• Sonuç bulunamadı

Cyclodextrin-grafted electrospun cellulose acetate nanofibers via "Click" reaction for removal of phenanthrene

N/A
N/A
Protected

Academic year: 2021

Share "Cyclodextrin-grafted electrospun cellulose acetate nanofibers via "Click" reaction for removal of phenanthrene"

Copied!
8
0
0

Yükleniyor.... (view fulltext now)

Tam metin

(1)

ContentslistsavailableatScienceDirect

Applied

Surface

Science

j o ur na l ho me pa g e :w w w . e l s e v i e r . c o m / l o c a t e / a p s u s c

Cyclodextrin-grafted

electrospun

cellulose

acetate

nanofibers

via

“Click”

reaction

for

removal

of

phenanthrene

Asli

Celebioglu

a,b

,

Serkan

Demirci

a,c

,

Tamer

Uyar

a,b,∗

aUNAM-NationalNanotechnologyResearchCenter,BilkentUniversity,Ankara06800,Turkey bInstituteofMaterialsScienceandNanotechnology,BilkentUniversity,Ankara06800,Turkey cDepartmentofChemistry,FacultyofArtsandSciences,AmasyaUniversity,Amasya05100,Turkey

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received23January2014

Receivedinrevisedform17March2014 Accepted21March2014

Availableonline29March2014 Keywords: Electrospinning Nanofibers Cyclodextrin “Click”reaction Phenanthrene Filtration

a

b

s

t

r

a

c

t

Beta-cyclodextrin(␤-CD)functionalizedcelluloseacetate(CA)nanofibershavebeensuccessfully pre-paredbycombiningelectrospinningand“click”reaction.Initially,␤-CDandelectrospunCAnanofibers weremodifiedsoastobeazide-␤-CDandpropargyl-terminatedCAnanofibers,respectively.Then,“click” reactionwasperformedbetweenmodifiedCDmoleculesandCAnanofiberstoobtainpermanent graft-ingofCDsontonanofiberssurface.ItwasobservedfromtheSEMimagethat,whileCAnanofibershave smoothsurface,thereweresomeirregularitiesandroughnessatnanofibersmorphologyafterthe modi-fication.Yet,thefibrousstructurewasstillprotected.ATR-FTIRandXPSrevealedthat,CDmoleculeswere successfullygraftedontosurfaceofCAnanofibers.Theadsorptioncapacityof␤-CD-functionalizedCA (CA-CD)nanofiberswasalsodeterminedbyremovingphenanthrene(polycyclicaromatichydrocarbons, PAH)fromitsaqueoussolution.OurresultsindicatethatCA-CDnanofibershavepotentialtobeusedas molecularfiltersforthepurposeofwaterpurificationandwastewatertreatmentbyintegratingthehigh surfaceareaofnanofiberswithinclusioncomplexationpropertyofCDmolecules.

©2014ElsevierB.V.Allrightsreserved.

Introduction

Electrospunnanofibers/nanowebspossessseveralunique prop-ertiesthatmakethemgoodcandidateforthefiltration,separation andcleaningapplications,suchas;largespecificsurfacearea,highly porousstructure withnanosizerange,highdegreeof intercon-nectionandmodifiablenature[1–5].Thepotentialofnanofibrous structureforfiltrationpurposeshasbeenreportedinliteratureby showingseparationoftinyparticles,filtrationofliquidmedium [4–6]andwastevaportreatment[3,7,8].Even,production variabil-ity,low-costandhighout-putofthistechniquemakepossiblethe filtrationperformancetoenterintocompetitionwithconventional filtrationsystems.Moreover,electrospunnanofibersfacilitatefor chemical/physicalfunctionalizationsthatcanleadstobetteruptake performanceduringthefiltrationprocess[9–13].

Cyclodextrins(CDs)arenaturalcyclicoligosaccharideswhich areregeneratedbytheenzymaticdegradationofstarch.Thereare threenativetypesofCDmolecules;␣-CD,␤-CDand␥-CDwhichare consistedofsix,sevenandeightglucopyranosesubunits, respec-tively[14,15].CDshavetoroid-shapedmolecularstructurewitha

∗ Correspondingauthor.Tel.:+903122903571;fax:+903122664365. E-mailaddresses:tamer@unam.bilkent.edu.tr,tameruyar@gmail.com(T.Uyar).

relativelyhydrophobicinteriorcavity.Duetotheintriguing molec-ularstructure,CDsareabletoforminclusioncomplexes(CD-IC) withavarietyofmoleculesalongwithnon-covalentinteractions [14,15].TheinclusioncomplexationwithCD moleculesenhance solubility,stabilityandbioavailabilityofguestmolecules.So,these CD-ICsupramolecularstructuresarequiteapplicablein pharma-ceuticals,foods,cosmetics,home/personalcareandtextilesareas [14–16].Additionally,filtrationandseparationsystemsareanother applicationfieldsforCDmoleculesowingtotheircapturing capa-bilityofhazardousorganicmoleculesbyinclusioncomplexation [17–20].

CD moleculesare commonly utilizedin theform ofpowder orcrosslinkedpolymericgranules[14–16,20].Unfortunately,this statecancauselimitationduringtheirusage.So,tobenefitfrom CDsuniquepropertiesmoreefficientlyandrenderthemintomore applicableform,theycanbecombinedwithpolymericmatrix.In ourpreviousstudies,wehavephysicallyblendedCDmoleculesinto polymericnanofibersbyelectrospinning[7,21,22].Itwasobserved that,whilemostoftheCDmoleculeswereembeddedinsidethe nanofibers,someofthemwerelocatedonthefibersurfaceand theseaccessibleCDenabletheremovaloforganicwastemolecules frombothvaporphase[7]andwater-basedenvironment[21,22]. However,watersolubilityofCDsrestrictstheiruseforwater purifi-cation purposes,becauseofa probableleachingfromnanofiber http://dx.doi.org/10.1016/j.apsusc.2014.03.138

(2)

582 A.Celebiogluetal./AppliedSurfaceScience305(2014)581–588 surfacethatcanbeoccurredduringfiltration.Therefore,another

approachshouldbeadoptedforthemodificationofnanofibersthat includesthelastingattachmentsofCDmoleculesonthefiber sur-face.Thus,complexformationpropertyofCDmoleculeswouldbe integratedwiththehighsurfaceareaofpolymericnanofibersina morepermanentwaythatwouldleadtoproductionofpromising filteringmembranes.Actually,thechemicalsurfacemodification withCDmoleculeswasfirstlyperformedonthefiberandfabric surfacesbyusingappropriatecrosslinkingagents[23–30].These functionalizationswereperformedbygraftingCDsontosubstance [23–26]orthesubstanceswerecoveredbycrosslinkedCD poly-mers[27–30]forthefiltrationofwastemoleculesordeliveryof drugs,antibacterialsetc.Ontheotherhand,wehavefirstlyreported thesurfacemodificationofelectrospunnanofiberswithCD poly-merin ourpreviousstudy[31]. Here,citric acidwasusedas a crosslinkingagentfortheformationofCD(␣-CD,␤-CDand␥-CD) polymer(CDP)andafterthesurfacemodificationofpolyethylene terephthalate (PET) nanofibers, the molecularfiltration perfor-manceofPET/CDPwasinvestigatedaswell[31].

Surfacemodifiedelectrospunnanofibersareofgreat interest duetotheirhigherpotentialfortheapplicationofaforementioned fields.Nanofibersfunctionalizedinthiswaycouldbeexpectedto increasetheirperformanceforthedesiredapplications,sincethe availabilityof more activesidesontheirsurface.“Click” chem-istrycanbeanalternativewaytomodifysurfaceofnanofibers, because“click”reactionsshowhighyields andexceptional tol-erancetowardsa wide rangeof functional groupsand reaction conditions in thematerial science [32,33]. Very recent studies have also been reported in the literature about the modifica-tionofelectrospunnanofibersvia“click”reaction.For instance, Fu et al. formed thermal-sensitive poly-N-isopropylacrylamide (PNIPAM)brushesonthesurfaceofpoly(4-vinylbenzyl chloride)-block-poly(glycidylmethacrylate)(PVBC-b-PGMA)nanofibersby using“click”reaction[34].InanotherstudyofChangetal.,“click” wasused for thefunctionalization of polyimide nanofibers via alkyne-terminatedpoly(methylmethacrylate)chains[35].Inthe studyofYangetal.nanofibershavingthermallysensitivesurface wereproducedbythegraftingofPNIPAMbrushesonthe poly((3-mercaptopropyl)methylsiloxane)(PMMS)nanofiberswiththeaid of“click”chemistry[36].Inanotherrelatedstudy,Lancuskietal. developedcarbohydrate-decoratedPCLnanofibersforthespecific proteinadhesionbyapplying“click”reaction[37].In oneofthe associatedstudies,Qianetal.reportedtheintroductionof saccha-rideresiduestothesurfaceofthepolyphosphazenenanofibrous membraneusing“click”chemistry[38].Mostofthestudies men-tionedabovefocusonthebiomedicalapplicationsofnanofibers. Ontheotherhand,inourstudywehaveapplied“click”reaction forsurfacemodificationofnanofiberstoimprovetheirfiltration performance.

Polycyclicaromatichydrocarbons(PAHs)areoneofthemost widespreadpollutants whicharehighlytoxic,carcinogenic, and theirtoxicity increases withincreasing molecularweight [39]. Moreover,severalstudiesshowthatPAHspollutionscause seri-oushealthproblemsforhumanandlivingorganisms[39,40].For thesereasons,varietiesofadsorbentssuchasnanofibers,silicagel, porousnanoparticlesetc.,havebeendevelopedfortheremovalof PAHs[31,41,42].

In this study, ␤-CD-functionalized CA nanofibers were suc-cessfullyproducedbycombinationofelectrospinningand“click” chemistry(Fig.1).Thatis,␤-CDwasgraftedontoelectrospunCA nanofibersvia“click”reaction.Themorphologicalcharacterization ofnanofiberswerecarriedoutbyusingscanningelectron micro-scope(SEM).The surfacecharacteristicsof thenanofiberswere investigated by attenuated total reflectance-Fourier transform infraredspectroscopy(ATR-FTIR)and x-rayphotoelectron spec-troscopy(XPS).Furthermore,thecomparativemolecularfiltration

performance of ␤-CD-functionalized CAnanofibersand pristine CAnanofiberswereinvestigatedbyremovingphenanthrene(asa modelPAH)fromtheaqueoussolutions.Ourpreliminaryfindings suggestedthat␤-CD-functionalizedCAnanofibershavepotentials tobeusedasmolecularfiltersforthepurposeofwater purifica-tionand/orwastewatertreatmentbyintegratingthehighsurface areaoftheelectrospunnanofiberswithinclusion complexation propertyofCDmolecules.

Materialsandmethods

Materials

Celluloseacetate (CA, Mw: 30000,39.8wt. %acetyl, Sigma– Aldrich) dichloromethane (DCM, ≥99% (GC), Sigma–Aldrich), methanol (≥99.7% (GC), Sigma–Aldrich), beta-cyclodextrin (␤-CD) (Wacker Chemie AG), sodium hydroxide (NaOH, Fluka, ≥98%, small beads), acetonitrile (99.9%, Sigma–Aldrich), p-toluenesulfonyl chloride (puriss., ≥99.0%, Sigma–Aldrich) dimethyformamide (≥99% (GC), Sigma–Aldrich), sodium azide (ReagentPlus,≥99.5%,Sigma–Aldrich),sodiumhydride(60% dis-persioninmineraloil,Aldrich),propargylbromidesolution(80%in toluene,Fluka),acetone(≥99%(GC),Sigma–Aldrich),2-propanol (≥99.5%(GC),Sigma–Aldrich),coppersulfate(anhydrous,≥99.0%, Sigma–Aldrich), l-ascorbic acid (reagent grade, Sigma–Aldrich) phenanthrene(98%,Sigma–Aldrich) were purchased.The water usedwasfromaMilliporeMilli-QUltrapureWaterSystem.Allthe materialswereusedwithoutanypurification.

ElectrospinningofCAnanofibers

Theelectrospinning solutionofCAwaspreparedby dissolv-ingpolymerinaDCM/methanol(4/1(v/v))binarysolventmixture ata12%(w/v)polymerconcentration.TheclearCAsolutionwas then placed in a 5mL syringe fitted with a metallic needle of a0.4mminnerdiameter.Thesyringewasfixedhorizontallyon thesyringepump(modelKDS-101,KDScientific,USA).The elec-trodeofthehigh-voltagepowersupply(Spellman,SL30,USA)was clampedtothemetalneedletip,andtheplate-shapedaluminum collectorwasgrounded.Electrospinningparameterswereadjusted asfollows:feedrateofsolutions=1mL/h,appliedvoltage=15kV, tip-to-collectordistance=10cm.Theelectrospinningprocesswas performedat25◦Cat20%relativehumidityinPlexiglasbox.After theelectrospunnanofibersweredepositedonthegroundedmetal collectorcoveredwithaluminumfoil,theywerekeptinvacuum oven(40◦C)foralmost12htoremovethesolventresidualinthe nanofibers.

Synthesisoftheazide-ˇ-cyclodextrin

␤-CD(63g,35.2mmol)wasdispersedin500mLofwaterand bytheadditionofNaOHsolution(5.6gin20mlwater),CDswere completelydissolved.Afterstirring1h,thep-toluenesulfonyl chlo-ride solution(9.5g in 30ml acetonitrile) was dropped into CD solution slowly. The suspension was stirred vigorously for 6h and kept in refrigerator overnight. The precipitate white pow-der was filtered and dried under vacuum (12g TsO-␤-CD). In the second step, the TsO-␤-CD (6g) powder was dissolved in DMF (50ml) and sodium azide (NaN3, 2.75g) was added into

solution.Thissystem wasstirredat 80◦C forabout 24hunder nitrogenatmosphereandthen, itwascooledtoroom tempera-ture.Finally,thesolutionwasdroppedintocoldacetone(600ml) andthewhiteprecipitateoftheproductwasobtainedafterthe filtration.

(3)

Fig.1.(a)SchematicrepresentationofelectrospinningofCAnanofibers.(b)Schematicviewandchemicalstructureof␤-CD,schematicviewofazide-␤-CDsynthesisand CA-propargylnanofibersformation.(c)TheschematicrepresentationofthemodificationofCA-propargylnanofiberswithazide-␤-CDby“click”reaction.

Graftingofazide-ˇ-CDontoCAnanofibersby“click”chemistry Underanitrogenatmosphere,CAnanofibers(1.0equiv.)and 2-propanolsolutionof NaH(1.2equiv.)were addedtoa round bottomedflaskat0◦Candstirredforfewminutes.Thereaction mixturewasgraduallywarmedtoroomtemperaturefor2h,and propargylbromide(1.8equiv.)wassubsequentlyaddeddropwise. Theresulting mixturewasstirred atroomtemperature for 6h. TheCAnanofiberswererecoveredfromthereactionmixtureand washedwith2-propanolandwatertoremovetheunreacted chem-icals,anddriedundervacuumat30◦C.Theazide-␤-CDobtained intheformerstep(0.6mmol,0.7g)wasfirstlydissolvedin20ml water and CA nanofiberhaving propargylmoiety wasputinto thisCDsolution.Meanwhile,thefreshsolutionsofl-ascorbicacid (0.12mmol,21mg)in1.5mlwaterandcopper(II)sulfate anhy-drous(0.052mmol,8.8mg)in1.5mlwaterwerepreparedandboth ofthemaddedintothesolutionwhichincludeazide-␤-CDand CA-propargylnanofibers.Thissystemwasstirredabout24hatroom temperature.Finally, obtainedCA-CD nanofiberswereremoved fromthesolution,washedwithwateranddriedatvacuumoven at40◦C.

Characterizationsandmeasurements

Themorphologicalcharacterizationandthediameter calcula-tionoftheCA,CA-propargylandCA-CDnanofiberswereperformed byusingscanningelectronmicroscope(FE-SEM)(FEI,Quanta200 FEG).Samplesweresputteredwith5nmAu/Pd (PECS-682)and around100fiberdiametersweremeasuredfromtheSEMimages tocalculatetheaveragefiberdiameterofeachsample.Theinfrared spectraof theCDswere obtainedbyusing a Fouriertransform infrared spectrometer (FTIR) (Bruker-VERTEX 70). The samples weremixedwithpotassiumbromide(KBr)andpressedaspellets. Thescans(64scans)wererecordedbetween4000and400cm−1 ataresolutionof4cm−1.TheAttenuatedtotalreflectance-Fourier transforminfrared(ATR-FTIR)wasusedforthesurfacestructural analysisof nanofibers.ATR-FTIRspectraofthenanofibers were obtainedusingaThermoNicolet6700spectrometerwithaSmart Orbit attenuated total reflection attachment. The spectra were takenataresolution4cm−1 after128scanaccumulationforan acceptablesignal/noiseratio.Thex-rayphotoelectronspectraof nanofiberswererecordedbyusingx-rayphotoelectron spectrom-eter(XPS)(ThermoScientific).XPSwasusedbymeansofaflood

(4)

584 A.Celebiogluetal./AppliedSurfaceScience305(2014)581–588 gunchargeneutralizersystemequippedwithamonochromated

AlK-␣ x-ray source(h



=1486.6eV). Thehighresolution spec-traofCandNwerealsorecordedfortherelatedsamplestoget moredetailedinformation.Highperformanceliquid chromatogra-phy(HPLC)system(Agilent1200Series)wasusedtoinvestigate thephenanthreneremovingperformanceofbothCAandCA-CD nanofibers.Theseparationofphenanthrenewasperformedwith ZorbaxEclipseXDB-C18column(150mm×4.6mm,5␮mparticle size)anditwasdetectedat254nmwavelength.Acetonitrile(100%) wasusedasmobilephaseataflowrateof0.3ml/min.andthe injec-tionvolumewaskeptat10␮l.Thephenanthrenewassolvedin acetonitrileandthendilutedinwatertocarryoutthe measure-ments.The0.1gweightednanofiberswereimmersedin1.8ppm phenanthreneincludedwatersolutions(30ml)and0.5mlaliquots weretakenfromthesystematdefinitetimeintervals.The calibra-tioncurveofphenanthrenewaspreparedbyusingstocksolutions in4differentconcentrations;1.8␮g/ml,0.9␮g/ml0.45␮g/ml,and 0.23␮g/ml.It showedlinearity andacceptabilitywithR20.99.

Themeasurementresultswereadaptedtothiscalibrationcurve intermsof peakareaundercurves.Theexperimentswere car-riedoutintriplicateandtheresultsweregivenwiththeirstandard deviations.

Resultsanddiscussion

Formationofazide-ˇ-CD

The modification of the ␤-CD molecules was confirmed by usingFTIRspectraasillustratedin Fig.2a.Asseen, the charac-teristicabsorption bands of ␤-CD for the given three samples, appeared at around 1030,1080, and 1155cm−1 corresponding to the coupled C–C/C–O stretching vibrations and asymmet-ric stretching vibration of the C–O–C glycosidic bridge. After p-toluenesulfonyl chloride treatment, beside the ␤-CD signals, toluenesulfonylgroupcharacteristicbandswerealsoobservedas aromaticC Cstretchingat1599cm−1,S Ostretchingat1366cm−1 andS–O–Arstretchingat838cm−1 [43].Asa resultofthenext step,toluenesulfonylgroupsignalswasdisappearedinFTIR spec-trumandstretchingfrequencyofN3becameobviousat2040cm−1

demonstrating asymmetrical azide (–N3) functionality of ␤-CD

[44].

Morphologicalcharacterizationofnanofibers

ThemorphologicalbehaviorofCAnanofibersbeforeandafter thesurfacemodificationhavebeencomparedbySEMasdepicted inFig.3.AsitisshownintheSEMimages, somechangeswere occurredatthemorphologyofCAnanofibersaftereachprocess.The uniformandsmoothmorphologywasobservedforun-modifiedCA nanofibers,whereasslightswellingwasobservedbythe propar-gyltreatment(Fig.3aandb).Theroughandirregularappearance wasrecordedafterthe“click”reactionwhichprovedthesuccessful surfacemodificationofCAnanofibers.Thesimilarmorphological changewasalsoobservedinastudyofourresearchgroupinwhich theCDpolymerwasgraftedonthePETnanofibers[31].The over-allresultssuggestedthat,adoptedproceduredidnotcausetoany deformationandfibrousstructureofnanofiberswaspreserved dur-ingthechemicaltreatments.Theaveragefiberdiameters(AFD) weredeterminedas675±160,960±190and1520±370forCA, CA-propargylandCA-CDnanofibers,respectively.Theincreaseof AFDcouldbeoriginatedfromtheswellingofnanofibersthrough themodificationand/orirregularpartsyieldedasaresultofCD grafting.

Fig.2. (a)FTIRspectraof␤-CD,TsO-␤-CDandazide-␤-CDpowder,(b)ATR-FTIR spectraofCA,CA-propargylandCA-CDnanofibers.

Structuralsurfacecharacterizationofnanofibers

TheATR-FTIRcharacterizationwasperformedtoprovetheCD modificationonthenanofibersurface(Fig.2b).Thecharacteristic bandofCAwasobservedat1739and1221cm−1duetotheC Oand C–Ostretching,respectively.Thebroadbandat3700–3100cm−1 indicatesthepresenceofOHgroupintheCAstructure.FTIR spec-trumofCAalsoshowedabsorbancebandat2924and2855cm−1 fortheC–Hstretching.Initially,CAnanofibersweremodifiedwith propargylbromide.Thismodificationwasobviousfromthe appear-anceofC Cbandat2019cm−1intheATR-FTIRspectrum(Fig.2b). Then, azide-␤-CD was attached to the CA-propargyl nanofiber surface by a “click” reaction and accordingly, the C C bandat 2019cm−1andN3at2040cm−1disappeared[45,46].Furthermore,

allcharacteristicbandsofCAandCDwereobservedfortheCA-CD nanofibers(Fig.2b).

ThesurfaceoftheCA,CA-propargylandCA-CDnanofiberswere alsocharacterized byusing XPSwide scan and highresolution scanstoverifythefunctionalizationofthesesamples.Table1 sum-marizesthecompositionalpercentagesofnanofiberswhichwere obtainedasaresultofwideenergysurveyscan.Itwasobserved that,C1sandO1saretwointensiveelementsasthemain compo-sitionsofnanofibers.Forun-modifiedCAnanofibers,theratioofC 1s:O1sis62.77:37.23(%),whereasforCA-propargyl,theintensity ofC1sincrease(C1s:O1sis71.21:28.79(%))duetocontribution

(5)

Fig.3.RepresentativeSEMimagesof(a)CA,(b)CA-propargyland(c)CA-CDnanofibers.Theinsetsshowhighermagnificationimages.

(6)

586 A.Celebiogluetal./AppliedSurfaceScience305(2014)581–588 Table1

AtomicconcentrationsofnanofiberswhichwereobtainedfromXPSwideenergy surveyscans.

Samples C(%) O(%) N(%)

CAnanofibers 62.77 37.23 –

CA-propargylnanofibers 72.21 28.79 –

CA-CDnanofibers 72.75 25.58 1.67

of CH2C CH group in the first step of modification [47]. After

“click”reaction,N1swasalsorecordedasoneofthecomponent whichindicatesthesuccessfulformationoftrizoleringbetween CAnanofibersurfaceandCDmolecules[48].HighresolutionC1s scanwasperformedtogetmoredetailedinformationaboutthe chemicalstateofnanofibers’surface.Fig.4a–cshowsC1sspectra ofun-modifiedCA,CA-propargylandCA-CDnanofiberswiththeir subpeaksobtainedbyfitting.Inaddition,thehighresolutionscanof N1sisgiveninFig.4dthatbelongstoCA-CDnanofibers.The corre-spondingpositionsofpeakbindingenergiesandtheirvalues(%area ratio)werealsolistedinTable2.Forun-modifiedCAnanofibers,C 1sspectrumisdeconvolutedintofoursubpeaksassignedtoC–(C, H)at284.62eV,C–Oat286.28eV,O–C–Oat287.62eVandO C–O at289.22eV[49].Afterthefirststepofmodification,theC1s spec-trum(Fig.4b)clearlyshowsincreaseofC–(C–H)peakratiofrom 30.45%to43.21%anddecreaseofotherpeaks(Table2)duetothe graftingofCH2C CHmoiety[47].Thisevidencemadeitpossible

togotonextstepofCAnanofibersfunctionalization.Inthecaseof azide-␤-CDgrafting,thepeakratiosofC–OandO–C–Osituatedat 286.66and287.91,respectivelyincreased,ontheotherhand,the chemicalstateofO C-Oat289.13eVdecreasedsignificantlyowing tothelocationof␤-CDonthenanofibersurface(Fig.4c,Table2). InadditiontoC1speak,theN1speakwasalsodetectedatabout 400eVforCA-CDnanofibersoriginatedfromthetriazolegroupas aresultof“click”reaction[48].Fortriazolering,theN1score-level peak can be curve-fitted into two components having binding energyat398.4and399.7eVattributedtoC–NandN N, respec-tively [48,50]. From XPS measurements, it was also confirmed thatthesurfacemodificationofCAnanofiberswithCDmolecules wasachievedbyusing“click”chemistry.Inaddition,thegrafting densityofCDmoleculesontoCAnanofiberswerecalculatedfrom highresolutionXPSspectraofC1s.Forthis,O–C–Opeakoriginated frombothCAand CD,and O C-Opeak onlyexisting intheCA structurewerechosenandused.Thepeakratio(O–C–O/O C-O) belongstoCAnanofiberwascalculatedas0.72anditisrelatively close to the theoretical values (0.80) calculated from atomic compositionofCAnanofibers.Ontheotherhand,O–C–O/O C–O ratiowasdeterminedas4.55forCA-CDnanofibers.Asitisknown, each ␤-CD molecules have 7 glucopyranose subunits and after theclickreaction,O–C–Opeakarearatioincreasedby6.32times, whichmeansthateach␤-CDmoleculewasapproximatelybound toonerepeatunitsoftheCApositionedatnanofibersurface.

Fig.5.Thetimedependentdecreaseofphenanthreneconcentrationinaqueous solutionwhichcontainsCAandCA-CDnanofiberswebs.

MolecularfiltrationcapabilityofCAandCA-CDnanofibers

PAHs are important organic pollutants because of their mutagenicand carcinogenicpotentials.However,thelow-water solubilityofthesecomponentslimitstheremediationprocessof contaminatedwaterandsoil[39,40].Asitisknown,CDsarecapable ofencapsulatingorganiccompoundsduetotheirhydrophobic cav-ityandtherearemanystudiesreportedcomplexationbetweenCDs andPAHsmolecules[51–55].Phenanthreneisthemostcommonly knownexamplethroughotherhydrocarbons,sointhisstudy,it waschosenasamodelPAHtoexaminethemolecularfiltration potentialofCAandCA-CDnanofibers.Fig.5depictsthecumulative decreaseofphenanthreneconcentration(%)againstprogressing time intervalswhileCAand CA-CDnanofiberswere beingkept intothis organiccompoundaqueoussolution.Asit isseen,the adsorptionofphenanthrenewasachievedbybothCAandCA-CD nanofibers.Even,inthefirst30min,whileCAnanofibersremoved 50%ofphenanthrenefromthesolution,thisratioreachedto64% for CD-CA nanofibers.Towards theend of experiment, the dif-ferencesofadsorbedamountbetweenCAandCA-CDnanofibers increase,therefore phenanthreneconcentrationdecreased more significantlyfor CA-CDnanofiberscompared toun-modifiedCA nanofibers.ThehigherremovingefficiencyofCD-CAnanofibersis probablyoriginatedfromtheinclusioncomplexationpropertyof CDmoleculeswhichwerelocatedonthesurfaceofnanofibersand leadedtohigheradsorptionoforganiccompoundfromaqueous medium.Itisknownthat,hydrophobicinteractionsaretherelation typebetweenCDscavityandphenanthrenemoleculeduringthe inclusion complexation.Besides,repulsive interactions between Table2

FittingparametersoftheC1sXPSspectraofCA,CA-propargylandCA-CDnanofibers.

Samples Fittingpeaks Bonds Peakbindingenergy(eV) Arearatio(%)

CAnanofibers C1s#1 C–(C–H) 284.62 30.45 C1s#2 C–O 286.28 20.32 C1s#3 O–C–O 287.62 20.61 C1s#4 O C–O 289.22 28.62 CA-propargylnanofibers C1s#1 C–(C–H) 284.73 43.21 C1s#2 C–O 286.66 20.29 C1s#3 O–C–O 287.91 5.37 C1s#4 O C-O 289.13 13.74 CA-CDnanofibers C1s#1 C–(C–H) 284.80 43.13 C1s#2 C–O 286.41 45.09 C1s#3 O–C–O 287.99 9.66 C1s#4 O C–O 289.30 2.12

(7)

Fig.6. RepresentativeSEMimagesof(a)CAand(b)CA-CDnanofibersafterthefiltrationtest.

thehydrophobicguestandtheaqueousenvironment,andmore

favorableinteractionsbetweenhydrophobicguestandapolarCD

cavity arethedriving forcesfor theremoving ofphenanthrene

moleculesfromtheaqueousenvironment[16–53].Inthecaseof

CDgraftingonto nanofiberssurface, onlyCDmoleculesbecome moreapplicablecomparedtotheirpowderformbythelocation onastablecarriermatrix.However,itdoesnotcauseanychange at the entrapment and removing mechanism of phenanthrene moleculesbyCDs.Here,itwasalsoobservedthat,bothCAand CA-CDnanofibersstill kepttheirfiberstructureafterthe filtra-tiontest(Fig.6).CAisalready goodcandidatefor thefiltration oforganicpollutantsandtherearealsoreportsintheliterature abouttheuptakingofPAHsfromtheconcernedenvironmentby usingCAbasedmembranes[56–59].Ontheotherhand,tothebest knowledge,thisisfirststudyabouttheinvestigationofmolecular filtrationcapabilityofCAnanofibersanditsCDmodifiedtypeby “click”chemistry.Fromourresults,itcanbeconcludedthat,the sur-facemodificationofelectrospunCAnanofiberswithCDmolecules improvedthemolecularfiltrationpotentialbyutilizingfromthe inclusioncomplexationpropertyofCDs.The“click”chemistryisa quitenewandpromisingmethodforthefunctionalizationof elec-trospunnanofibers.Inourstudy,betteradsorptionefficiencywas obtainedforCDmodifiedCAnanofiberscomparedtountreatedone duringtheremovingtest.However,theadsorbedamountofPAH orotherorganiccompoundscanbeenhancedbygraftinghigher amountofCDonthenanofibersurfaceusing“click”chemistry.

Conclusion

Inthisstudy,thepermanentgraftingofCDmoleculesonthe electrospunCAnanofiberswasachievedbyusing“click” chem-istry.First,␤-CDwasmodifiedsoastobeazide-␤-CD.Atthesame time,CAnanofiberswereproducedviaelectrospinningandthey weretreatedchemicallytobepropargyl-terminatedCAnanofibers. Then,“click”reactionwasperformedtograftthe␤-CDmoleculeson thesurfaceofCAnanofibers.Themorphologicalcharacterizations ofnanofiberswerecarriedoutbySEMtechnique.Itwasrevealed that,theCDmodifiedCAnanofibershave rougherandirregular surfacewhenitwascomparedwithpristineCAnanofibers.The existenceoftheCDmoleculesonthenanofibersurfacewasproved byusingATR-FTIRandXPSanalyses.ThefiltrationcapabilityofCD graftedCAnanofiberswasinvestigatedbytheremovalof phenan-threnefromitsaqueoussolution.Forcomparison,filtrationtestof pristineCAnanofiberswasalsoperformed.Itwasobservedthat, CA-CDnanofibersadsorbedhigheramountofphenanthrene com-paredtoCAnanofibersduetotheinclusioncomplexationcapability ofCDmolecules.Wehavealsocheckedthat,thefibrousstructure ofnanofiberswasprotectedafterthefiltrationtest.Inbrief,our

resultsindicatethatCDfunctionalizedCAnanofiberswouldhave potentialtobeusedasmolecularfiltersforthepurposeofwater purificationandwastewatertreatmentbyintegratingthehigh sur-faceareaof nanofiberswithinclusioncomplexationpropertyof CDmolecules.Moreover,“click”chemistrywouldbeapromising candidateforthemodificationofnanofiberssurfacewithvarious functionalgroupsandmoietiestobenefitfromthepotentialsof nanofibersmoreefficientlyintheirapplications.

Acknowledgements

Dr.T.UyaracknowledgesTUBITAK-TheScientificand Techno-logicalResearchCouncilofTurkey(project#110M612)forfunding theresearch.Dr.T.UyaralsoacknowledgesEU FP7-PEOPLE-2009-RG Marie Curie-IRG(NANOWEB, PIRG06-GA-2009-256428) and TheTurkishAcademyofSciences–OutstandingYoungScientists AwardProgram (TUBA-GEBIP)for partialfunding. A.Celebioglu acknowledgesTUBITAK-BIDEBforthenationalPh.D.scholarship.

References

[1]S.Ramakrishna,K.Fujihara,W.Teo,T.Lim,Z.Ma,AnIntroductionto Electro-spinningandNanofibers,WorldScientificPublishingCompany,2005. [2]J.H.Wendorff,S.Agarwal,A.Greiner,Electrospinning:Materials,Processing,

andApplications,Wiley-VCH,Germany,2012.

[3]V.Thavasi,G.Singh,S.Ramakrishna,Electrospunnanofibersinenergyand environmentalapplications,Energ.Environ.Sci.1(2008)205–221. [4]C.Srisitthiratkul,W.Yaipimai,V.Intasant,Environmentalremediationand

superhydrophilicityofultrafineantibacterialtungstenoxide-basednanofibers undervisiblelightsource,Appl.Surf.Sci.259(2012)349–355.

[5]K.Yoon,B.S.Hsiao,B.Chu,Functionalnanofibersforenvironmental applica-tions,J.Mater.Chem.18(2008)5326–5334.

[6]R.S.Barhate,S.Ramakrishna,Nanofibrousfilteringmedia:filtrationproblems andsolutionsfromtinymaterials,J.Membr.Sci.296(2007)1–8.

[7]T.Uyar,R.Havelund,Y.Nur,A.Balan,J.Hacaloglu,L.Toppare,F.Besenbacher, P.Kingshott,Cyclodextrinfunctionalizedpoly(methylmethacrylate)(PMMA) electrospunnanofibersfororganicvaporswastetreatment,J.Membr.Sci.365 (2010)409–417.

[8]E.Scholten,L.Bromberg,G.C.Rutledge,T.A.Hatton,Electrospunpolyurethane fibersforabsorptionofvolatileorganiccompoundsfromair,ACSAppl.Mater. Interface.3(2011)3902–3909.

[9]Z.Ma,M.Kotaki,S.Ramakrishna,Surfacemodifiednonwovenpolysulphone (PSU)fibermeshbyelectrospinning:anovelaffinitymembrane,J.Membr.Sci. 272(2006)179–187.

[10]Y.Mei,C.Yao,K.Fan,X.Li,Surfacemodificationofpolyacrylonitrilenanofibrous membraneswithsuperiorantibacterialandeasy-cleaningpropertiesthrough hydrophilicflexiblespacers,J.Membr.Sci.417–418(417)(2012)20–30. [11]P.K. Neghlani, M. Rafizadeh, F.A. Taromi, Preparation of

aminated-polyacrylonitrilenanofiber membranes for theadsorptionof metal ions: comparisonwithmicrofibers,J.Hazard.Mater.186(2011)182–189. [12]M. Stephen, N. Catherine, M. Brenda, K. Andrew, P. Leslie, G. Corrine,

Oxolane-2,5-dionemodifiedelectrospuncellulosenanofibersforheavymetals adsorption,J.Hazard.Mater.192(2011)922–927.

[13]J.Niu,J.Xu,Y.Dai,J.Xu,H.Guo,K.Sun,R.Liu,Immobilizationofhorseradish peroxidasebyelectrospunfibrousmembranesforadsorptionanddegradation ofpentachlorophenolinwater,J.Hazard.Mater.246/247(2013)119–125.

(8)

588 A.Celebiogluetal./AppliedSurfaceScience305(2014)581–588 [14]J.Szejtli,Introductionandgeneraloverviewofcyclodextrinchemistry,Chem.

Rev.98(1998)1743–1754.

[15]A.Hedges, Industrialapplicationsofcyclodextrins,Chem.Rev. 98(1998) 2035–2044.

[16]E.M.DelValle,Cyclodextrinsandtheiruses:areview,ProcessBiochem.39 (2004)1033–1046.

[17]D.Landy,I.Mallard,A.Ponchel,E.Monflier,S.Fourmentin,Remediation tech-nologiesusingcyclodextrins:anoverview,Environ.Chem.Lett.10 (2012) 225–237.

[18]W.C.E.Schofield,C.D.Bain,J.P.S.Badyal,Cyclodextrin-functionalized hierarchi-calporousarchitecturesforhigh-throughputcaptureandreleaseoforganic pollutantsfromwastewater,Chem.Mater.24(2012)1645–1653.

[19]G.Crini,M.Morcellet,Synthesisandapplicationsofadsorbentscontaining cyclodextrins,J.Sep.Sci.25(2002)789–813.

[20]N. Morin-Crini, G. Crini, Environmental applications of water-insoluble-cyclodextrin–epichlorohydrinpolymers,Prog.Polym.Sci.38(2013)344–368. [21]T.Uyar,R.Havelund,J.Hacaloglu,F.Besenbacher,P.Kingshott,Functional electrospunpolystyrenenanofibersincorporating␣-,␤-,and␥-cyclodextrins: comparisonofmolecularfilterperformance,ACSNano4(2010)5121–5130. [22]T.Uyar,R.Havelund,Y.Nur,J.Hacaloglu,F.Besenbacher,P.Kingshott,Molecular

filtersbasedoncyclodextrinfunctionalizedelectrospunfibers,J.Membr.Sci. 332(2009)129–137.

[23]E.S.Abdel-Halim,M.M.G.Fouda,I.Hamdy,F.A.Abdel-Mohdy,S.M.El-Sawy, Incorporationofchlorohexidindiacetateintocottonfabricsgraftedwith gly-cidylmethacrylateandcyclodextrin,Carbohyd.Polym.79(2010)47–55. [24]B.Martel,P.LeThuaut,S.Bertini,G.Crini,M.Bacquet,G.Torri,M.Morcellet,

Graftingofcyclodextrinsontopolypropylenenonwovenfabricsforthe man-ufactureofreactivefilters.III.Studyofthesorptionproperties,J.Appl.Polym. Sci.85(2002)1771–1778.

[25]P.L.Nostro,L.Fratoni,F.Ridi,P.Baglioni,SurfacetreatmentsonTencelfabric: graftingwithcyclodextrin,J.Appl.Polym.Sci.88(2003)706–715.

[26]R.Romi,P.L.Nostro,E.Bocci,F.Ridi,P.Baglioni,Bioengineeringofacellulosic fabricforinsecticidedeliveryviagraftedcyclodextrin,Biotechnol.Progr.21 (2008)1724–1730.

[27]N.Blanchemain,S.Haulon,E.Marcon-Bachari,M.Traisnel,C.Neut,J. Kirk-Patrick, M.Morcellet,H. Hildebrand,B.Martel, Vascularprostheses with controlledreleaseofantibioticsPart1.Surfacemodificationwithcyclodextrins ofPETprostheses,Biomol.Eng.24(2007)149–153.

[28]L.Ducoroy,B.Martel,B.Bacquet,M.Morcellet,Ionexchangetextilesfromthe finishingofPETfabricswithcyclodextrinsandcitricacidforthesorptionof metalliccationsinwater,J.Incl.Phenom.Macro.57(2007)271–277. [29]N.Blanchemain,T.Laurent,S.Haulon,M.Traisnel,C.Neut,J.Kirkpatrick,M.

Morcellet,H.F.Hildebrand,B.Martel,InvitrostudyofaHPgamma-cyclodextrin graftedPETvascularprosthesisforapplicationasanti-infectiousdrugdelivery system,J.Incl.Phenom.Macro.57(2007)675–681.

[30]B.Martel,M.Morcellet,D.Ruffin,L.Ducoroy,M.Weltrowski,Finishingof polyesterfabricswithcyclodextrinsandpolycarboxylicacidsascrosslinking agents,J.Incl.Phenom.Macro.44(2002)443–446.

[31]F. Kayaci,Z.Aytac,T.Uyar, Surfacemodificationofelectrospunpolyester nanofiberswithcyclodextrinpolymerfortheremovalofphenanthrenefrom aqueoussolution,J.Hazard.Mater.261(2013)286–294.

[32]W.H.Binder,R.Sachsenhofer,Clickchemistryinpolymerandmaterialsscience, Macromol.RapidCommun.28(2007)15–54.

[33]J.E.Moses,A.D.Moorhouse,Thegrowingapplicationsofclickchemistry,Chem. Soc.Rev.36(2007)1249–1262.

[34]G.D.Fu,L.Q.Xu,F.Yao,SmartNanofibersfromCombinedLivingRadical Poly-merization,clickChemistryandElectrospinning,ACSAppl.Mater.Interface.1 (2009)239–243.

[35]Z.Chang,Y.Xu,X.Zhao,Q.Zhang,D.Chen,Graftingpoly(methyl methacry-late)ontopolyimidenanofibersviaclickreaction,ACSAppl.Mater.Interface. 1(2009)2804–2811.

[36]H.Yang,Q.Zhang,B.Lin,G.Fu,X.Zhang,L.Guo,Thermo-sensitiveelectrospun fiberspreparedbyasequentialthioleneclickchemistryapproach,J.Polym.Sci. APolym.Chem.50(2012)4182–4190.

[37]A.Lancuˇski,F.Bossard,S.Fort,Carbohydrate-decoratedPCLfibersforspecific proteinadhesion,Biomacromolecules14(2013)1877–1884.

[38]Y.-C.Qian,N.Ren,X.-J.Huang,C.Chen,A.-G.Yu,Z.-K.Xu,Glycosylationof polyphosphazenenanofibrousmembranebyclickchemistryforprotein recog-nition,Macromol.Chem.Phys.214(2013)1852–1858.

[39]A.K.Haritash, C.P.Kaushik,Biodegradationaspectsof polycyclicaromatic hydrocarbons(PAHs):areview,J.Hazard.Mater.169(2009)1–15.

[40]S.K.Samanta,O.V.Singh,R.K.Jain,Polycyclicaromatichydrocarbons: environ-mentalpollutionandbioremediation,TrendsBiotechnol.20(2002)243–248. [41]K.Yang,L.Zhu,B.Xing,Adsorptionofpolycyclicaromatichydrocarbonsby

carbonnanomaterials,Environ.Sci.Technol.40(2006)1855–1861. [42]A.Walcarius,L.Mercier,Mesoporousorganosilicaadsorbents:nanoengineered

materialsforremovaloforganicandinorganicpollutants,J.Mater.Chem.20 (2010)4478–4511.

[43]K.Tungala,P.Adhikary,S.Krishnamoorth,Trimerizationof␤-cyclodextrin throughtheclickreaction,Carbohyd.Polym.95(2013)295–298.

[44]V.I.Bhoi,C.N.Murthy,Aqueoussolubilizationof[60]fullerenebyselectively modified␤-cyclodextrin,fullerenes,nanotubes,CarbonNanostruct.19(2011) 668–676.

[45]R.Ranjan,W.J.Brittain,Combinationoflivingradicalpolymerizationandclick chemistryforsurfacemodification,Macromolecules40(2007)6217–6223. [46]H.Toiserkani,G.Yilmaz,Y.Yagci,L.Torun,Functionalizationofpolysulfonesby

clickchemistry,Macromol.Chem.Phys.211(2010)2389–2395.

[47]A.Uliniuca,M.Popa,E.Drockenmullera,F.Boisson,D.Leonard,T.Hamaide, Toward tunable amphiphilic copolymers via CuAAC click chemistry of oligocaprolactones onto starch backbone, Carbohyd. Polym. 96 (2013) 259–269.

[48]T.Cai, W.J.Yang,Z.Zhang,X.Zhu,K.-G.Neoh,E.-T.Kang,Preparationof stimuli-responsive hydrogelnetworks with threaded b-cyclodextrin end-cappedchainsviacombinationofcontrolledradicalpolymerizationandclick chemistry,SoftMatter8(2012)5612–5620.

[49]R. Barbar,A.Durand,J.J.Ehrhardt,J. Fanni,M.Parmentier, Physicochem-ical characterization of a modified cellulose acetate membrane for the designofoil-in-wateremulsiondisruptiondevices,J.Membr.Sci.310(2008) 446–454.

[50]A.A.Qaiser,M.M.Hyland,D.A.Patterson,Surfaceandchargetransport char-acterizationofpolyaniline-celluloseacetatecompositemembranes,J.Phys. Chem.B115(2011)1652–1661.

[51]C.Raveler,E.Peyrin,A.Villet,C.Grosset,A.Ravel,J.Alary,Chromatographic studyofPAH-␤-CDinclusioncomplexesusingabinarymixtureand cyano-stationaryphase,Chromatographia53(2001)624–628.

[52]J.Rima,E.Aoun,K.Hanna,Effectofn-alkylchainlengthonthecomplexation ofphenanthreneand9-alkyl-phenanthrenewith␤-cyclodextrin,Spectrochim. ActaA60(2004)1515–1521.

[53]T.Badr,K.Hanna,C.deBrauer,Enhancedsolubilizationandremovalof naph-thaleneandphenanthrenebycyclodextrinsfromtwocontaminatedsoils,J. Hazard.Mater.112(2004)215–223.

[54]G. Chalumot,C. Yao,V. Pino,J.L.Anderson, Determiningthe stoichiome-tryandbindingconstantsofinclusioncomplexesformedbetweenaromatic compoundsand␤-cyclodextrinbysolid-phasemicroextractioncoupledto high-performance liquid chromatography, J. Chromatogr. A 1216 (2009) 5242–5248.

[55]R.Orprecio,C.H.Evans,Polymer-immobilizedcyclodextrintrappingofmodel organicpollutantsinflowingwaterstreams,J.Appl.Polym.Sci.90(2003) 2103–2110.

[56]X.Li,Y.Zhu,T.Wu,S.Zhang,P.Christie,Usinganovelpetroselinicacid embed-dedcelluloseacetatemembranetomimicplantpartitioningandinvivouptake ofpolycyclicaromatichydrocarbons,Environ.Sci.Technol.44(2010)297–301. [57]Y.Tao,B.Xue,S.Yao,J.Deng,Z.Gui,Trioleinembeddedcelluloseacetate mem-braneasatooltoevaluatesequestrationofPAHsinlakesedimentcoreatlarge temporalscale,Environ.Sci.Technol.46(2012)3851–3858.

[58]R.Ke,Y.Xu,Z.Wang,S.U.Khan,Estimationoftheuptakerateconstantsfor polycyclicaromatichydrocarbonsaccumulatedbysemipermeablemembrane devicesandtriolein-embeddedcelluloseacetatemembrane,Environ.Sci. Tech-nol.40(2006)3906–3911.

[59]Y.Tao,S.Zhang,Z.Wang,R.Ke,X.-Q.Shan,P.Christie,Biomimetic accumu-lationofPAHsfromsoilsbytriolein-embeddedcelluloseacetatemembranes (TECAMs)toestimatetheirbioavailability,WaterRes.42(2008)754–762.

Şekil

Fig. 1. (a) Schematic representation of electrospinning of CA nanofibers. (b) Schematic view and chemical structure of ␤-CD, schematic view of azide-␤-CD synthesis and CA-propargyl nanofibers formation
Fig. 2. (a) FTIR spectra of ␤-CD, TsO-␤-CD and azide-␤-CD powder, (b) ATR-FTIR spectra of CA, CA-propargyl and CA-CD nanofibers.
Fig. 3. Representative SEM images of (a) CA, (b) CA-propargyl and (c) CA-CD nanofibers
Fig. 5. The time dependent decrease of phenanthrene concentration in aqueous solution which contains CA and CA-CD nanofibers webs.
+2

Referanslar

Benzer Belgeler

dir yayene n dir yayene nalayene nalayene lengayene lengayene nimitene nimitene peysayene peysayene sawitene sawitene kulhayene kulhayene pawitene pawitene viyartene

Similarly the levels of TSS decreased significantly during storage in the present study, irrespective of the 1-MCP treatment or fresh-cut processing, which is a trend different

In this study, our objective was to examine the effect of nitrogen fertilization on plant density and quality in natural pastu res o f Ko n ya, Karaman , Nig de an d

To the best of our knowledge, this paper reports for the first time the chemical composition essential oil aerial part of Senecio vernalis collected from Eastern Anatolian region

As can be seen the figure, the device has been shown that the measure capacitance decreases with increasing frequency and capacitance decreases with decreasing voltage at

Representing intermittent sources with their average availabilities cause to overstate their value and they are considered as if they are incredibly productive [50, 51].. Also,

First, a generic Cramer- Rao lower bound (CRLB) expression is obtained in the case of unknown channel coefficients and carrier-frequency offsets (CFOs) for cognitive radio systems

If compositional mentality were to require that mental properties depend on relations between parts of a system, then compositional mentality could not possibly be a