• Sonuç bulunamadı

Calculation of the soft-mode frequency for the alpha – beta transition in quartz

N/A
N/A
Protected

Academic year: 2021

Share "Calculation of the soft-mode frequency for the alpha – beta transition in quartz"

Copied!
3
0
0

Yükleniyor.... (view fulltext now)

Tam metin

(1)

Optik127(2016)4470–4472

ContentslistsavailableatScienceDirect

Optik

j ou rn a l h o m e p a g e :w w w . e l s e v i e r . d e / i j l e o

Calculation

of

the

soft-mode

frequency

for

the

alpha

beta

transition

in

quartz

H.

Yurtseven

a,∗

,

O.

Tari

b

aDepartmentofPhysics,MiddleEastTechnicalUniversity,06531Ankara,Turkey

bDepartmentofMathematicsandComputerScience,IstanbulArelUniversity,Büyükc¸ekmece,34537Istanbul,Turkey

a

r

t

i

c

l

e

i

n

f

o

Articlehistory: Received21December2015 Accepted19January2016 Keywords: Softmode Alpha-betatransition Quartz

a

b

s

t

r

a

c

t

The␣–␤structuraltransitionoccursinquartzatTC=846K.Thefrequencyofthesoftmode

associ-atedwiththevolumeincrease,decreaseswithincreasingtemperatureasthetransitiontemperatureis

approached.

Inthisstudy,wecalculatethesoft-modefrequencyasafunctionoftemperatureusingthevolumedata

bymeansofthemodeGrüneisenparameterforthe␣–␤transitioninquartz.

Ourcalculatedfrequenciesofthesoft-modeagreewiththeobserveddatafromtheliterature.This

showsthatthemethodofcalculatingthesoftmodefrequencyfromthecrystalvolumeisadequate,

whichcanexplainthesoftmodebehaviorassociatedwiththe␣–␤transitioninquartz.

©2016ElsevierGmbH.Allrightsreserved.

1. Introduction

Quartz exhibits a phase transition by lowering the sym-metry from the high-temperature hexagonal ␤ phase to the low-temperaturetrigonal phase at 847.5K [1]. It wasfound someyears agothat aweakmodeofsymmetry A1 with

room-temperatureRamanshiftof147cm−1growsinintensitybymoving towardzeroRamanshiftasthe␣–␤transitionisapproached[2]. Itwasstatedthatthissoftmodeplaysthefundamentalroleinthe ␣–␤transitioninquartz[2,3].Sincetheincommensurate(INC) phaseoccursinanarrowtemperaturerangeof∼1.3Kbetweenthe ␣and␤phases,itsoccurrencehasbeenattributedtothecoupling ofthesoftmodewithTAmodesinquartz[4].Asthesymmetry changesbetweenthephases,manylow-frequencyhigh-amplitude modesofvibrationareexcited,whichcausesorientational disor-deroftheSiO4tetrahedrainquartz[5].Thesoftmodeassociated

withthephasetransitionsinquartzpropagatesasaphononthat movestheSiO4tetrahedraasrigidunits[6].Thesoftmodebehavior

ofthe␣–␤transitioninquartzhasbeenstudiedextensively[7–9], whichisassociatedwiththeSiO4rotation–vibration[10]asstated

above.UsingthetemperaturedependenceoftheobservedRaman frequenciesforthesoftmode(147cm−1)andalsothe207cm−1 mode[2],wehavecalculatedtheRamanlinewidthsofthose lat-ticemodesclosetothe␣–␤transitioninquartz[11].Inanother study[12],wehavecalculatedthetemperaturedependenceofthe

∗ Correspondingauthor.Tel.:+903122105056. E-mailaddress:hamit@metu.edu.tr(H.Yurtseven).

Ramanfrequencyshiftsandthelinewidthsfortheopticallattice vibrations(128cm−1and466cm−1)inthe␣phaseofquartzusing theanharmonicselfenergymodel.

Temperature[10,13,14]andpressure[15,16]dependencesof thevolumehavealsobeencalculatedusingthemoleculardynamics (MD)forthe␣–␤transitioninquartz,asmeasuredexperimentally [17–21].

Vibrationalfrequenciescanbecalculatedfromthecrystal vol-umethroughthemodeGrüneisenparameter.Thiscalculationcan alsobeperformedforthe␣–␤transitionin quartz.Usingthe observedvolumedata(neutrondiffractionandtheunit-cell vol-umeoftheaveragestructure)[20],wehavecalculatedtheRaman frequencyofthe207cm−1modeatvarioustemperaturesforthe␣ –␤transitioninquartz[22]andalsofortheRamanfrequencyof aninternalmodeforSiO2-moganite[23]usingtheunitcellvolume

[24].Veryrecently,wehavecalculated[25]theresonantfrequency fromtheneutrondiffraction[26]andvariationofvolume[20]with thetemperatureinthevicinityofthetransitioninquartz.

Inthisstudy,thesoftmodefrequency(147cm−1)iscalculatedas afunctionoftemperatureusingthevolumedata[7–9]throughthe modeGrüneisenparameterclosetothe␣–␤transitioninquartz. Below,inSection2wegiveourcalculationsandresults.In Sec-tion3,wediscussourresults.ConclusionsaregiveninSection4.

2. Calculationsandresults

We calculated the soft-mode frequency using the volume data through the mode Grüneisen parameter for the ␣ – ␤ http://dx.doi.org/10.1016/j.ijleo.2016.01.167

(2)

H.Yurtseven,O.Tari/Optik127(2016)4470–4472 4471

Fig.1. Observed soft-mode frequency[7–9] as a function ofvolume [17,19]

extractedfromEq.(1),asalsogivenpreviously[10]intermsofthevolumeincrement (%)forthe␣–␤transitioninquartz.

transition in quartz. The volume increment can be defined as [10],

ı= VV−V␣

␤−V␣ (1)

where,V␣istheequilibrium␣-quartzwithcellvolumeandV␤is

theunitcellvolumeatthe␣–␤transitioninquartz.Usingthe observedvaluesofV␣(T=0)andV␤(T=TC)[19],thevolumevalues

wereextractedfromthevaluesofthevolumeincrement(%)[10] accordingtoEq.(1),asgiveninTable1.Astheobserved[7–9] soft-modefrequencyplottedasafunctionofthevolumeincrement(%) previously[10],weplotherethesoft-modefrequencyasafunction ofvolumeforthe␣–␤transitioninquartzinFig.1.Fromourplot, weobtainedthesoft-modefrequencywiththevolumeas

=a+bV+cV2 (2)

where,a,bandcareconstants,whicharegiveninTable1.Thus, using the observed values of V␣(T=0) and V␤(T=TC) as given

above,thecorrespondingvaluesofthesoft-modefrequencywere obtainedthroughEq.(2)as␣(T=0) and␤(T=TC) forthe␣–␤

transitioninquartz,asgiveninTable1.

ThemodeGrüneisenparameterofthesoftmodecanbe deter-minedfromthefrequencyshiftsandvolumechangebydefining =−V

 d

dV (3)

Accordingtothevariationofthefrequencywiththevolume (Eq.(2))usingtheobserveddataforthesoft-modefrequency[7–9] andforthevolumedataextractedfromEq.(1)(Fig.1),thevalue canbedeterminedforthesoftmodefrequencyinthe␣-phaseof quartz.Bydefiningthefrequencyalterationısimilartothevolume incrementıinEq.(3)as,

1−ı= −␣ ␤−␣ (4) or ı=



␤−



/



␤−␣



(5)

valuesofthemodeGrüneisenparametercanbedeterminedasa ratio,

= V·ı

ı (6)

ThevaluesofthemodeGrüneisenparameterweredetermined atvarioustemperaturesfromthevolumeandfrequencydataatthe temperaturesofT=0andT=TCaccordingtoEq.(6).The

tempera-turedependenceofisplottedinFig.2forthe␣-phaseofquartz. OncewedeterminedthemodeGrüneisenparameterfromthe vari-ationofthesoft-modefrequencyandthevolumechangeaccording

T (K) 900 800 700 600 500 400 300 200 γγ 0,0 0,2 0,4 0,6 0,8 1,0 1,2 1,4 1,6

Fig.2.VariationofthemodeGrüneisenparameterwiththetemperatureforthe ␣phaseofquartzaccordingtoEq.(6).

T (K) 800 700 600 500 400 300 200 νν (c m ) 0 50 100 150 200 250 Observed [7 - 9] Calculated (Eq. 7)

Fig.3. TheRamanfrequenciescalculated(Eq.(7))forthesoftmodeasafunctionof temperatureforthe␣–␤transitioninquartz.

toEq.(6),thesoft-modefrequencycanthenbecalculatedatvarious temperaturesusingthevolumedatathroughthemodeGrüneisen parameteraccordingtotherelation

=A (T) +0exp



−ln



V (T) /V0



(7) which can be obtained from Eq. (3) with the additional temperature-dependentA(T)term.Thistermcanbeassumedas

A (T) =a0+a1T (8)

where,a0anda1areconstants.Valuesofthosecoefficientswere

determinedbyfittingEq.(7)totheobservedfrequencies[7–9]as giveninTable1.

Finally, using the observed data [10], values of the mode Grüneisenparameterwasgenerated(Fig.2),V0=Vand0=

withthevaluesofthecoefficientsa0anda1(Table1),thesoft-mode

frequencieswerepredictedasafunctionoftemperatureaccording toEq.(7)forthe␣–␤transitioninquartz,asplottedinFig.3. 3. Discussion

Thesoft-modefrequencywaspredictedasafunctionof temper-atureusingtheobservedvolumedata[10]forthe␣–␤transition inquartz, asplottedinFig.3.By fittingEq.(7) totheobserved dataforthesoft-modefrequency[7–9],thefittedparametersofa0

anda1forthetemperature-dependenttermA(T)weredetermined

(Table1).The temperaturedependence ofthe modeGrüneisen parameter()wasobtainedtopredictthesoftmodefrequencies, asplottedinFig.2.Itdecreasesasthetemperatureincreasesup tothetransitiontemperature(TC=846.5K)inquartz,asexpected.

(3)

4472 H.Yurtseven,O.Tari/Optik127(2016)4470–4472

Table1

Valuesofthecoefficientsa,bandc(Eq.(2)),andthecoefficientsofa0anda1(Eq.(8))forthevariationofthesoft-modefrequencywiththevolumeforthe␣–␤transition

inquartz(seeFig.1).ValuesofthevolumeandthesoftmodefrequencyatT=0andT=TCarealsogivenhere.

a(cm−1) b(cm−13) c(cm−16) V

␣(Å3)(T=0) V␤(Å3)(T=TC) ␣(cm−1)(T=0) ␤(cm−1)(T=TC) a0(cm−1) a1(cm−1/K)

13,669.82 −196.02 0.68 110.73 118.03 269.45 34.58 292.95 −0.394

volume(Fig.1),thisdecreaseinthemodeGrüneisenparameter withthetemperature(Fig.2),leadstothesoftmodefrequency decreasingaccordingtoEq.(7)towardthetransitiontemperature TC,asalsoobservedexperimentally[7–10].Asseenfromthis

fig-ure,ourcalculatedRamanfrequenciesofthesoftmodegetlower incomparisonwiththeobserveddata[7–9]asthetransition tem-peratureisapproachedaboveabout600Kinthe␣phaseofquartz. So,theagreementwiththeexperimentaldataismuchbetteratlow temperatures.ThisdiscrepancynearTCmaybeduetothecritical

behaviorofthesoftmodefrequency,whichisalsoreflectedonthe anomalouschangeinvolume.However,thisanomalousbehavioris nottakenintoaccountinEq.(7)topredictthesoftmodefrequency fromthevolumedata.Apower-lawanalysisofthesoftmode fre-quencyandthevolumemightbeneedednearTCtodescribethe

anomalousbehaviorwiththecriticalexponent.

Calculationof themodeGrüneisen parameter forthe soft modeas a functionof temperaturewasperformedbasicallyby using theobserved values of the volume (V␣ and V␤) and the

soft mode frequency



␣and␤



at the minimum (T=0) and maximum(TC=846.5K)temperatures.Betweenthetwoextreme

temperatures,usingthevolumeandsoftmodefrequencydata,the temperaturedependenceofthemodeGrüneisenparameterwas generated.

Our  values which decrease between1.37and 0.14 asthe temperatureincreasesfromabout250Kupto800K,respectively, canbecomparedwithourvalueofP=0.75astheisobaricmode

GrüneisenparameteroftheRamaninternalmodeof501cm−1for the␣–␤transitioninSiO2-moganite[23].However,forthesoft

modeof207cm−1(atroomtemperature)weobtainedinourrecent study[22]thevaluesofP=5.5usingtheneutrondiffractiondata

forthevolume[20]andP=2.5usingtheunit-cellvolumedata

oftheaveragestructureofquartz[20].ThosePvaluesaremuch

higherthanthetemperature-dependent(T)valuesvaryingfrom 1.37to0.14asstatedabove,forthesoftmodeof207cm−1,which wealsostudiedhere.Theremightbetworeasonsforthis discrep-ancyregardingthevaluesofthemodeGrüneisenparameterofthe samesoftmode(207cm−1)forthe␣–␤transitioninquartz.Firstly, forourrecentstudy[22],weusedconstantvaluesofPtopredict

theRamanfrequenciesofthe207cm−1modeusingtheobserved volumedata[8]fromtwodifferentsources.Secondly,weusedthe observedfrequencydata[2] todeterminetheP values forthe

207cm−1modeinourpreviousstudy[22].

Inthisstudy,differently fromourearlierstudies[22,23],we calculatedtheRamanfrequencyofthesoftmode(207cm−1)by consideringthetemperaturedependenceofthemodeGrüneisen parameterforthissoftmode(Fig.2)usingthedifferentsources oftheobservedvolumedata[17,19]andthesoft-modefrequency data[7–10].Thereisalsocontradictionintheliteraturewhether theroom-temperaturerenormalizedsoftmodeisat147cm−1[2] orat208cm−1[3].Overall,themethodofpredictingthesoft-mode frequency using thevolume data throughthe modeGrüneisen

parameterasgiveninourearlierstudies[22,23]andalsointhis study,leadstopredicttheobservedbehaviorofthismode ade-quately for the␣ – ␤transition in quartz. Calculatingthe soft modefrequenciesbyconsideringthetemperaturedependenceof thesoft-modeGrüneisenparameteraswestudiedhere,cangive betterinsightintothemechanismofthe␣–␤transitioninquartz. 4. Conclusions

Thesoft-modefrequencywaspredictedfromthevolumedata byregardingthetemperaturedependenceofthemodeGrüneisen parameterforthe␣–␤transitioninquartz.Ourresultsshowthat thevaluesvaryfrom1.37to0.14asthetransitiontemperature (TC=846.5K)isapproachedfromthelow-temperature␣-phasein

quartz.Usingthevaluesdetermined,thesoft-modefrequencies werepredictedfromthevolumedatabymeansofthefitting pro-cedure.

TheRamanfrequenciesofthesoftmodewhichweobtained, indicatethattheorder–disordertransition(␣–␤transition)in quartzisassociatedwiththecriticalbehaviorofthesoftmode stud-iedhere.ThemethodofcalculatingtheRamanfrequenciesfrom thevolumedatathroughthemodeGrüneisenparameteratvarious temperaturesaspresentedhereforthe␣–␤transitioninquartz, canalsobeappliedtosomeothermolecularcrystalsexhibitingthe softmodebehavior.

References

[1]R.B.Sosman,ThePhasesofSilica,RutgersUniversityPress,NewBrunswick, 1965.

[2]S.M.Shapiro,D.C.O’Shea,H.Z.Cummins,Phys.Rev.Lett.19(1967)361.

[3]J.D.Axe,G.Shirane,Phys.Rev.B1(1970)342.

[4]B.Berge,G.Dolino,M.Vallade,M.Boissier,R.Vacher,J.Phys.45(1984)715.

[5]M.C.Tucker,M.T.Dove,D.A.Keen,J.Phys.Condens.Matter12(2000)L723.

[6]M.T.Dove,M.Gambhir,V.Heine,Phys.Chem.Miner.26(1999)344.

[7]U.T.Höchli,J.F.Scott,Phys.Rev.Lett.26(1971)1627.

[8]G.Dolino,J.P.Backheimer,Ferroelectrics43(1982)77.

[9]G.Dolino,M.Vallade,Rev.Min.29(1994)403.

[10]M.B.Smirnov,A.P.Mirgorodsky,Phys.Rev.Lett.78(1997)2413.

[11]M.C.Lider,H.Yurtseven,HighTemp.Mater.Process.31(2012)741.

[12]M.Kurt,H.Yurtseven,BalkanPhys.Lett.191042(2011)362.

[13]S.Tsuneyuki,H.Aoki,M.Tsukada,Y.Matsui,Phys.Rev.Lett.64(1990)776.

[14]M.H.Müser,K.Binder,Phys.Chem.Miner.28(2001)746.

[15]J.S.Tse,D.D.Klug,Phys.Rev.Lett.67(1991)3559.

[16]E.Demiralp,T.C¸a˘gın,W.A.GoddardIII,Phys.Rev.Lett.82(1999)1708.

[17]T.H.K.Barron,J.P.Collins,T.W.Smith,G.K.White,J.Phys.C15(1982)4311.

[18]M.A.Carpenter,E.K.H.Salje,A.G.Barber,B.Wruck,M.T.Dove,K.S.Knight,Am. Miner.83(1998)2.

[19]K.Kihara,Eur.J.Miner.2(1990)63.

[20]M.G.Tucker,D.A.Keen,M.T.Dove,Miner.Mag.65(2001)489.

[21]P.Hudon,I.H.Jung,D.R.Baker,Phys.EarthPlanet.Inter.130(2002)159.

[22]H.Yurtseven,M.C.Lider,J.Condens.MatterPhys.2(1)(2014)1.

[23]M.C.Lider,H.Yurtseven,J.Thermodyn.2012(2012)1–4(ID892696).

[24]P.J.Heaney,D.A.McKeown,J.E.Post,Am.Miner.92(2007)631.

[25]M.C.Lider,H.Yurtseven,Int.J.Thermophys.36(2015)1585.

[26]A.N.Nikitin,G.V.Markova,A.M.Balagurov,R.V.Vasin,O.V.Alekseeva, Crystal-logr.Rep.52(2007)428.

Şekil

Fig. 3. The Raman frequencies calculated (Eq. (7) ) for the soft mode as a function of temperature for the ␣ – ␤ transition in quartz.

Referanslar

Benzer Belgeler

Köylerin ço~u timar ve zeamet kategorisine girdi~inden bu durumu mü~ahede etmek kolayla~maktad~r; yaln~zca arada baz~~ köyler görülme- mektedir, zira bunlar has, vak~f veya

Zeytin çekirdeğinin bir bölümüne 410 ᵒC’de karbonizasyon işlemi sonrasında ZnCl2 emdirilerek aktifleştirilmesi sonucunda elde edilen aktif karbonun BET yüzey

Numerical simulations elucidate the relative contributions of Thomson and Joule heat for the different bias conditions and show that thermoelectric heat on the wire is further

Bu sonuçlara göre kontrol grubunda fiziksel ihmal bildirenlerde düşük BDÖ puanının olması, kardeş grubunda depresyon olmamasına rağmen fiziksel ihmal bildirenlerde

The intermediate adduct (9) was obtained using simple purification by liquid–liquid extraction, and the crude product (9) was then used in the second Suzuki coupling reaction

veya lehine aval verilenin haklarını iktisap etmez 753. Aynı saptama, yazarın en son basımında da bulunmaktadır. 177; Kanımca, yazarların hem lehine aval verilene

37 Faculty of Physics and Applied Computer Science, AGH-University of Science and Technology, Krakow, Poland 38 The Henryk Niewodniczanski Institute of Nuclear Physics, Polish