEA catalyst(i.e.573K(P1),Paccumulationwasobservedtobeonly 1.4%.

Thetexturalcharacteristicsofthefresh,non-poisonedCu/BEA catalystssynthesised withdifferentCucontentshowedthatthe ion-exchanging of thezeolite withthehigher concentration of

Cu(i.e.4.0wt%Cu)resultedinaslightdecreaseofthetotal sur-faceareaandtheporevolumecomparedtothesamplewiththe lowerCucontent(i.e.1.3wt%Cu).Suchbehaviourisexpectedand indicatesthattheincorporationofCuionsoccursthrough substitu-tionofexistingNa+cationsattheion-exchangesites,andproceeds

withoutsignificantocclusionofporenetwork.Ontheotherhand, aconsiderabledifferenceinthetexturalcharacteristicsofthe P-poisonedCu/BEAcatalystswasobserved(Table2).Thepoisoningby Pwasfoundtohaveasignificanteffectonthespecificsurfacearea andporevolumeofthecatalystswhichwerediminishedcompared tothefreshmonolithsamples.Theseresultsarealsoconsistent withthedatapresentedin Fig.1,whereitcanbeseenthatthe depositionofH3PO4producedasignificantchangeintheporesize

distributionforthemonolithsexposedtoP.Itisvisiblethatthe fresh,non-poisonedmonolithsampleshaveahigherporevolume andtheporesizedistributionplotcontainstwopeaks,around3.6 and5.1nm.Thesmallerporesareattributedtointercrystalline dis-tancewithintheaggregates whereasthebiggerporesarelikely tooriginatefromtheinter-aggregatedistance.Itwasfoundthat theporeswithlargerdiameterofthebimodalmesoporous struc-turewerepartiallyfilledafterPpoisoningofthe4Cu/BEAcatalysts, indicatingtheoccurrenceofphysicaldeactivationmostlikelydue toporeblockingandcondensation.Accordingtotheseresults,it wassuggestedthatthedepositedPmayactasimpuritiesblocking thepores.Therefore,furtherinformationregardingthepossibility forchemicaldeactivationofthecatalystswasobtainedbyH2-TPR

ofthesamples. 3.1.2. H2-TPR

TheredoxbehaviouroftheCu/BEAcatalystsafterPpoisoning wasstudiedbyTPRanalysisperformedbyrecordingtheH2

con-sumedasfunctionofthetemperatureintherangeof323–1073K.

Fig.2presentstheH2-TPRprofilesforfresh1.3Cu/BEAand4Cu/BEA

samplesaswellassimilarmeasurementsfor thesamesamples poisonedwithPat573and773K.

ThereductionsignalobservedintheTPRprofileofthe4Cu/BEA samplerevealsthreemajorfeatures at454,520and 578K.The H2-TPRofCu/BEAcatalystswithdifferentCuloadingshasbeen

thoroughlydiscussedinvariousformerstudies[12,52–54].Based onthesereports,thefirstprominentsignalat454KintheTPRof the4Cu/BEAsamplewasattributedtothereductionofCu2+ionsin

Cu O Custructures,whichcanbeformedathighCuionexchange levels.It wasreported[12,52–54]thatthesedimericCuspecies observedforlargeCu-loadingscontainbridgingoxygenatomsthat canreactwithH2atcomparablylowtemperaturesthanisolated

Cu-sites.ThisisalsoingoodagreementwiththeH2-TPRcurveof

1.3Cu/BEAcatalystwiththelowerCucontent,wherethe tempera-turemaximashifttohighertemperatures(atabout671and839K) withdecreasingtheCucontent.Significantlylowertemperature maximaareobservedforthe4Cu/BEAcatalystascomparedtothe 1.3Cu/BEAsystem,whichclearlyshowsthatthereducibilityofthe over-exchanged4Cu/BEAsampleissubstantiallyhigherthanthat ofthe1.3Cu/BEAcatalyst.Thiscanbeassociatedwiththesmaller populationofisolatedCu-sitesinthecaseof4Cu/BEAsamplewhich

(5)

Table2

Elementalcomposition,specificsurfacearea(SBET)andtotalporevolume(Vpores)ofthefreshandP-poisonedCu/BEAmonolithcatalysts.

Monolithsample TemperatureofPpoisoning(K) Elementalanalysis(%) SBET(m2g−1) Vp(cm3g−1)

Cuc P Alc Sic 4Cu/BEAa 4 1.1 1.9 42 146 0.105 4Cu/BEA–P1b 573 4 11.3 1.9 42 116 0.0892 4Cu/BEA–P2b 773 4 11.9 1.9 42 109 0.0806 1.3Cu/BEAa 1.3 0.92 1.9 41.3 154 0.107 1.3Cu/BEA–P1 573 1.3 1.4 1.9 41.3 141 0.090

aFresh,nonpoisonedsample.

bP1/P2–PpoisonedsamplesafterexposureofthemonolithswithPat573and773K,respectively.

c Cu,AlandSicontentinthesamples(wt%)wasdeterminedbyICPanalysisofCu/BEApowdercatalystswithoutthemonolithandthebinder.

4

8

12

16

0,00 0,04 0,08 0,12 0,16

4

8

12

16

0,00 0,04 0,08 0,12 0,16 4Cu/BEA - P2 4Cu/BEA - P1

BJH

Desorption

dV/dD

Pore

Volume

(c

g

-1

) x

10

0

Pore

Diameter (

nm)

3.6

5.

1

A

4Cu/BEA 1.3Cu/BEA - P1 1.3Cu/BEA

B

3.

6

5.

1

Fig.1.BJHporesizedistributionofthefreshandP-poisonedat573K(P1)and773K(P2)Cu/BEAmonolithssampleswithdifferentCucontent(4and1.3wt%Cu): 4Cu/BEA–Fresh/P1/P2(A)and1.3Cu/BEA–Fresh/P1(B).

requiresalessfacile[12,52–54],two-stepreductionmechanism

[53]inwhichisolatedCu2+ionsareinitiallyreducedtotheCu+

intermediateandthentometallicCuspecies.

400 600 800 1000 0 200 400 600 800 1000 1200 1.3Cu/BEA - P1 1.3Cu/BEA 4Cu/BEA - P2 4Cu/BEA - P1 4Cu/BEA 67 1

83

9

52

0

H

2

consumption (ppm)

Temperature (K

)

45

4

57

8

Fig.2.H2-TPRofthefreshandP-poisonedat573K(P1)and773K(P2)Cu/BEA

monolithssampleswithdifferentCucontent(4and1.3wt%Cu).

TheTPRsignalsat520andat578Kforthe4Cu/BEAsamplecan alsobeinterpretedviatwo differentexplanationsbasedonthe formerstudies[12,52–55]intheliterature.ItwasshowninRef.

[12,52–54]thattheseH2 consumptionpeakscouldberelatedto

thetwo-stepreductionofCu2+toCu+(i.e.520Ksignal)followedby

Cu+toCu0(i.e.578Ksignal).Alternatively,byreferringtoanother

experimentalstudy[55],itcanalsobearguedthatthesetwo differ-entTPRpeaksareindicativeofthereductionoftwodifferenttypes ofCu2+sitesintoCu+species.

Fig. 2 clearly shows that the P-poisoning results in signifi-cantchanges in theTPRprofiles. The4Cu/BEA catalystsafterP poisoning are characterised withsignificantly higher reduction temperatures compared to that of the fresh 4Cu/BEA. More-over, this effectis more discerniblefor thecatalyst exposed to Pat573K.Inaddition,theTPRsignalintensitiesforP-poisoned samplesdecreaseddramaticallyincomparisonwiththefresh cat-alysts.The fraction of thereduced Cu sites (inmolg−1cat)and thetotalintegralH2 consumptionsignalsobtainedfromtheH2

-TPRresultsarepresented inTable3.Theseresultsshowedthat the total H2 consumption (6.16×10−4molg−1cat)of the fresh

4Cu/BEAcatalystcloselymatchestheCuloadinginthesame cata-lyst(6.30×10−4molg−1cat)).Suchbehavioursuggeststhatalmost 100%oftheexistingCu2+siteswerereducedduringtheTPR

experi-ments.Ontheotherhand,TPRdataforthepoisonedsamplesreveal that only76–78%oftheCusitesexisting onthefreshcatalysts remainedavailableforreductionafterPpoisoning.Inotherwords, thefractionofthereducedCuspeciesoverP-poisoned4Cu/BEA cat-alystsisabout20%lowerincomparisontothatofthefreshsample, indicatingtheattenuationofthenumberofavailableCusitesfor reduction.Inasimilarway,thetotalamountofH2consumption

(6)

Table3

CalculatedparametersviaH2-TPRandsurfacecompositionsoftheanalysedfreshandP-poisonedCu/BEAmonolithsamplesviaXPSanalyses.

Samples H2-TPR XPS

TotalH2consumed (molg−1cat)x10−4

TotalCureduced(%)a Cu(II)/(Cu(I)+Cu(0))b Cu(II)%c Cu/Sid P/Sid

4Cu/BEA 6.16 97.8 1.6 62 0.04 –

4Cu/BEA–P1 4.83 76.7 3.3 77 0.05 0.03

4Cu/BEA–P2 4.95 78.7 3.3 77 0.06 0.03

1.3Cu/BEA 1.97 96.4 1.0 50 0.01 –

1.3Cu/BEA–P1 1.73 84.3 0.3 25 0.01 –

aPercentoftotalCureducedwascalculatedbasedonthetotalamountofCu(molg−1cat)inthesamplesandthetotalintegralH2consumptionduringH2-TPR. b RelativeabundanceofCu(II)specieswithrespecttotheabundanceofallCu(I)andCu(0)species

c PercentabundanceofCu(II)specieswithrespecttothetotalabundanceofCu(II),Cu(I)andCu(0)species

d RelativesurfaceatomicratiosobtainedfromthecorrespondingintegratedXPSsignalsandatomicsensitivityfactors(ASF)

coincideswiththeCucontent(2.05×10−4molg−1cat)inthis sam-ple.Althoughtheeffectismuchmoresuppressedincomparisonto thesamplewiththehigherCuloading,thetotalH2consumption

ofthe1.3Cu/BEA–P1sampledecreasedby∼10%afterPpoisoning. In the light of these observations, it can be suggested that thepoisoningbyPfollowsbothphysicalandchemical deactiva-tionpathways.It is evidentthat theexposureof themonoliths withPchemicallydeactivatestheCu/BEAcatalystsbydecreasing thenumber oftheactive Cuspecies and hencehinderingtheir redoxcapabilities. Furthermore,Ppoisoning hasa considerable effectonthemetal zeolite interactionbyproducing Cu species whicharestronglybondedtotheframeworkoxygenresultingina highertemperatureofreduction.Moreover,itisalsolikelythat P-poisoningmayalsoleadtotheformationofCu-phosphatespecies. Thisisparticularlylikely asthePsourceusedin thepoisoning experimentswasH3PO4,whichcanreadilygeneratephosphates

uponitsdepositiononthecatalystsurface.Therefore,further infor-mationregardingthenatureoftheP-containingspeciesgenerated after thepoisoning process was obtainedvia XPS experiments whichwillbediscussedinSection3.1.3.

3.1.3. XPS

TheCu2p3/2 andP2pXPspectraofthefreshand P-poisoned

Cu/BEAsamplesarepresentedinFig.3.Thissetofdatacorresponds totrituratedpowdersampleswhichincludeamixtureofwashcoat togetherwiththemonolith.ItisworthmentioningthatXPS analy-seswerealsoperformedoverthesamesetofcatalystsamplesusing differentsamplingtechniques(e.g.byscrappingthewashcoatfrom themonolithwallsorbydirectlyanalysingtheinteriorwallsofthe monolithbybreakingthemonolithchannels),whichrevealed simi-larresultsascomparedtothetrituratedsamplesdiscussedbelow.It isknown[56]thattheshake-upsatellitepositionedatc.a.943eVin theCu2p3/2spectraisanindicationofthepresenceofCu(II)species.

TwodiscerniblefeaturesofthemainCu2p3/2signalseeninFig.3A

at934.7and933.6eVcanbeattributedtoCu(II)andCu(I)/Cu(0) species,respectively.TheCu(I)statecanbequalitatively differenti-atedfromCu(0)signalfromthecorrespondingLMMAugersignal,

[56]howeverduetolowCucontentoftheanalysedsamples, acqui-sitionofareliableLMMAugersignalwasnotfeasibleinthecurrent XPSmeasurements.Thus,thelatterCu2p3/2signalat933.6eVis

tentativelyassignedtoCu(I)and/orCu(0) species.Althoughthe current XPSresultsdo not providea direct evidence for ruling outtheexistenceofCu(0)species,presumablyexistenceofsuch ahighlyreducedCustateseemsratherunlikely.Comparisonofthe spectracorrespondingtothefreshandP-poisoned4Cu/BEA cata-lystspresentedinFig.3AindicatesthattheCu2p3/2peaksforboth

4Cu/BEA–P1(P2)samplesafterPpoisoningshowsignificant asym-metrywithrespecttothatofthefreshcatalyticsystem.Itisvisible thattheCu2p3/2spectraofthe4Cu/BEA–P1(P2)catalystsconsistof

stronglypronouncedshoulderonthehigherbinderenergysideat

934.7eVofthemainpeakat933.6eVwhiletheCu2p3/2peakofthe

fresh4Cu/BEAsamplelooksmoresymmetric.Thus,itis presum-ablethatthepresenceofPbringsaboutavisiblevariationinthe populationsofCuspecieswithdifferentoxidation states. There-fore,therelativeamountofCu(II)versusCu(I)/Cu(0)specieswas estimatedwiththehelpoftheshake-upsatellitesignal,sinceCu(I) andCu(0)speciesdonotrevealthisparticularsatellitesignal.Itis possibletocalculateCu(II)/(Cu(0)+Cu(I))ratiobycomparing inte-gratedareasoftheshake-upsatelliteandthemainCu2p3/2signals.

ThismethodisdescribedcomprehensivelyintheworkofBiesinger etal.[56].Asdescribedinthisformerreport[56],forthe calcula-tionofCu(II)/(Cu(0)+Cu(I))ratio,oneneedstoknowtheratioof theintegratedpeakareasofthemainCu2psignallocatedatc.a. 933–935eVandthesatellitefeatureatc.a.943eVforapureCuO referencematerial.Inourcalculations,weusedavalueof1.9for thispurpose,whichhasbeenreportedbyBiesingeretal.[56].The resultsobtainedviathisanalysisarepresentedinTable3.

XPSdatacorrespondingtobothfreshandP-poisoned4Cu/BEA catalystsindicatetheincreasedfractionofCu(II)intheP-poisoned sampleswithrespecttothefreshsystem.It wasfoundthatthe fractionoftheCu(II)afterPpoisoningofthe4Cu/BEAcatalystis about15%higherincomparisontothatoftheP-freesample.

Ontheotherhand,thedataforthesampleswith1.3wt%Cu load-ingdemonstratesufficientlylowerCu(II)%contentincomparison tothesampleswith4wt%Culoading,particularlyforP-poisoned samples.ItisimportanttonotethatCu(II)speciesareproneto reductionuponexposuretoX-rays.ReductionofCu(II)speciesdue toX-rayirradiationhasbeenreportedin formerstudies[57,58]

associated withCu-based catalytic systems.In thecurrent XPS measurements,wedidnotparticularlyfocusontheX-rayinduced reductionoftheanalysedsamples.However,itisworthmentioning thatwhentheCu2pXPspectraobtainedafter15minofX-ray expo-surewerecomparedwiththeXPspectraobtainedfromidentical setofsamplesafterlonger(i.e.2h)X-rayexposure;noapparent differencesweredetectedbetweenthesetwosetofdata.Onthe otherhand,thisobservationdoesnotexcludethepossibilityof X-rayinducedreductionofCu(II)siteswhichcouldhavetakenplace intheveryfirst15minoftheXPSanalysis.ThedatafromtheH2-TPR

showsthat98and96%ofthecopperinthe4Cu/BEAand1.3Cu/BEA wereintheformofCu(II)(calculationbasedonCu(II)toCu(0)inthe TPR),respectively.TheXPSdatashowsignificantlylessCu(II)and thereasoncouldbereductionofthecopperbythebeaminthefirst minutesoftheexperiments,asseenbyWilkenetal.[57].Ifthisis thecase,XPSgivesimportantinformationaboutthereducibilityof thecopperbetweenthedifferentsamples.TheXPSrevealthatthe copperspeciesin4Cu/BEAaremoredifficulttoreduceafter phos-phorousexposure,whichisinlinewiththehighertemperaturefor reductionintheTPR.Thisisnotseenforthelowloadingsample, butontheotherhandtheloadingisverylow,makingthisanalysis moredifficult.

(7)

Fig.3. Cu2p(A)andP2p(B)XPspectraofthefreshandP-poisonedat573K(P1)and773K(P2)Cu/BEAmonolithssampleswithdifferentCucontent(4and1.3wt%Cu).

WehavealsoanalysedtheP2psignalintheXPspectra(Fig.3B) for the samples given in Table 3. Phosphorous could only be detectedfortheP-poisoned 4Cu/BEAsampleswitha higherCu loading,whileP2psignalwasbelowtheinstrumentaldetection limit for the catalyst samples with the lower Cu content (i.e. 1.3Cu/BEA).ThisobservationsuggeststhatCusitesmaybe func-tioningasPOxanchoringsitesintheCu/BEAcatalyticsystem.The

P2pXPsignalsgiveninFig.3Brevealabroadfeaturelocatedat 134.4eV,whichcanbeassociatedwithphosphate,metaphosphate

[59,60],and/ordihydrogenphosphate[61]functionalities,asallof thesespeciesrevealrelativelysimilarP2pbindingenergyvalues fordifferentmetalcations.

BasedontheXPSresultscombinedwiththeH2-TPR,itis

appar-entthatPOxspecies(mostlikelyintheformofphosphates)strongly

interactwithactiveCusitesonthecatalysts,leavingasmaller num-berofaccessibleCusitesavailableforreductionviaH2-TPR.

3.2. Flowreactormeasurements

Furtherinformationregarding theeffectsinduced by chemi-caldeactivationofCu/BEAcatalystswithPwasobtainedviaflow reactormeasurementsonthewash-coatedmonolithsamples. 3.2.1. NH3-storageandTPD

In Fig. 4, time-dependent NH3 uptake (at 423K) and TPD

(423–773K)measurementsin thepresence of5% H2Oare

pre-sented.

ItisvisibleinFig.4AthatthepresenceofPinthe4Cu/BEA sam-plehasasignificanteffectonthebreakthroughprofileofammonia andonthecorrespondingNH3uptakebehaviourofthesystem

poi-sonedwith50ppmPandthenwith100ppmPat573K.TheNH3

signalduringtheexposureperiodismoresignificantlydelayedfor thefresh4Cu/BEAincomparisontothe4Cu/BEA–P1sample.On theotherhand,theNH3adsorptionexperimentsperformedover

the4Cu/BEA–P2catalysts(Fig.4B)showedNH3uptakebehaviour

similartothatofthefresh4Cu/BEAwithverysmalldeviationsin theNH3concentrationprofiles.Suchasituationisalsovalidforthe

1.3Cu/BEAcatalystwithlowerCucontentpresentedinFig.4C. TheanalysisoftheTPDdatainFig.4forthepoisonedsamples showssimilartrends,withoutanysignificanttemperatureshiftin thedesorptionmaxima.However,theNH3 signalsintheTPDof

theP-poisoned4Cu/BEAcatalystsreveallowerdesorption inten-sities(Fig.4A).Thiseffectismuchmorestronglypronouncedin theTPDprofilesofthe4Cu/BEAcatalystsPpoisonedat573Kwith

50and100ppmP.BasedonthedatapresentedFig.4D,itcanbe seenthattheextentofPpoisoningincreasesmonotonicallywith theincreasingamountofH3PO4inthefeed.

TheeffectofthePpoisoningat773KontheNH3storage

abil-ity,particularlyinthecaseofthe4Cu/BEA–P2(Fig.4B)islimited incomparisontothatforthe4Cu/BEA–P1sample.Thisbehaviour can beexplained byconsideringthe proposedmechanism ofP depositioninthestudy[31]investigatingdeactivationofV-based commercialSCRcatalystsbyH3PO4.Itwasshowninthisformer

studythatH3PO4moleculesstartcondensationreactionsforming

polyphosphoricacidswhichcanbedepositedonthesurfaceat tem-peratureslowerthan773K.Oncedepositedonthecatalystouter surface,thesespecieswerefound[31]tohavehighmobilityand abilitytopenetrateandevenbetrappedintothewallsbycapillary forces.

Inthelightofthesefindings,itcanbesuggestedthatPpoisoning ofthe4Cu/BEAcatalystsat773Khindersthechemical deactiva-tionofthesamplesduetoinefficientcondensation/polymerisation reactionsofthedepositedH3PO4atelevatedtemperatures,

result-ing in loosely bound POx species. It is worth mentioning that

XPSandICP–AESresultsforthe4Cu/BEA–P1/P2samplesgivenin

Tables2and3revealsimilarPsurfaceatomicratiosforthesetwo samples.Thisobservationpointstothefactthatchemicalnature ofthepoisoningPOxspeciescouldhaveamorecentralrolethan

thesolesurfacecoveragesofsuchfunctionalities.Alongtheselines, althoughthechemicalstructuresofthepoisoningPOxspeciesare

likelytobedifferentonthe4Cu/BEA–P1and4Cu/BEA–P2samples, suchstructuraldifferencesseemtobeelusivetocaptureviaXPSas thesetwosamplesyieldverysimilarP2pXPspectra(Fig.3B).

TheNH3uptakebehaviourofthefreshandP-poisonedat573K

1.3Cu/BEAcatalystispresentedinFig.4C.Despitethelower tem-peratureofPexposureofthemonolithsampleat573K,theresults showedanNH3storagebehaviour,whichissimilartothatofthe

freshcatalyst.TheamountofstoredNH3on1.3Cu/BEAgradually

decreaseswithincreasingthePconcentration.However,the poi-soningprocessismuchlesspronouncedcomparedtothatforthe “overexchanged”4Cu/BEAsamplewithhigherCucontent.Thus,it canbearguedthattheprocessofPaccumulationonthesurface hasoccurredpreferentiallyonthesocalled“overexchanged”Cu activesites(whichareabundantonthe4Cu/BEAsample).Thisis inagreementwiththecurrentICP–AESdatawhichshowedthat thePcontentisonly1.4%P,althoughtheconditionsofpoisoning wereidenticalforthe4Cu/BEA–P1catalyst.Inaddition,theH2-TPR

(8)

Fig.4.EvolutionofNH3concentrationasfunctionofthetimeduringNH3uptake(at423K)andTPD(423–773K)inthepresenceof5%H2OoverthefreshandP-poisonedat

573K(P1)and773K(P2)Cu/BEAcatalystsafterexposureofthesampleswith50and100ppmP:4Cu/BEA(AandB)and1.3Cu/BEA(C).Theinset(D)presentstheestimated amountsofNH3storedonthesurface(mmol)pergramcatalystsasfunctionofthetemperatureofPpoisoning.

P-poisoned1.3Cu/BEAcatalystcomparedtothechangesobserved forthe4Cu/BEAsamplewithhigherCucontentafterpoisoning. 3.2.2. NH3andNOoxidation

Fig.5showstheevolutionofNH3concentrationasafunctionof

thetimeduringNH3oxidation(423–773K)overthefreshand

P-poisonedCu/BEAcatalysts.ItcanbeseeninFig.5thatbothfreshand P-poisonedCu/BEAcatalystsexhibittypicalprofilesconsistentwith similarNH3oxidationstudiesreportedintheliterature[5,10,62].

Fig.5.EvolutionofNH3concentrationasfunctionofthetimeduringNH3oxidation

(423–773K)overthefreshandP-poisonedat573K(P1)and773K(P2)Cu/BEA catalystsafterexposureofthesampleswith50and100ppmP:4Cu/BEA(AandB) and1.3Cu/BEA(C).Thereactionstudieswereperformedinthepresenceof400ppm NH3,8%O2and5%H2O.

Accordingly, upon NH3 admission at 423K, NH3 breakthrough

appeared,withasteadyincreaseintheexitNH3concentrationover

time,graduallyconvergingtotheinletNH3concentrationlevelof

400ppm.TheCu/BEAcatalystsexposedtoPexhibitanNH3storage

at423Ksimilartothedatadiscussedintheprevioussection, indi-catingadecreasedNH3adsorptionabilitycomparedwiththefresh

Cu/BEAsamples.

Increasingthetemperatureupto573Kdoesnotresultinany significantdifferences intheNH3 oxidationbehaviourinanyof

theanalysedsamples.Duringthetransitionsfromalow temper-aturetoa highertemperature,ammoniadesorptionpeakswere alsoobserved,howeverthesepeaksarenotfullyshowninFig.5,in ordertopresenttheoxidationbehaviourinamorevisiblemanner. InFig.5,thelaterstagesoftheoxidationattemperatures≥573K showsignificantdissimilarities.NH3oxidationoccursoverthe

non-poisoned4Cu/BEAsample(Fig.5A)intherangeof573–773Kwitha maximumconversionat773K,whereNH3iscompletelyoxidised.

Theoverallprocesscanbedescribedinlinewiththeprevious liter-ature[5,10,17,62]andnegligibleamountsofNOxandN2Oisformed

(datanotshown),resultinginthatammoniaismostlyoxidisedto N2,accordingtoEq.(4),asfollows:

4NH3+3O2→2N2+6H2O (4)

Ontheotherhand,theresultsinFig.5AandCclearlyshowthat theNH3oxidationat673and773Kissubstantiallyloweroverthe

fresh1.3Cu/BEAcatalyst.Thisresultisingoodagreementwithour previousstudy[10],whereitwasfoundthattheNH3 oxidation

rateperCusiteissignificantlyhigherfortheover-exchangedCu samples.

Incontrasttothefreshcatalysts,theresultsinFig.5AandC (cor-respondingtothe4Cu/BEAand1.3Cu/BEAsamples)obtainedafter Ppoisoningat573KshowedaclearpoisoningoftheNH3oxidation.

Inasimilarway,theNH3oxidationoverthe4Cu/BEAcatalysts

poi-sonedat773Kwith50and100ppmPshowedaparalleltrendof progressiveNH3oxidationdeterioration(Fig.5B)withincreasingP

(9)

0 100 200 300 400 Total NO x (N O+ NO 2 ) conce. (ppm)

A

NO in NH 3 conce. (ppm) 423 K 473 K 523 K 573 K 673 K 773 K 0 100 200 300 400 NH3 in

B

423 K 473 K 523 K 573 K 673 K 773 K 0 100 200 300 400 0 10 20 30 40 NO 2 con ce. (ppm) Time (min)

C

0 100 200 300 400 0 10 20 30 40 Cu/BEA Cu/BEA-P1-50 ppm Cu/BEA-P1-100 ppm N2 O conce. (ppm) Time (min)

D

Fig.6.EvolutionoftotalNOx(A),NH3(B),NO2(C)andN2O(D)oftheoutletgascompositionduringstandardNH3-SCRinthetemperaturerangeof423–773Koverthefresh

andP-poisonedat573K4Cu/BEAcatalystafterexposureofthesamplewith50and100ppmP.Thereactionstudieswereperformedinthepresenceof400ppmNO(NH3),

8%O2and5%H2O.

comparisontothatobservedforthe4Cu/BEA–P1catalysts.Hence, theresultsclearlyshowthatbothparametersofpoisoning (temper-atureandPconcentration)areinfluentialinthestorageprocessof NH3anditsoxidation.Thelowertemperatureofpoisoningat573K

andthepresenceofPinhigherconcentrations(100ppmP)result inthelargestdecreaseintheNH3oxidationoverCu/BEAcatalysts.

ThiswasexplainedbyapartialeliminationoftheNH3adsorption

sitesduetoPdepositionontheCuactivesites.

Inaddition,therepeatedexperimentsofNH3oxidationshowed

thattheloweredNH3 oxidationconversionover thePpoisoned

catalystsisbecomingevenfurtherreducedincomparisontothat observedafterthefirstNH3oxidationexperiment.Thiscanbevery

clearlyseenespeciallyforthe4Cu/BEA–P1sample(Fig.5A)when thetemperatureofthereactionisincreasedto673K.Thisresult canbeexplainedbyconsideringthatthehightemperature treat-mentofthePpoisonedcatalystsintheexperiments(standardSCR, NOoxidation)beforerepeatingthesecondtestofNH3 oxidation

(seeTable1)hasresultedinthemigrationofcondensed H3PO4

fromtheporesofthecatalyststothesurfaceleadingtoadditional PdepositionandfurthereliminationofactiveCusites.

ThestudiescarriedoutovertheP-poisonedCu/BEAcatalysts regardingtheirperformanceinthereactionofNOoxidation(data notpresented)showedthattheNOconversiontoNO2isslightly

lowerthanthatobservedforthefreshsamples.Similartothe stud-iesofNH3oxidation,thisbecomesmoreobviouswithanincrease

ofthetemperatureto673and773KwhereNOoxidationprocessis moresuppressedforthepoisonedcatalystswhilethefreshCu/BEA catalystswerestillabletokeephigherNOoxidationactivity.

3.2.3. NOxreductionperformanceinthereactionofstandard

NH3-SCR

Fig.6presentstheconcentrationversustimecurvesforNOx(A)

andNH3(B)alongwiththeNO2(C)andN2O(D)intheoutletstream

whichwereusedtodeterminetheactivityofthefresh4Cu/BEA catalystinthereactionofstandardNH3-SCRinthetemperature

rangeof423–773KanditsdeactivationcausedbyPpoisoning with50and 100ppmPat573K.Inaddition,Fig.7displaysthe percentdecreaseintheNOx(Fig.7A)andNH3(Fig.7B)conversion

afterPpoisoningasafunctionofthetemperatureofthereaction. ThesevalueswerecalculatedbyusingtheamountofNOxreduced

andNH3convertedpermolofCusitespersecondoverthefresh

andP-poisonedcatalysts,asdescribedinSection2.Thecalculations werecarriedoutfortwodifferent4Cu/BEAcatalystsexposedto phosphorous(50and100ppmP)at573Kand773K.

ConcerningtheresultsgiveninFig.6,thefresh4Cu/BEA cata-lystexhibitstypicalNOxandNH3profiles(blackcurves)consistent

withtheresultsreportedinourpreviousstudy[10]focussedon theeffectofCuloadingontheSCRoperationoftheCu/BEA cata-lysts.Accordingly,uponNOandNH3admissiontotheoxygenrich

atmosphereat423K,theNOxbecomesimmediatelydetectableand

reachesasteadystatelevelofabout260ppm(Fig.6A).Ontheother hand,theexitNH3concentration(Fig.6B)steadilyincreaseswith

time, approachinga concentrationlevel ofabout260ppm after approximately40minwhere thesaturationofthesample with NH3isalmostcompletelyachieved.Afurtherincreaseinthe

reac-tiontemperatureintherangeof473–573Kincreasestheactivityof the4Cu/BEAcatalystforNOxreductionwithamaximumNOx

con-versionat573K.Theanalysisregardingtheproductsexitingthe reactoralsoshowedthattheoverallreactionhasresultedmainly inproductionofN2 (estimatedbasedonmeasuredNO,NO2and

N2O)accompaniedwiththeformationofsmallquantitiesofN2O.

TheconcentrationprofilesdemonstratingthechangesintheNOx

andNH3conversionwithincreasingthetemperatureupto573K

showedthatthereductionofNOoccursbyconsuming approxi-matelyequimolecularamountsofNH3 andNO,accordingtoEq.

(5),asfollows:

4NH3+4NO+O2→4N2+6H2O (5)

Theanalysisofthedataforthefresh4Cu/BEAcatalystathigher temperaturesrevealedthattheNOxconversionstartedtodecrease

withincreasingthetemperatureto673and773KwhiletheNH3

conversion shows continuousincrease where a maximum NH3

conversion(100%)isachieved(seeFig.6AandB).Thisbehaviour was previouslyexplained in theliterature [5,18,63–66], by the increasedNH3oxidationathighertemperatures.Furthermore,in

ourpreviousstudy[10],itwasshownthattheoxidationrateofNH3

perCusiteoccursfasterovertheCu/BEAcatalystwiththehigher Culoading(4wt%Cu)withrespecttothelowerCucontent(1.3wt% Cu).

(10)

400 500 600 700 0 5 10 15 20 25 30 35 400 500 600 700 800 0 5 10 15 20 25 30 35

50

ppm P at

573 K

10

0 ppm P at

573 K

50 ppm P at 773 K

10

0 ppm P at

773 K

Temperature (K)

Reduction of N

O

x

conversion

after

P

poi

soning

(%)

Temperature (K)

A

Reduction

of

NH

3

conversion

after

P

poi

soning (%)

B

Fig.7.ReductionofNOx(A)andNH3conversion(B)asfunctionofthetemperature(423–673K)ofthereactionofNH3-SCRover4Cu/BEAcatalystafterexposureofthe

samplewithPat573and773K.

Onthebasisoftheseresults,itisapparentthattheP-poisoning ofthe4Cu/BEAcatalystleadstoavisiblechangeinthe concen-trationprofilesoftotalNOx,NH3,NO2andN2O(Fig.6).TheNOx

removalperformancein comparisontothecorrespondingfresh samplewasdecreased,duetopoisoning.Thiscanbeclearlyseen inthewholetemperaturerangeof473–673Kforboth 4Cu/BEA samplesexposedto50and100ppmPat573K.Ourcalculations showedamaximumdeactivation(∼35%)ofthe4Cu/BEAcatalysts exposedtoPat573K(Fig.7AandB)whenthereactionofNH3-SCR

wasperformedatthelowesttemperature(423K).Thisdrasticloss ofactivityatthistemperatureislikelyrelatedtothechangesinthe redox-propertiesofthe4Cu/BEA–P1catalyst,asdiscussedearlier, whichcouldbeduetoblockingofactivesites.

Previousstudiesintheliterature[52,67,68]showedthatthe abilitytoundergoredoxCu2+Cu+cycleisimportantfortheSCR

activityandthattheredox-activeCusitesareinvolvedinthe kineti-callyrelevantstepoftheSCRreaction.Thus,itcanbeexpectedthat theformationofphosphatespeciesonthesurfaceprobably pro-hibitstheCuactivesitestoparticipateintheCu2+Cu+redoxcycle

duringtheSCRreaction.Further,theanalysispresentedinFig.7

showedthat thedeactivationofthe4Cu/BEAcatalystdecreases withincreasingthe SCRreactiontemperature upto 673K. The decreaseintheNOxandNH3 conversionafterPpoisoningofthe

4Cu/BEAcatalyst(poisonedat573K)isabout15%at473K,and thedeactivationslowlydecreasestoabout10%at573K. Consid-eringthattheoverallprocessofreductionofCuspeciesoverthe 4Cu/BEA–P1catalystisshiftedtowardshighertemperatureregion, itcanbesuggestedthatthispartiallyrecoversthelossof activ-itycausedbyPwithincreasingthereactiontemperature.Another possibleexplanationcouldbedesorption/evaporationofthe con-densedH3PO4acidcausingphysicalblockageoftheporestructure

atincreasingthereactiontemperatures.

Thisbehaviour was also observed for the4Cu/BEA catalyst, P poisoned at 773K (the data regarding the SCR performance of the sample are not presented) although the deactivation (Fig.7)wasfoundtoberatherlimitedincomparisontothatforthe 4Cu/BEA–P1.Inparticular,thiscanbeclearlyseen(Fig.7)whenthe SCRmeasurementswereconductedat423Kforthe4Cu/BEA–P1 catalyst.The 4Cu/BEA–P1catalyst hasa maximumdeactivation of∼35%,whilethe4Cu/BEA–P2samplelostonlyabout16%ofits activity.Asitwasdiscussedabove,thehighertemperatureofP poisoningofthe4Cu/BEA catalystat773Kcompared tothat at 573Klimits(tosomeextent)theeffectofchemicaldeactivation ofthesamplesandPdepositionontheactiveCusites.Inanother work,itwasshown[31]thatoncePispresentinthegasphase, reactionswithO2andH2OmaythenformH3PO4,whichmaythen

start condensationreactionsand lead totheformation of ultra fineparticles.Inparticular,condensationofthesespecieshasbeen estimated[31]tohappenattemperatureslowerthan773K.

Anotherimportantaspectregardingthecatalyticbehaviourof thestudiedfreshandP-poisoned4Cu/BEAsamplesisthedifference betweentheNOxconversionswithincreasingthetemperatureto

773K.ItcanbeseeninFig.6A,thatNOxreductionprocessbyNH3

occurredonthe4Cu/BEA–P1catalystswithahigherNOxconversion

andalowerconcentrationofgaseousNOxspeciesexitingthe

reac-torcomparedtothefresh4Cu/BEAsample.Inaddition,unreacted NH3,whichisalsocommonlyreferredtoasNH3slip,wasdetected

at673and773KfortheP-poisonedcatalysts(about15ppm).These resultswereingoodagreementwiththedatareportedinSection

3.2.2andwerefoundtooriginatemostlyfromthelowerselectivity towardsNH3oxidation(Fig.5A).

Inthelightofthefindings,itcanbearguedthatthePpoisoning followsbothphysicalandchemicaldeactivationandPchemically deactivatesCu/BEAcatalystsbychangingtheirredoxproperties. Furthermore,PdepositionoccursmainlyontheactiveCuspecies responsibleforthecatalyticreductionofNOxbyNH3.Itis

possi-blethattheporecondensationofH3PO4incombinationwithpore

blockingistheprevailingmechanisminthebeginningofthe pro-cessofPdeposition.However,oncedeposited,Pspeciescanalso migrateonthesurfaceandpartiallycovertheactiveCusites.In addition,itcanbesuggestedthat theaccumulatedPactsasan effectivepoisoninducingchemicaldeactivationbyreducingthe numberoftheactivesitesthanasimpurityblockingtheporesof thecatalysts.

FurthertheactivitymeasurementsinthereactionofNH3-SCR

were alsoconducted over thefresh and P-poisoned 1.3Cu/BEA catalystswithsignificantlylowerCucontent(1.3wt%Cu).These experimentsarepresentedinFig.8.Asdescribedearlier,the mono-lithsampleswereexposedtoPwith50and100ppmPat573Kby changingtheconcentrationofH3PO4inthefeed.Fromtheresults

giveninFig.8AandB,showingtheevolutionoftotalNOxandNH3

concentrationprofilesinthetemperaturerangeof423–773K,it canbeseenthatPpoisoningdidnotresultinanysignificant deac-tivationofthesampleevenafterexposureofthemonolithwith 100ppmPat573K.Theonlynoteworthyindicationregardingthe effectofPcanbeseenwhenthetemperatureoftheSCRreaction wasincreasedto773KatwhichahigherNOxreductionactivity

thanthefreshcatalyticsystemwasobserved.

Basedonthedatadiscussedsofar,itcanbearguedthatP accu-mulationonthesurfacewithchemicaldeactivationoccurs prefer-entiallyonthesocalled“overexchanged”Cuactivesiteswhichare abundantinthe4Cu/BEAsamplewiththehigherCuloading.This

(11)

0 100 200 300 400 Total NO x (N O+N O2 ) conce. (ppm)

A

NO in NH 3 conce. (ppm) 423 K 473 K 523 K 573 K 673 K 773 K 0 100 200 300 400 NH3 in

B

423 K 473 K 523 K 573 K 673 K 773 K 0 100 200 300 400 0 2 4 6 8 10 NO 2 conce. (ppm ) Time (min)

C

0 100 200 300 400 0 2 4 6 8 10 Cu/BEA Cu/BEA-P1-50 ppm Cu/BEA-P1-100 ppm N2 O conce. (ppm ) Time (min)

D

Fig.8.EvolutionoftotalNOx(A),NH3(B),NO2(C)andN2O(D)oftheoutletgascompositionduringstandardNH3-SCRinthetemperaturerangeof423–773Koverthefresh

andP-poisonedat573K1.3Cu/BEAcatalystafterexposureofthesamplewith50and100ppmP.Thereactionstudieswereperformedinthepresenceof400ppmNO(NH3),

8%O2and5%H2O.

argumentwasconfirmedbycalculatingtheratiooftheamountof NOx(inkmol)reducedorNH3 convertedpermolofCusitesper

second.Thecalculationswereperformedforvarioustemperatures

andtheresultsareplottedinFig.9.Itshouldbenotedthatthisis notarate,sincetheconversionishighandtheplugflowbehaviour mustbeconsideredforratecalculations.ThedatainFig.9givesa

0,0

0,5

1,0

1,5

2,0

2,5

0,0

0,5

1,0

1,5

2,0

2,5

NO

x

reduced

(k

mol/mol

Cu*s

)

A

4Cu/BEA

Cu/BEA Cu/BEA - P1, 50 ppm P Cu/BEA - P1, 100 ppm P

NH

3

converted

(kmo

l/

m

o

l Cu*s

)

B

400

50

0

60

0

70

0

80

0

0

1

2

3

4

5

6

7

400

50

0

60

0

70

0

800

0

1

2

3

4

5

6

7

NO

x

redu

ce

d (

km

ol

/mol Cu*s)

Temperature (K)

C

1.3Cu/BE

A

NH

3

converte

d

(kmo

l/m

ol Cu*s

)

D

Fig.9. EstimatedamountsofNOxreducedandNH3converted(kmol)permolCuactivesitespersecondonthesurfaceduringstandardNH3-SCRinthetemperaturerange

(12)

measureofhowtheconversionpersiteischangedindifferent con-ditions.However,theamountsofreducedNOxorconvertedNH3

speciespermolofCusitesaremoresignificantlydecreasedinthe caseofthe4Cu/BEAsamplewiththehigherCucontentafterP poi-soningcomparedto1.3Cu/BEA.Theexpectedincreaseintheratioof thereducedNOxpermolofCusitesat773KfortheP-poisoned

cat-alystswithrespecttothecorrespondingfreshsamples,asindicated inFig.9,canbeattributedtothehigheramountsofNH3available

forthe SCRdue tothelowered selectivitytowardsNH3

oxida-tion.Thereasonforthisisthatthe“over-exchanged”Cusitesthat aremainlyresponsibleforammoniaoxidation,aremoreseverely poisoned.

4. Conclusions

TheeffectsinducedbyPoverCu/BEANH3-SCRcatalystswith

differentCuloadings(4and1.3wt%Cu)werestudiedasa func-tionofthetemperatureofpoisoningandPconcentrationinthe feed.TosimulatePpoisoninginleanhydrothermalconditions,the monolithcatalystswereexposedtodifferentconcentrationsofPby controlledevaporationofH3PO4,inthepresenceof8%O2and5%

H2O.TheprocedurewasdevelopedtocomparetheeffectsofP

poi-soning(50and100ppmP)attwodifferenttemperatures:573and 773K.The reactionstudiesinvolvingNH3-storage/TPD, NH3/NO

oxidationandstandardNH3-SCRwereperformedinflowreactor

experimentsintherangeof423–773K.Inaddition,acombination ofdifferentcharacterisationtechniques(ICP–AES,BETsurfacearea measurements,poresizedistribution,H2-TPRandXPS)wasapplied

toprovideusefulinformationregardingthemechanismofP deacti-vationofthecatalysts.Basedonthesestudies,themainconclusions aresummarised,asfollows:

(a)ThepoisoningoftheCu/BEAcatalystsbyPfollowsbothphysical and chemical deactivation. It wasfoundthat the pore con-densationofH3PO4 incombinationwithporeblockingisthe

mechanismoftheprocessofPdeposition,indicatingthe occur-renceofphysicaldeactivation.However,themeasuredoverall deactivationwasrelatedmostlytooccurduetochemical deac-tivationbyreducingthenumberoftheactiveCusitesandhence theredoxpropertiesofCu/BEAcatalysts.

(b)ItwasfoundthattheprocessofPaccumulationonthesurface occurspreferentiallyonthesocalled“overexchanged”Cuactive siteswiththeformationofphosphatespecies.Thehigherextent ofdeactivationofthe4Cu/BEAcatalystthanthatforthesample withlowerCucontent(1.3wt%Cu)wasexplainedbythe pres-enceof“overexchanged”Cuactivesiteswhichareabundanton the4Cu/BEAsample.

(c)ThePpoisoningwasfoundtohaveamoresevereeffectwhen conducted at 573K compared to that at 773K. The results clearly showed that theP poisoning at lowertemperatures (573K)hasamoresignificantnegativeeffectontheNH3uptake

behaviour ofthe Cu/BEA catalystsdue toa partial elimina-tionoftheNH3 adsorptionsitesonthesurface. Inaddition,

the NH3 oxidation was loweredand alsoa decrease in the

NOxremovalperformanceincomparisontothe

correspond-ingfreshsampleoverthetemperaturerangeof473–673Kwas observed.

(d)Amaximumdeactivation(ofabout35%)ofthe4Cu/BEAcatalyst exposedtoPat573Kwasfoundtooccurwhenthereactionof NH3-SCRwasperformedatthelowesttemperature(423K).On

theotherhand,at673Knosignificantdeactivationwasfound and evenat thehighertemperature (773K)theNOx

reduc-tionperformanceoftheP-poisonedCu/BEAwasincreased.The reasonforthiswasfoundtooriginatemostlyfromthelower selectivitytowardsNH3oxidation.

Acknowledgment

ThisworkhasbeenperformedattheCompetenceCentrefor CatalysisincollaborationwithCombustionEngineResearchCentre andBilkentUniversityinTurkey.Wewouldliketoacknowledgethe Swedishfoundationforstrategicresearch(F06-0006)andChalmers InitiativeTransport,forfunding.

References

[1]S.Brandenberger,O.Kröcher,A.Tissler,R.Althoff,Catal.Rev.Sci.Eng.50(2008) 492–531.

[2]H.Bosch,F.Janssen,Catal.Today2(1988)369–379. [3]P.Forzatti,Catal.Today62(2000)51–65.

[4]E.Tronconi,I.Nova,C.Ciardelli,D.Chatterjee,M.Weibel,J.Catal.245(2007) 1–10.

[5]H.Sjövall,L.Olsson,E.Fridell,R.J.Blint,Appl.Catal.B:Environ.64(2006) 180–188.

[6]R.M.Heck,Catal.Today53(1999)519–523.

[7]C.Ciardelli,I.Nova,E.Tronconi,D.Chatterjee,B.Bandl-Konrad,M.Weibel,B. Krutzsch,Appl.Catal.B:Environ.70(2007)80–90.

[8]H.Sjövall,R.J.Blint,L.Olsson,Appl.Catal.B:Environ.92(2009)138–153. [9]S.Shwan,J.Jansson,J.Korsgren,L.Olsson,M.Skoglundh,Catal.Today197

(2012)24–37.

[10]O.Mihai,C.R.Widyastuti,S.,Andonova,K.,Kamasamudram,J.,Li,S.,Joshi,N.W., Currier,A.,Yezeretz,L.Olsson,submitted.

[11]R.Nedyalkova,S.Shwan,M.Skoglundh,L.Olsson,Appl.Catal.B:Environ. 138–139(2013)373–380.

[12]J.H.Kwak,D.Tran,S.D.Burton,J.Szanyi,J.H.Lee,C.H.F.Peden,J.Catal.287(2012) 203–209.

[13]M.Colombo,I.Nova,E.Tronconi,Appl.Catal.B:Environ.111–112(2012) 433–444.

[14]M.Wallin,C.-J.Karlsson,M.Skoglundh,A.Palmqvist,J. Catal.218(2010) 354–364.

[15]J.H.Kwak,R.G.Tonkyn,D.H.Kim,J.Szanyi,ChH.F.Peden,J.Catal.275(2010) 187–190.

[16]B.Modén,J.M.Donohue,W.E.Cormier,H.X.Li,Stud.Surf.Sci.Catal.174(2008) 1219–1222.

[17]M.Colombo,I.Nova,E.Tronconi,Catal.Today151(2010)223–230. [18]M.Colombo,I.Nova,E.Tronconi,Catal.Today197(2012)243–255. [19]M.Iwamoto,H.Yahiro,K.Tanda,N.Mizuno,Y.Mine,S.Kagawa,J.Phys.Chem.

95(1991)3727–3730.

[20]M.H. Groothaert,J.A.vanBokhoven,A.A.Battiston,B.M.Weckhuysen,R.A. Schoonheydt,J.Am.Chem.Soc.125(2003)7629–7640.

[21]B.Modén,P.DaCosta,B.Fonfé,D.K.Lee,E.Iglesia,J.Catal.209(2002)75–86. [22]M.Y.Kustova,S.B.Rasmussen,A.L.Kustov,C.H.Christensen,Appl.Catal.B:

Environ.67(2006)60–67.

[23]D.Nicosia,I.Czekaj,O.Kröcher,Appl.Catal.B:Environ.77(2008)228–236. [24]O.Kröcher,M.Elsener,Appl.Catal.B:Environ.77(2008)215–227.

[25]V.Kröger,T.Kanerva,U.Lassi,K.Rahkamaa-Tolonen,M.Vippola,R.L.Keiski, Top.Catal.45(2007)153–157.

[26]V.Kröger,M.Hietikko,U.Lassi,J.Ahola,K.Kallinen,R.Laitinen,R.L.Keiski,Top. Catal.30/31(2004)469–473.

[27]V.Kröger,M.Hietikko,D.Angove,D.French,U.Lassi,A.Suopanki,R.Laitinen, R.L.Keiski,Top.Catal.42/43(2007)409–413.

[28]V.Kröger,T.Kanerva,U.Lassi,K.Rahkamaa-Tolonen,T.Lepistö,R.L.Keiski,Top. Catal.42/43(2007)433–436.

[29]T.Kanerva,V.Kröger,K.Rahkamaa-Tolonen,M.Vippola,T.Lepistö,R.L.Keiski, Top.Catal.45(2007)137–142.

[30]A.Williams,J.,Burton,R.L.,McCormick,T.,Toops,A.A.,Wereszczak,E.E.,Fo, M.J.,Lance,G.,Cavataio,D.,Dobson,J.,Warner,K.,Nguyen,D.W.Brookshear, SAEInternational2013-01-0513.

[31]F.Castellino,S.B.Rasmussen,A.D.Jensen,J.E.Johnsson,R.Fehrmann,Appl.Catal. B:Environ.83(2008)110–122.

[32]M.Klimczak,P.Kern,T.Heinzelmann,M.Lucas,P.Claus,Appl.Catal.B:Environ. 95(2010)39–47.

[33]D.R.Liu,J.-S.Park,Appl.Catal.B:Environ.2(1993)49–70.

[34]M.J.Rokosz,A.E.Chen,C.K.Lowe-Ma,A.V.Kucherov,D.Benson,M.C.Paputa Peck,R.W.McCabe,Appl.Catal.B:Environ.33(2001)205–215.

[35]S.A.Culley,T.F.,McDonnell,D.J.,Ball,C.W.,Kirby,S.W.Hawes(1996)SAE Tech-nicalPaperSeries961898:13-21.

[36]D.D.Beck,J.W.Sommers,C.L.DiMaggio,Appl.Catal.B:Environ.11(1997) 257–272.

[37]D.E.Angove,N.W.Cant,Catal.Today63(2000)371–378.

[38]C.C.Webb,G.J.J.Bartley,B.B.Bykowski,G.Fransworth,M.Riley,JSAE20030269 (2003)1–12.

[39]G.C.Joy,F.S.,Molinaro,E.H.HomeierEH.(1985)SAETechnicalPaperSeries 852099:53-64.

[40]R.G.Silver,M.O.Stefanick,B.I.Todd,Catal.Today136(2008)28–33. [41]D.Nicosia,M.Elsener,O.Kröcher,P.Jansohn,Top.Catal.42-43(2007)333–336. [42]J.P. Chen, M.A.Buzanowski, R.T. Yang, J. AirWaste Manage. 40 (1990)

1403–1409.

(13)

[44]J.Beck,R.Muller,J.Brandenstein,B.Matschenko,J.Matschke,S.Unterberger, K.R.G.Hein,Fuel84(2005)1911–1919.

[45]J.Blanco,P.Avila,C.Barthelemy,A.Bahamonde,J.A.Odriozola,J.F.Garciadela Banda,H.Heinemann,Appl.Catal.B:Environ.55(1989)151–164.

[46]V.Kröger,U.Lassi,K.Kynkäänniemi,A.Suopanki,R.L.Keiski,Chem.Eng.J.120 (2006)113–118.

[47]R.Silver,M.Stefanick,B.Todd,Catal.Today136(2008)28–33.

[48]P.Kern,M.Klimczak,T.Heinzelmann,M.Lucas,P.Claus,Appl.Catal.B:Environ. 95(2010)48–56.

[49]S.Andonova,V.Marchionni,M.Borelli,R.Nedyalkova,L.Lietti,L.Olsson,Appl. Catal.B:Environ.132–133(2013)266–281.

[50]S.Andonova,V.Marchionni,L.Lietti,L.Olsson,Top.Catal.56(2013)68–74. [51]G.Centi,S.Perathoner,Appl.Catal.A:Gen.132(1995)179–259.

[52]B.Moden,J.M.Donohue,W.E.Cormier,H.-X.Li,Zeolitesandrelatedmaterials: trends,targetsandchallenges,in:A.Gédéon,F.Massiani,F.Babonneau(Eds.), Proceedingsof4thInternationalFEZAConference,Elsevier,2008.

[53]P.DaCosta,B.Modén,G.D.Meitzner,D.K.Lee,E.Iglesia,Phys.Chem.Chem. Phys.4(2002)4590–4601.

[54]R.Bulánek,B.Wichterlová,Z.Sobalík,J.Tich ´y,Appl.Catal.B:Environ.31(2001) 13–25.

[55]J.Li,N.Wilken,K.Kamasamudram,N.W.Currier,L.Olsson,A.Yezerets,Top. Catal.56(2013)201–204.

[56]M.C.Biesinger,L.W.M.Lau,A.R.Gerson,R.S.C.Smart,Appl.Surf.Sci.257(2010) 887–898.

[57]N.Wilken,R.Nedylkova,K.Kamasamudram,J.Li,N.W.Currier,R.Vedaiyan,A. Yezerets,L.Olsson,Top.Catal.56(2013)317–322.

[58]W.Grünert,N.W.Hayes,R.W.Joyner,E.S.Shpiro,M.R.H.Siddiqui,G.N.Baeva,J. Phys.Chem.98(1994)10832–10846.

[59]J.F.Moulder,W.F.Stickle,P.E.Sobol,K.D.Bomben,in:J.Chastain(Ed.),Handbook ofX-RayPhotoelectronSpectroscopy,Perkin-Elmer,EdenPrairie,Minnesota, 1992.

[60]Y.Barbaux,M.Dekiouk,D.LeMaguer,L.Gengembre,D.Huchette,J.Grimblot, Appl.Catal.A:Gen.90(1992)51–60.

[61]P.-H.Lo,W.-T.Tsai,J.-T.Lee,M.-P.Hung,Surf.Coat.Technol.67(1994)27–34. [62]O.Kröcher,M.Devadas,M.Elsener,A.Wokaun,N.Söger,M.Pfeifer,Y.Demel,

L.Mussmann,Appl.Catal.B:Environ.66(2006)208.

[63]T.Komatsu,M.Nunokawa,I.S.Moon,T.Takahara,S.Namba,T.Yashima,J.Catal. 148(1994)427–437.

[64]H.Sjöval,L.Olsson,R.J.Blint,J.Phys.Chem.C113(2009)1393–1405. [65]A.Grossale,I.Nova,E.Tronconi,Catal.Today136(2008)18–27.

[66]N.Wilken,K.Wijayanti,K.Kamasamudram,N.W.Currier,R.Vedaiyan,A. Yez-erets,L.Olsson,Appl.Catal.B:Environ.111–112(2012)58–66.

[67]S.Kieger,G.Delahay,B.Coq,B.Neveu,J.Catal.183(1999)267–280. [68]G.Delahay,B.Coq,S.Kieger,B.Neveu,Catal.Today54(1999)431–438.

Şekil

Fig. 1. BJH pore size distribution of the fresh and P-poisoned at 573 K (P1) and 773 K (P2) Cu/BEA monoliths samples with different Cu content (4 and 1.3 wt% Cu):
Fig. 3. Cu2p (A) and P2p (B) XP spectra of the fresh and P-poisoned at 573 K (P1) and 773 K (P2) Cu/BEA monoliths samples with different Cu content (4 and 1.3 wt% Cu).
Fig. 5 shows the evolution of NH 3 concentration as a function of the time during NH 3 oxidation (423–773 K) over the fresh and  P-poisoned Cu/BEA catalysts
Fig. 6. Evolution of total NO x (A), NH 3 (B), NO 2 (C) and N 2 O (D) of the outlet gas composition during standard NH 3 -SCR in the temperature range of 423–773 K over the fresh and P-poisoned at 573 K 4Cu/BEA catalyst after exposure of the sample with 50
+3

Referanslar

Benzer Belgeler

amac›, 2007 y›l› Samsun ‹li perinatal mortalite h›- z›, erken ve geç neonatal mortalite h›z›, bebek mortalite h›z› ve ölüm nedenlerini, Samsun ‹l

We used the structural equation model to determine what role risk-taking played in the relationship between impulsiveness and political content sharing on social media and what

işletmeler ve liderlikte dünya görüşünün etkisi ve gelişen etik ve sorumlu işletmelerde değer tabanlı liderlik kavramlarının sentezi olan bu kavramlar, okuyucuya

Tedavi somaSl ya~am suresinin tUmbru makrosko- bik olarak total pkanlml~ lie am eliyat somaSl radyo- terapi uygulanml~ olgularda daha uzun oldugu.. uygun \'akalarda nuks

At the regional level of East U.P., inspite of the fact that the Muslims experienced the exposure to western influences at a much later stage, a variety of factors contributed

The turning range of the indicator to be selected must include the vertical region of the titration curve, not the horizontal region.. Thus, the color change

As a result of long studies dealing with gases, a number of laws have been developed to explain their behavior.. Unaware of these laws or the equations

Birden fazla kelimenin bir araya gelerek bir kavramı veya bir nesneyi ad olarak karşılamak için oluşturduğu dil birliklerine kelime grubu denir.. Kelime grupları iki