• Sonuç bulunamadı

Laser synthesized gold nanoparticles for high sensitive strain gauges

N/A
N/A
Protected

Academic year: 2021

Share "Laser synthesized gold nanoparticles for high sensitive strain gauges"

Copied!
6
0
0

Yükleniyor.... (view fulltext now)

Tam metin

(1)

ContentslistsavailableatScienceDirect

Sensors

and

Actuators

A:

Physical

j ou rn a l h o m e p a g e :w w w . e l s e v i e r . c o m / l o c a t e / s n a

Laser

synthesized

gold

nanoparticles

for

high

sensitive

strain

gauges

Salamat

Burzhuev,

Aykutlu

Dâna,

Bülend

Ortac¸

UNAM-InstituteofMaterialsScience&Nanotechnology,BilkentUniversity,Ankara06800,Turkey

a

r

t

i

c

l

e

i

n

f

o

Articlehistory: Received17April2013

Receivedinrevisedform23August2013 Accepted23August2013

Available online 7 September 2013

Keywords: Laserablation Goldnanoparticles Goldnanoparticlefilms Quantumtunnelingeffect Straingauges

a

b

s

t

r

a

c

t

Wedemonstratehighstrainsensitivitypropertyofgoldnanoparticle(Au-NP)thinfilmsfabricatedon flexiblepolydimethylsiloxane(PDMS)substrates.Thisbehaviorisattributedtoquantumtunnelingeffect thatishighlydependentonnanoparticleseparation.Au-NPsweresynthesizedinwaterbynanosecond laserablationmethod.Thecleansurfaceprovidinghightunnelingdecayconstant,sizeoftheAu-NPs andAu-NPsaggregateclustersofferadvantagesforhighsensitivitystrainsensor.WepreparedAu-NPs filmsonflexiblePDMSsubstratebyusinghands-ondrop-castmethod.Toobtainhighgaugefactor(g factor),weinvestigatedthenanoparticlesconcentrationonthesubstrate.Laser-generatedAu-NPsfilms demonstratedgfactorof∼300forhigherthan0.22%strainand∼80forthestrainlowerthan0.22%strain, whichisfavorablycomparabletoreportedsensitivitiesforstrainsensorsbasedonAu-NPs.Mechanical characterizationsfortheprolongedworkingdurationssuggestlongtermstabilityofthestrainsensors. Wediscussseveralmodelsdescribingconductanceoffilmsinlowandhighstrainregimes.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Straingauges,whichconvertstraininputtoresistancechange, findwideapplicationintransductionofmechanicalsignals.Strain gauges basedonmetaland semiconductor filmsarecommonly usedinsensing.Thesensitivityofastraingaugeisexpressedby thegfactor,whichcanbecalculatedbythefollowingequation: g= R

Rε (1)

whereRisthechangeinresistanceuponappliedstrain;Risthe initialresistance;andεistheappliedstrain.Theconventionalmetal filmstrainsensorshavelonglifetimesandarerelativelyrobustto environmentaleffectssuchaschangesintemperatureand humid-ity.Ontheotherhand,thesesensorspresentlowsensitivitydue tothelimitedgfactors.Semiconductorbasedstrainsensorshave fundamentallydifferentoperationmechanism,namely modifica-tionofbandstructure,effectivemassandmobility.Moreover,they aremoresensitive,butmayrequiretemperaturecompensation. Inaddition,thesensitivityofthesesensorsdecreaseunderhigh strainsandabreakdownstrain∼0.6%resultinginlimitedoperation range[1,2].

Thinfilmsbasedonnanomaterialshavefoundwideapplications in fields of optics, biology and detection. Metallic nanoparti-cles have gained significant attention mainly because of their uniqueoptical,electricalandcatalyticproperties.Intheliterature,

∗ Correspondingauthor.Tel.:+903122903526. E-mailaddress:ortac@unam.bilkent.edu.tr(B.Ortac¸).

theconductionbehaviorbetweenchemicallysynthesized nanopar-ticles has been intensively studied [3,4]. The conduction of n-alkanelthiol-stabilizedAu-NPfilms wasshownto have expo-nentialdecaydependencetothelengthofligands’alkanethiolate chains. This effect wassuggested to beattributed to quantum tunneling effect [3,4]. The quantum tunneling effect is highly dependentonwidthofthepotentialbarrier.Thus,itwas antici-patedthattheAu-NPsfilmscanbeusedashighly-sensitivestrain gauges.Inprinciple,suchfilmscanbeusedinothertypesofsensors. Forinstance,onecanmeasurethechangeconductancetoobserve theeffectofchemicalmodificationorattachmentofbiomolecules, whichoccursduetochangesinthetunnelingbarrierwidthand height.

TheuseofAu-NPsinstrainsensinghaspreviouslybeenreported inliterature.Herrmannetal.demonstratedthehighcapabilityof Au-NP filmstosensesmall linear strains[5].The Au-NPstrain gaugeswereshowntobenearlytwoordersofmagnitudesensitive thantheconventionalstraingauges[5].Vossmeyeretal. demon-stratedlowersensitivityAu-NPstrainsensorsfabricatedonflexible substratesbydepositing12-dodecylamine-stabilizedAu-NPsvia layer by layer self-assembly on oxidized flexible polyethylene. This technique provides high adhesion of Au-NPs on the sub-stratebecauseoflinkercompound,1,9-nonanedithiol,whichalso increasesthemechanicalrobustnessofsensors[6].Ressieretal. developedstop-and-goconvectiveself-assemblymethodto fabri-catefew micrometerwiresbasedonAu-NPs,anddemonstrated thatmonolayerwiresofAu-NPshavehigherstrainsensitivity–g factorof132–thanmultilayerwires[7–9].

PresenceofchemicalstabilizersonAu-NPsurfacespotentially decreasestrainsensitivity.Thinfilmsbasedonmetalnanoparticles

0924-4247/$–seefrontmatter © 2013 Elsevier B.V. All rights reserved.

(2)

havingcleansurfaceswerepredictedtohaveimprovedgfactors[5]. Recently,Tanneretal.demonstratedthatPlatinum(Pt) nanopar-ticlecoatingsobtainedbysputtering in vacuumpresent highg factors(700).Theyalsostudiedhow surfacedensity affectsthe sensitivityofsuchdevices [10,11].Nanoparticles freeof chemi-calstabilizers canbeobtainedbylaserablationmethod[12,13]. Uniquelaser-matterinteractionpropertiesopenthedoortothe generationofavarietyofnanoparticles[14].Comparedwithother nanoparticlesynthesismethods,laserablation,especiallyin liq-uids,isa versatilemethodforgeneratingcolloidal,highly pure, andsurfactant-freenanoparticles.Inthispaper,wehavestudied theconduction propertiesof thin filmsof Au-NPs,prepared by nanosecondlaser ablationin deionizedwater. Au-NPthinfilms wereobtainedbysimplydrop-castingAu-NPcolloidalsolutionon thePDMSsubstrates.

2. Experimentaldetails

2.1. Au-NPsynthesisbylaserablationinliquid

Au-NPswereobtainedbylaserablationindeionizedwater.Gold block(99.999%,KurtJ.Lesker)wascleanedbysonificationin ace-toneprior tolaserablationwithout anyadditionalpurification. ThegenerationofcolloidalnanoparticlesfromAublockwas car-riedoutbyusingacommercialpulsedND:YLFlaser(wavelength: =527nm,16Waveragepower,pulseduration t=100ns,pulse energyE=16mJfor1kHz).ThecleanedAublockwasplacedina glassvesselcontaining23.5mLofpuredeionizedwater.Thelaser beamwasfocusedonthetargetbyusingaplano-convexlenswith focallengthof50mm.Theheightofliquidlayeroverthegold tar-getis∼5mm.Thelaserablationwascarriedoutfor∼10min,and thelaserbeamisscannedoverthetargetsurface.Duringthelaser ablation,theformationofcolloidalnanoparticlesolutionwith dis-persedAu-NPsinliquidmediawasobservedasacolorchangeofthe deionizedwater.Afterthelaserirradiation,thecoloroftheAu-NPs solutionbecamedark-red.

ThestructureofAu-NPsgeneratedbynanosecondpulsedlaser ablationwerestudiedbyTEM(TEMmodelFEI– TecnaiG2F30) system.Sample for TEManalysiswaspreparedbydrop-casting solutionsontocarbon-coatedgrid.RepresentativeTEMimageof theAu-NPsisshowninFig.1,showingwelldispersed, spherical-likeNPs.SizedistributionwasmeasuredfromTEMimagewhere 100particles’approximatediametersweremeasured.Size distri-butionofAu-NPsisgiveninFig.1inset.Anaveragenanoparticles sizeof13nmisseen,withadistributioncoveringtherangefrom2 to25nm.

Fig.1. TEMimageofAu-NPs.Theinsetshowsthehistogramofsizedistribution calculatedfromTEMimages.

2.2. Strainsensorfabrication

ThinfilmsofAu-NPshavebeenproducedbydrop-castingon severalsubstrates.It wasobserved that,uniformityofthefilms werepooronSiO2andsiliconsubstratesduetotheirhydrophilic

surfaces.Au-NPsonglassandsiliconwererandomlydistributed andintensivelylocatedattheedgeoftheinitialAu-NPdroplet’s contactarea.Ontheotherhand,PDMSsubstratepresentslow sur-faceenergy,thusahydrophobicsurface.Thehighcontactangle andlowsurfaceenergyenablestouniformlyprecipitateparticles and highly concentratethem onthe surface. Afterdroplet was completelydried,adarkbluespotwasformedonthesurfaceof PDMS.Au-NPthinfilmsobtainedonPDMSwereuniformly dis-tributed(Fig.2a).Contactswereobtainedusingashadowmaskand a350␮mgapwasformedbycoating80nmPtfilmusingsputtering (PECSGatan682)(Fig.2b).

Scanningelectronmicroscope(SEM)(FEINovaNanoSEM600) wasusedtofurtherinvestigatethelocalizationofAu-NPsonthe PDMS substrate. In theSEM image, aggregated clusters canbe

(3)

Fig.3.SEMimageofAu-NPsthinfilmonPDMSsubstrate.

realized,throughwhichconductiontakesplace(Fig.3).Also,PDMS surfaceisnotfullycoveredbyAu-NPsandtherearecracks(Fig.3). ThesemayincreaseresistanceofAu-NPsfilm.

2.3. Mechanicalcharacterization

Au-NPfilmonthePDMSsubstratewascharacterizedby apply-inglinearstrainandobservingchangeinresistanceasshownin Fig.4.Inthisfigure,Au-NPstrainsensorisschematicallyshown, whereAu-NPsandaggregatesofAu-NPsaremoveapartwhile ten-silestrainisapplied;resultinginthechangeofresistance(Fig.4). AggregationoflasergeneratedAu-NPscanbeobservedinFig.3.A

lineartranslationstagefittedwithapiezoelectricactuator (Thor-labsAE0203D08F)wasusedtocharacterizethestrainresponseof Au-NPsfilms.Instaticmeasurements,usingafixedbiasof1V cur-rentthroughthefilmswasmonitoredusinga precisioncurrent meter (Keithley4200-SCS). Dynamicstrainresponse of the Au-NPsthinfilmstrainsensorwasmonitoredusingatransimpedance amplifier (Stanford Research systems SR-570) and digital oscil-loscope(TektronixTDS1012B),Piezoelectricactuatorwasdriven withasquarefunctionoffrequency1Hzandpeak-to-peak ampli-tude of 5␮m. Dynamic measurements were performed under 0.25Vbiasappliedtothefilm.

3. Resultsanddiscussion

Theconcentrationofthenanoparticlesonthesubstratestrongly affectstheconductivityandstrainsensitivityoftheAu-NPfilm.The concentrationofgoldintheAu-NPsinwaterobtainedby∼10min laserablationwasapproximately1.08mM.GoldmassinAu-NP col-loidalsolutionwascalculatedbyweighingthegoldblockbefore and aftertheablationprocess. Thenthemolarity valueofgold inAu-NPsolutionwascalculatedinterms ofmM.Thiscolloidal solutionwasdilutedseveraltimestoobtainsolutionswith dif-ferentconcentrations.300␮lofdilutedsolutionswereappliedto PDMSsubstratesanddriedatambientconditionstoformspots withtypicaldiameterof5mm.Filmspreparedwith>0.9mm col-loidalsolutionswereveryconductiveanddidnotrespondtostrain; while,filmspreparedwith<0.72mMsolutionswerehighly resis-tive(resistance>200M)andsensitivetostrain.Itwasobserved thatfilmsthathavehigherresistanceweremoresensitivetostrain. OptimalconcentrationforAu-NPsstraingaugesisfoundtobeabout ∼0.81mMthatyieldshighsensitivityandmeasurableresistance. Laser-synthesizednanoparticlesolutionstendedtoaggregatedue toabsenceofchemicalstabilizersresultingindifferentfilm forma-tionafterseveraldays.

In Fig.5,itis clearlyseenthat thereis significantchangein resistanceofAu-NPfilmwhilethestrainisbeingapplied,which

Fig.4. SchematicdemonstrationofAu-NPsstraingauge.PtcontactsareattheedgesofsensorandAu-NPsareshownasyellowballs.Notethat,dimensionsarenottoscale. Intheleftside,Au-NPfilmisintheinitialstatewherethereisnostrainandresistanceoffilmisR.Intherightside,strainisappliedtoAu-NPfilmthatincreasesdistances betweennanoparticlesandaggregatedclustersresultinginresistanceincreaseofR.(Forinterpretationofthereferencestocolourinthisfigurelegend,thereaderisreferred tothewebversionofthisarticle.)

(4)

Fig.5.ResistancechangeresponseofAu-NPfilmswhileapplyingstrain.Fit1and2 arethecorrespondinglinearandexponentialfunctions.Also,metalfoilstraingauge responseisshownforcomparisonwhichhavegfactorof2(dashed-dottedline).

indicateshighersensitivityofAu-NPfilmthanconventionalmetal foilstraingauges.Previously,thestrainresponseofAu-NPstrain sensorisexplainedbyanexponentialdependenceas:

R/R=exp(gε)−1 (2)

where particles initially separated from each other [5]. Strain responseoftheAu-NPfilmwithinitialresistanceof 20.8Mis showninFig.6.ItisobservedthattheAu-NPstrainsensorresponse islinearundersmallstrains(<0.22%).Thegfactorisobtainedby fittingafunctionoftheform:

R/R≈gε (3)

whichresultsing ∼= 80.2undersmallstrains(Fig.5,fit1).Under higherstrains(>0.22%)Au-NPfilmresistanceisfittedwithan expo-nentialfunctionoftheform:

R/R−y1=exp(g(ε−x1))−1 (4)

where(x1y1)isApointinFig.5whichresultsinaneffectivegfactor

ofg ∼= 298(Fig.5,fit2).Gfactorisdescribedbyfollowingequation:

g=ˇ(d+l) (5) 5 10 15 20 0.0 0.2 0.4 0.6 0.8 1.0 1.2 Δ

R/

R

Time (s)

5 6 7 8 9 0.0 0.2 0.4 0.6 0.8 1.0 1.2 ΔR/ R Time (s)

Fig.6.AlternatingstrainresponseofAu-NPsstrainsensor(at1Hzfrequency).

wheregisthegfactor;disthediameterofnanoparticleoraggregate ofnanoparticles;listhedistancebetweennanoparticles;ˇisthe tunnelingdecayconstant[5].Tunnelingdecayconstantdependson theheightofquantumbarrier.Underlowbiases,ˇ=2



2mϕ/2

wherem,ϕandareelectroneffectivemass,workfunctionand reducedPlanck’sconstant,respectively.

Assuming that tunneling undergoes in air, tunneling decay constant is ∼20nm−1 and average nanoparticle diameter is ∼13–15nm;so,gcanbeapproximatedasavalueof300.Aggregated clustersmightbealsoresponsiblefor highsensitivity ofAu-NP straingaugesinceeveryclustercanbeconsideredasa particle. Inthisscenario,aggregatesremainunstrainedwhilemostofthe deformationoccursbetweenthem.Asaresult,Eq.(5)canbe mod-ifiedinsuchwaythatdcorrespondstoaverageclusterdiameter [5,11].

Onepossibleexplanationforthepresenceofmultipleregimes withdistincteffectivegfactorsissoughtbyconsideringthe con-ductionmechanismintheAu-NPfilm.Initially,byproperchoice ofNPconcentration,thefilmsarepreparednearthepercolation threshold,withalargenumberofparallelconductionpaths.Under theapplicationofasmallstrain(zone1inFig.5),thenumberof pathscontributingtoconductanceofthefilmsdiminishes, caus-ingalinearincreaseinresistancedescribedbyEq.(3).Asthepaths arebrokenatpointA,conductionthroughthepathsaredominated bytunneling(zone2inFig.5),whichexhibitsalargerresistance change.At thepoint A(x1,y1) quantum tunneling startsto play

majorrole:asa result,Eq.(2)shouldbecorrected toEq.(4) so thatexponentialdependencebeginsfromthepoint(x1,y1).

Modulation strain response of Au-NP strain gauge shows dynamicresponse ofresistance(Fig.6).Theinitialresistanceof thisstrainsensorusedforthisexperimentwas11.11M.G fac-torofAu-NPsensorusedinthisexperimentisabout118.Strain responsedidnotexhibitnoticeablechangeafterhoursof opera-tion.Also,reproducibleresponsescanbetakenevenafterweeksof initialpreparation.Forthefrequencieslargerthan1Hz,sensitivity ofthedevicestartstodegradebecauseoflowYoung’smodulusand viscoelasticpropertyofPDMS.

ResistanceofAu-NPfilmishighlydependentongapsbetween nanoparticles.Statisticalstudyisrequiredinordertounderstand howAu-NPfilmresistanceisdependentongapsbetweenAu-NPs. Wemadesimulationwhereeverygapisconsideredtobeeither seriesorparallelresistor(Fig.7).Weperformnumerical Monte-Carlosimulationstounderstandhow thegapsbetweenAu-NPs affecttheresistanceoftheAu-NPstrainsensor.Simmons’s gen-eralizedformulafortunnelingwasusedtoobtainresistancesof thesamples[15].Potentialdifferencebetweenthenanoparticles isassumedasthedistancebetweennanoparticlestimeselectric field(V=El)whereelectricfieldequalstoappliedbiasdividedby distancebetweentocontacts(E=Vbias/L).Directtunnelingshould

beobservedsince potentialdifferencebetweennanoparticlesis smallduetosmall(<1nm)distancesbetweennanoparticles.Inthe simulation,inputwasarandomGaussiandistributionofthegaps (700*10,0002Dnanoparticlesmatrix,performed1000times)and outputwasnumberofsamplesvs.resistanceofthesamples.Fig.7 isseemsasaGaussiandistribution,whichshowsthenumbervs. resistancesofsamples.Thegapbetweennanoparticlesis0.18nm withstandarddeviationof0.18nm.Inotherwords,the nanoparti-clesareveryclosetoeachother.Thisgraphprojectsthatdifferent substratesappearwhiledryingsameamountofAu-NPsonPDMS. Furthermore,lasersynthesizedAu-NPfilmspresentpromising propertiesforsensingapplicationsbecausethesesensorsareeasily fabricated onPDMS substrate and have high strain sensitivity. PDMS,havinglow Young’smodulus,is flexiblesubstrate which canbeadvantageousforsomeapplicationssuchaslowpressure sensing.ItiseasytoobtainuniformfilmsonPDMS;however,this

(5)

21.0 21.2 21.4 21.6 21.8 22.0 22.2 22.4 50 100 150 200

Number of samples

Resistance

(MΩ)

R

11

R

12

R

1i

R

21

R

j1

R

ji

V

Fig.7.SimplecircuitmodelofAu-NPsthinfilmandhistogramofnumberofsamplesvs.resistanceofthesamples.

substratehassomedrawbackssuchascreepdeformation,stress relaxation and high thermal coefficient. Depending on sensing applications,differentsubstrateswithhydrophobicsurface,which allowsuniformdepositionofnanoparticlesbydrop-castmethod, can beemployed todevelop Au-NPstrain gauge. For example, substrateswithhighYoung’smoduluscanincreaseoperation fre-quencyrangeofthedevice.Studiesondepositiontechniquesmay berequiredtoimproveadhesionofAu-NPsonthesubstratewhich may improve mechanical robustness. Coating Au-NP film with protectionlayercouldbealsoneededtoreduceunwanted envi-ronmentaleffectssuchasvariationsinhumidity.Smallercontacts canbeemployedfordecreasingnominalresistancewhichinturn willreducenoiseassociatedwithlowcurrentdetection.Inorderto reducevariationsingaugefactor,drop-castingoncompressively strainedsubstratecanbeused.Afterrelievingsubstrateitexpands andallconductingpathwillbebroken;asaresult,onlyoneregime (tunneling)willberesponsiblefor resistancechangein Au-NPs straingauges.ThiswillalsomakeAu-NPfilmsensitiveto compres-sivestrain.Forfurtherstudies;thereliability,therepeatabilityand theenvironmentaleffectssuchasgaugehysteresis,temperature dependence,longtermaging,compressionvs.tensiondeviation, sensitivityshiftwithnumberofcycles,etc.couldbeinvestigated forreal-worldapplicationsoftheAu-NPstaingauge.

4. Conclusion

Inconclusion,wehavedemonstratedthatlasergenerated Au-NPfilmsonPDMScanbefurtherusedforhighlysensitivestrain gauge. G factor of these films is found to be ∼300 for strains higherthan0.22%,whichishighestreportedsensitivityforAu-NPs strainsensors.HighsensitivitypropertiesoflasergeneratedAu-NP strainsensorswasattributedtocleansurfaces,sizeandaggregated clustersofAu-NPs.High stabilitywasalsostudiedbyself-made mechanicalcharacterizations.Forthefurtherinvestigation,the Au-NPfilmsyieldinterestingelectricalpropertiesthatmaybeusedin transitionvoltagespectroscopy.

Acknowledgments

StatePlanningOrganization(DPT)ofTurkeyisacknowledged forthesupportofUNAM-InstituteofMaterialsScienceand Nano-technology.Dr.Ortac¸acknowledgesthe‘IndustrialThesisProjects Programme’oftheMinistryofIndustryandTradeforfundingthe San-Tez(636.STZ.2010-1)project.

References

[1]J.S. Wilson, Sensor Technology Handbook, Elsevier, Amsterdam, Boston, 2005.

[2]R.L.Hannah,S.E.Reed,SocietyforExperimentalMechanics(U.S.),StrainGage Users’Handbook,ElsevierAppliedScience/SocietyforExperimental Mechan-ics,London/NewYork/Bethel,CT,USA,1992.

[3]F.P.Zamborini,M.C.Leopold,J.F.Hicks,P.J.Kulesza,M.A.Malik,R.W.Murray, Electronhoppingconductivityandvaporsensingpropertiesofflexiblenetwork polymerfilmsofmetalnanoparticles,JournaloftheAmericanChemicalSociety 124(2002)8958–8964.

[4]W.P.Wuelfing,S.J.Green,J.J.Pietron,D.E. Cliffel,R.W.Murray, Electronic conductivityofsolid-state,mixed-valent,monolayer-protectedAuclusters, JournaloftheAmericanChemicalSociety122(2000)11465–11472.

[5]J.Herrmann,K.H.Muller,T.Reda,G.R.Baxter,B.Raguse,G.J.J.B.deGroot,etal., Nanoparticlefilmsassensitivestraingauges,AppliedPhysicsLetters91(2007).

[6]T.Vossmeyer,C.Stolte,M.Ijeh,A.Kornowski,H.Weller,Networked gold-nanoparticlecoatingsonpolyethylene:chargetransportandstrainsensitivity, AdvancedFunctionalMaterials18(2008)1611–1616.

[7]C.Farcau,N.M.Sangeetha,H.Moreira,B.Viallet,J.Grisolia,D. Ciuculescu-Pradines,etal.,High-sensitivitystraingaugebasedonasinglewireofgold nanoparticlesfabricatedbystop-and-goconvectiveself-assembly,ACSNano5 (2011)7137–7143.

[8]C.Farcau,H.Moreira,B.Viallet,J.Grisolia,L.Ressier,Tunableconductive nanoparticlewirearraysfabricatedbyconvectiveself-assemblyon nonpat-ternedsubstrates,ACSNano4(2010)7275–7282.

[9]C. Farcau, H. Moreira, B. Viallet, J. Grisolia, D. Ciuculescu-Pradines, C. Amiens,etal.,Monolayeredwiresofgoldcolloidalnanoparticlesfor high-sensitivity strain sensing, Journal of Physical Chemistry C 115 (2011) 14494–14499.

[10]J.L.Tanner, D. Mousadakos,P. Broutas, S.Chatzandroulis, Y.S.Raptis, D. Tsoukalas,Nanoparticlestrainsensor,ProcediaEngineer25(2011).

[11]J.L.Tanner,D.Mousadakos,K.Giannakopoulos,E.Skotadis,D.Tsoukalas,High strainsensitivitycontrolledbythesurfacedensityofplatinumnanoparticles, Nanotechnology23(2012).

[12]J.P.Sylvestre,S.Poulin,A.V.Kabashin,E.Sacher,M.Meunier,J.H.T.Luong, Sur-facechemistryofgoldnanoparticlesproducedbylaserablationinaqueous media,JournalofPhysicalChemistryB108(2004)16864–16869.

[13]H.Muto,K.Yamada,K.Miyajima,F.Mafune,Estimationofsurfaceoxideon surfactant-freegoldnanoparticleslaser-ablatedinwater,JournalofPhysical ChemistryC111(2007)17221–17226.

[14]A.V.Simakin,V.V.Voronov,N.A.Kirichenko,G.A.Shafeev,Nanoparticles pro-ducedbylaserablationofsolidsinliquidenvironment,AppliedPhysicsA79 (2004)1127–1132.

[15]J.G.Simmons,Generalizedformulafortheelectrictunneleffectbetweensimilar electrodesseparatedbyathininsulatingfilm,JournalofAppliedPhysics34 (1963)1793–1803.

Biographies

SalamatBurzhueviscurrentlyaM.S.studentatInstituteofMaterialsScience andNanotechnology,BilkentUniversity,Ankara,Turkey.HereceivedtheB.S.in PhysicsfromMiddleEastTechnicalUniversity,Ankara,Turkeyin2006.His cur-rentresearchinterestsincludeultrafastlasersanditsapplications;nanomaterials forsensordevelopment.

(6)

Dr.AykutluDânareceivedhisB.S.degreeinElectricalEngineeringfromBilkent University,Ankara,Turkeyin1995,M.S.degreeElectricalEngineeringfrom Stan-fordUniversity,CA,USAin1998,andPh.D.degreeinElectricalEngineeringfromthe StanfordUniversityin2003.Heiscurrentlyworkingasaresearchassistantprofessor atInstituteofMaterialsScienceandNanotechnology,BilkentUniversity.His cur-rentresearchareascoverfundamentalandappliedstudiesofmicroandnanoscale opto-electronicdevicesandsystems;surfaceplasmonresonancebasedbiosensors; micromachinedsurgicaltools;modelling,design,fabricationandcharacterization ofsemiconductordeviceswithnovelnanostructuredfeatures;X-Rayphotoelectron spectroscopyforelectricalcharacterization;nanomechanics,forcemicroscopyand spectroscopy.

Dr.BülendOrtac¸receivedtheB.S.degreeinPhysicsfromtheKaradeniz Techni-calUniversity,Trabzon,Turkey,in1997,M.S.degreeinTeachingandDiffusionof SciencesandTechnologyfromENSCachanUniversity,Paris,France,in2000,and Ph.D.degreeinOptoelectronicsfromRouenUniversity,Rouen,France,in2004 respectively.InMars2005,hejoinedtheInstituteofAppliedPhysics, Friedrich-SchillerUniversity,Jena,Germany,asaPost-DoctoralAssociate.SinceNovember 2009,hehasbeenworkingasaresearchassistantprofessoratInstituteof Materi-alsScienceandNanotechnology,BilkentUniversity.Hiscurrentresearchinterests includethedevelopmentofpowerfulfiberlasersinthecontinuous-waveregimeto pulsedregime(ns,psandfs)andthedemonstrationoflasersystemsforrealworld applications.

Şekil

Fig. 1. TEM image of Au-NPs. The inset shows the histogram of size distribution calculated from TEM images.
Fig. 3. SEM image of Au-NPs thin film on PDMS substrate.
Fig. 5. Resistance change response of Au-NP films while applying strain. Fit 1 and 2 are the corresponding linear and exponential functions
Fig. 7. Simple circuit model of Au-NPs thin film and histogram of number of samples vs

Referanslar

Benzer Belgeler

N ihayet Kâm il Paşa, &#34;Y a p ıla n ta z­ yik üzerine mecburen sadaretten istifa­ mı istirham ederim ” mealinde bir tezkere imzalamış, Enver Paşa da

Combiner is a device that provides very high coupling efficiency over a wide wavelength range from multiple sources into one output fiber. It is a critical component for pumping

Via Proposition 7, it is calculated for P J = 4 that the subnetwork consisting of target nodes 1, 3, and 5 achieves the minimum max-min CRLB among all possible subnetworks with

Now, the output of previous model which is vector of features generated is given to next Module, Language Based Module where the encoded features vector is decoded into a

These include plasmonic chips that function as ultra–low-loss optical inter- connects, plasmonic circuits and components that can guide light within ultracompact op- tically

In this study, we retrospectively evaluated treatment response and toxicity data of 103 pa- tients who were detected to have mCRPC and treated with cabazitaxel in 21 centers in

Prognostic value role of radiofrequency lesion size by cardiac magnetic resonance imaging on outcomes of ablation in patients with ischemic scar-related ventricular tachycardia..

and 1996 to 2000 cohorts, a higher educational level (university or higher) was associated with higher plasma total cholesterol and LDL cholesterol levels than in men with