• Sonuç bulunamadı

Başlık: New generating functions for the Konhauser matrix polynomialsYazar(lar):ERKUŞ – DUMAN, Esra; ÇEKİM, BayramCilt: 63 Sayı: 1 Sayfa: 035-041 DOI: 10.1501/Commua1_0000000703 Yayın Tarihi: 2014 PDF

N/A
N/A
Protected

Academic year: 2021

Share "Başlık: New generating functions for the Konhauser matrix polynomialsYazar(lar):ERKUŞ – DUMAN, Esra; ÇEKİM, BayramCilt: 63 Sayı: 1 Sayfa: 035-041 DOI: 10.1501/Commua1_0000000703 Yayın Tarihi: 2014 PDF"

Copied!
7
0
0

Yükleniyor.... (view fulltext now)

Tam metin

(1)

IS S N 1 3 0 3 –5 9 9 1

NEW GENERATING FUNCTIONS FOR THE KONHAUSER MATRIX POLYNOMIALS

ESRA ERKU¸S - DUMAN AND BAYRAM ÇEK·IM

Abstract. Varma et. al. [Ars Combin. 100 (2011) 193-204] introduced the concept of the Konhauser matrix polynomials. In this paper, we obtain some generating functions for these matrix polynomials. Finally, we focus on some special cases.

1. Introduction

In 2011, Varma et. al. de…ned the pair of the Konhauser matrix polynomials as follows: Zn(A; )(x; k) = (A+(kn+1)I)n! n X r=0 ( 1)r n r 1(A + (kr + 1)I)( x)kr; (1.1) Yn(A; )(x; k) = 1 n! n X r=0 ( x)r r! r X s=0 ( 1)s r s 1 k((s + 1)I + A) n ; (1.2) where A is a matrix in CN N satisfying the condition

Re( ) > 1 for every 2 (A); (1.3)

is a complex number with Re( ) > 0 and k 2 Z+ (see [5]): Here, for any matrix

A in CN N; Pochhammer symbol is de…ned by

(A)n= A(A + I):::(A + (n 1)I); n 1 ; (A)0= I:

They show that the Konhauser matrix polynomials Zn(A; )(x; k) and Yn(A; )(x; k)

are biorthogonal with respect to the weight matrix function xAe x: Furthermore

Received by the editors Nov. 18, 2013, Accepted: May 15, 2014.

2000 Mathematics Subject Classi…cation. Primary 33C45 ; Secondary 15A60.

Key words and phrases. Konhauser matrix polynomials, multilinear generating matrix func-tion, multilateral generating matrix funcfunc-tion, jacobi matrix polynomials.

c 2 0 1 4 A n ka ra U n ive rsity

(2)

they derive the following generating matrix functions: (1 w) 1k(A+I)exp h xn(1 w) 1k 1 oi = 1 X n=0 Yn(A; )(x; k)wn ; jwj < 1 (1.4)

for the polynomials Yn(A; )(x; k) and

(1 t) B 1Fk 2 6 6 4 B ; t( x) k (1 t)kk 1 k(A + I) ; :::; 1 k(A + kI) 3 7 7 5 = 1 X n=0 (B)nZn(A; )(x; k) [(A + I)kn] 1tn ; jtj < 1; t( x)k (1 t)kk < 1 (1.5)

for the polynomials Zn(A; )(x; k); where A and B are matrices in CN N satisfying

the conditions

Re( ) > 1 for every 2 (A)

AB = BA: (1.6) and1Fk is de…ned as 1Fk 2 4 B ; x A1 ; :::; Ak 3 5 =X1 n=0 (B)n n! [(Ak)n] 1 ::: [(A1)n] 1xn

for A1; :::; Ak and B are matrices in CN N satisfying condition Ai+ sI is invertible

for s 2 N, i = 1; :::; k;see [5]. In the present paper, we obtain multilinear and multilateral generating functions for the pair of the Konhauser matrix polynomials. Some special cases are also given.

2. multilinear and multilateral generating matrix functions In this section, we give theorems which derive several substantially more general families of bilinear, bilateral generating functions for the Konhauser matrix polyno-mials de…ned by (1.1) and (1.2). Using the similar method considered in [1, 2, 3, 4], we obtain the main theorems.

Theorem 2.1. Corresponding to a non-vanishing function (y1; :::; ys) of

com-plex variables y1; :::; ys(s 2 N) and of complex order , let ; (y1; :::; ys; z) :=

1

X

k=0

(3)

and

n;p; ; (x; y1; :::; ys; ) := [n=p]X

l=0

al Yn pl(A; )(x; k) + l(y1; :::; ys) l ; (2.2)

where A is a matrix in CN N satisfying the conditions in (1.6); n; p 2 N and (as

usual) [ ] represents the greatest integer in 2 R: Then, for jtj < 1 and Re( ) > 0; we have 1 X n=0 n;p; ; x; y1; :::; ys; tp t n (2.3) = (1 t) 1k(A+I)exp h x n (1 t) 1k 1 oi ; (y1; :::; ys; ):

Proof. For convenience, let S denote the …rst member of the assertion (2.3) of Theorem 2.1. Plugging the polynomials

n;p; ; x; y1; :::; ys;

tp ;

which comes from (2.2) into the left-hand side of (2.3), we obtain

S = 1 X n=0 [n=p]X l=0 al Yn pl(A; )(x; k) + l(y1; :::; ys) ltn pl: (2.4)

Upon changing the order of summation in (2.4), if we replace n by n + pl; we can write S = 1 X n=0 1 X l=0 alYn(A; )(x; k) + l(y1; :::; ys) ltn = 1 X n=0 Yn(A; )(x; k) tn ! 1 X l=0 al + l(y1; :::; ys) l ! = (1 t) 1k(A+I)exp h xn(1 t) 1k 1 oi ; (y1; :::; ys; );

which completes the proof of Theorem 2.1.

Theorem 2.2. Corresponding to a non-vanishing function (y1; :::; ys) of

com-plex variables y1; :::; ys(s 2 N) and of complex order , let

; (y1; :::; ys; z) := 1

X

k=0

(4)

and n;p; ; (x; y1; :::; ys; ) (2.6) = [n=p]X l=0 al + l(y1; :::; ys)(B)n plZn pl(A; )(x; k) (A + I)k(n pl) 1 l ; where A and B are matrices in CN N such that A satis…es condition in (1.6); n; p 2

N; and (as usual) [ ] represents the greatest integer in 2 R: Then, for jtj < 1; t( x)k

(1 t)kk < 1 and Re( ) > 0, we have 1 X n=0 n;p; ; x; y1; :::; ys; tp t n (2.7) = ; (y1; :::; ys; )(1 t) B 1Fk 2 6 6 4 B ; t( x) k (1 t)kk 1 k(A + I) ; :::; 1 k(A + kI) 3 7 7 5 : Proof. The proof is similar to Theorem 2.1.

Now, we obtain some special cases for generating functions.

Firstly, if we set + k(y ) = P(C;D)+ k (y) ( ; 2 N0) for s = 1 in Theorem 2.1,

where the Jacobi matrix polynomials Pn(C;D)(y) are de…ned by means of the

gener-ating function in [7]: 1 X n=0 Pn(C;D)(x)tn = F4 I + D; I + C; I + C; I + D; (x 1) t 2 ; (x + 1) t 2 (2.8) r (x 1) t 2 + r (x + 1) t 2 < 1 ! ;

where C and D are matrices in CN N satisfying the spectral conditions Re(z) > 1

for each eigenvalue z 2 (C); and Re( ) > 1 for each eigenvalue 2 (D), CD = DC and F4(A; B; C; D; x; y) is de…ned by

F4(A; B; C; D; x; y) = 1 X n;k=0 (A)n+k(B)n+k(D)n1(C)k1x kyn k!n!;

where C + nI and D + nI are invertible for every integer n 0 in px + py < 1: Then we obtain the following example which provides a class of bilateral generating functions for the Jacobi matrix polynomials and the Konhauser matrix polynomials Yn(A; )(x; k).

(5)

Example 2.3. Taking al= 1; = 0; = 1 and jtj < 1; we have 1 X n=0 [n=p]X l=0 Yn pl(A; )(x; k) Pl(C;D)(y) ltn pl = (1 t) 1k(A+I)exp h xn(1 t) 1k 1 oi F4 I + D; I + C; I + C; I + D; (y 1) 2 ; (y + 1) 2 ; where q (y 1) 2 + q (y+1) 2 < 1:

If we take + k(y ) = CD+ k(y) ( ; 2 N0) for s = 1 in Theorem 2.2, where

the Gegenbauer matrix polynomials CD

n(y) are de…ned by means of the generating

function in [6]: 1 X n=0 [(2D)n] 1CnD(x)tn= exp (xt) 0F1 ; D + I 2; 1 4t 2 x2 1 ;

where D is a matrix in CN N satisfying the spectral condition z

2 2 (D) for=

each eigenvalue z 2 Z+[ f0g ; then we obtain the following example which provides

a class of bilateral generating functions for the Gegenbauer matrix polynomials CD

n(x) and the Konhauser matrix polynomials Z (A; ) n (x; k). Example 2.4. Taking al= [(2D)l] 1 ; = 0; = 1; we have 1 X n=0 [n=p]X l=0 [(2D)l] 1 ClD(y)(B)n plZn pl(A; )(x; k) (A + I)k(n pl) 1 l tn pl = exp (y ) 0F1 ; D + I 2; 1 4 2 y2 1 (1 t) B 1Fk 2 6 6 4 B ; t( x) k (1 t)kk 1 k(A + I) ; :::; 1 k(A + kI) 3 7 7 5 ; where A and B are matrices in CN N such that A satis…es conditions in (1:6):

Substituting + k(y ) = Y(C;+ k2)(y; k2) ( ; 2 N0) for s = 1 in Theorem 2.2,

then we can give the following example which provides a class of bilateral generating functions for the pair of the Konhauser matrix polynomials.

(6)

Example 2.5. Taking al= 1; = 0; = 1 and jtj < 1; we have 1 X n=0 [n=p]X l=0 Y(C; 2) l (y; k2)(B)n plZ (A; ) n pl(x; k) (A + I)k(n pl) 1 l tn pl = (1 ) k21(C+I)exp h 2y n (1 ) k21 1 oi (1 t) B 1Fk 2 6 6 4 B ; t( x) k (1 t)kk 1 k(A + I) ; :::; 1 k(A + kI) 3 7 7 5 ; where C is a matrix in CN N satisfying the condition

Re( ) > 1 for every 2 (C);

2is a complex number with Re( 2) > 0, k22 Z+ and j j < 1:

Also setting + l(y ) = Y(C;+ l2)(y; k2) ( ; 2 N0) for s = 1 in Theorem 2.1, we

have the following example which provides a class of bilinear generating functions for the Konhauser matrix polynomials Yn(A; )(x; k).

Example 2.6. Taking al= 1; = 0; = 1 and jtj < 1; we have 1 X n=0 [n=p]X l=0 Yn pl(A; )(x; k) Y(C; 2) l (y; k2) ltn pl = (1 t) k1(A+I)exp h x n (1 t) k1 1 oi (1 ) k21(C+I)exp h 2y n (1 ) k21 1 oi where C is a matrix in CN N satisfying the condition

Re( ) > 1 for every 2 (C);

2is a complex number with Re( 2) > 0, k22 Z+ and j j < 1:

Similarly, in Theorem 2.2, if we take + l(y ) = Z(C;+ l2)(y; k2) ( ; 2 N0),

where C is a matrix in CN N satisfying the condition

Re( ) > 1 for every 2 (C);

2 is a complex number with Re( 2) > 0 and k2 2 Z+ ; then we obtain bilinear

generating functions for the Konhauser matrix polynomials Zn(A; )(x; k):

Notice that, when the multivariable function + k(y1; :::; ys); (k 2 N0; s 2 N);

is expressed in terms of several simpler functions of one or more variables, then each suitable choice of the coe¢ cients ak (k 2 N0) in Theorems 2.1 and 2.2 can be

(7)

shown to yield various classes of multilateral and multilinear generating functions for the Konhauser matrix polynomials de…ned by (1.1) and (1.2).

References

[1] A. Alt¬n and E. Erku¸s, On a multivariable extension of the Lagrange-Hermite polynomials, Integral Transform. Spec. Funct., 17 (2006), 239-244.

[2] E. Erku¸s-Duman, Matrix extensions of polynomials in several variables, Util. Math., 85 (2011), 161-180.

[3] B. Çekim and E. Erku¸s-Duman, On the g-Jacobi Matrix Functions, Advances in Applied Mathematics and Approximation Theory, Springer Proceedings in Mathematics & Statistics, 73-84, 2013.

[4] R. Akta¸s, B. Çekim and R. ¸Sahin, The matrix version for the multivariable Humbert polyno-mials, Miskolc Math. Notes, 13 (2) (2012), 197-208.

[5] S. Varma, B. Çekim, F. Ta¸sdelen Ye¸sildal, On Konhauser matrix polynomials, Ars Combin., 100 (2011), 193-204.

[6] K.A.M. Sayyed, M.S. Metwally and R.S. Batahan, Gegenbauer matrix polynomials and second order matrix di¤erential equations, Divulg.Mat., 12 (2) (2004), 101-115.

[7] A. Alt¬n, B. Çekim and E. Erku¸s-Duman, Families of generating functions for the Jacobi and related matrix polynomials, Ars Combin. (in press).

Current address : Gazi University, Faculty of Science, Department of Mathematics, Teknikokullar TR-06500, Ankara, TURKEY

E-mail address : eduman@gazi.edu.tr, bayramcekim@gazi.edu.tr

Referanslar

Benzer Belgeler

Abstract—Closed-form Green’s function (CFGF) representations are de- veloped for tangential magnetic current sources to calculate the mutual coupling between apertures on

Keywords: Software testing; Testing cost; Combinatorial interaction testing; Covering arrays; Cost-aware testing; Parallel covering array generation..

For this reason, we simply conducted an experiment where the Hybrid approach is used to construct the PMF and no further parallelization is applied during the synchronizing

Bizim olgumuzda ekstremite anoma- lisi olarak do¤ufltan radius, el bilek kemikleri, birinci me- takarp ve birinci proksimal ve distal falanks yoklu¤unun olmas›, ulnar kemi¤in

Herkesin yapabileceği bir iş gibi görünüyor ama, buna resmin doğrularını, sanat tarihi incelemelerini, boyama tekniklerini katarsak, bu ciddi işe ciddi olarak

Bu araştırmanın kapsamı doğrultusunda performansa dayalı durum belirleme, performans görevleri; performans görevlerinin bölümleri, geliştirme aşamaları,

İzlettirilen reklam filmlerinden etkileyicilik ve müzikal bağlamda hangisinin daha başarılı olduğu sorulduğunda: Pınar yanıtı alınmıştır.. Katılımcıya Ait EEG Görseli

Ayrıca doymamış keton bileşiği olan bisiklo[3.2.0]hept-2-en-6-on’dan elde edilen α,β- doymamış karbonil bileşiği ile 2-aminotiyofenol’e aynı işlemler uygulanarak 3