• Sonuç bulunamadı

An algorithm for automatic detection of repeater F-waves and MUNE studies

N/A
N/A
Protected

Academic year: 2021

Share "An algorithm for automatic detection of repeater F-waves and MUNE studies"

Copied!
13
0
0

Yükleniyor.... (view fulltext now)

Tam metin

(1)

ContentslistsavailableatScienceDirect

Biomedical

Signal

Processing

and

Control

j ou rn a l h o m e pa g e :w w w . e l s e v i e r . c o m / l o c a t e / b s p c

An

algorithm

for

automatic

detection

of

repeater

F-waves

and

MUNE

studies

N.

Tu˘grul

Artu˘g

a,∗

,

N.

Görkem

irin

b

,

Emel

O˘guz

Akarsu

b

,

M.

Baris

Baslo

b

,

A.

Emre

Öge

b aElectricalandElectronicsEngineering,IstanbulArelUniversity,Tepekent,Buyukcekmece,Istanbul,Turkey

bIstanbulMedicalFaculty,IstanbulUniversity,Fatih,Capa,Istanbul,Turkey

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received9July2018

Receivedinrevisedform5February2019 Accepted26February2019

Availableonline7March2019 Keywords:

Electromyography RepeaterF-waves MUNE

ALS

AutomatedF-responseanalysis

a

b

s

t

r

a

c

t

ThepresentstudyaimstodevelopanalgorithmandsoftwarethatautomaticallydetectsrepeaterF-waves whichareverydifficulttoanalyzewhenelicitedashighnumberofrecordingsinmotorunitnumber estimationstudies.ThemainstrategyofthestudywastotaketherepeaterFwavesdiscriminatedbythe neurologist,fromlimitednumberofrecordings,asthegoldstandardandtotesttheconformityofthe resultsofthenewautomatedmethod.

TenpatientswithALSandtenhealthycontrolswereevaluated.90F-waveswithsupramaximalstimuli and300F-waveswithsubmaximalstimuliwererecorded.Supramaximalrecordingswereevaluatedboth manuallybyanexpertneurologistandautomaticallybythedevelopedsoftwaretotesttheperformance ofthealgorithm.Theresultsbothacquiredfromtheneurologistandfromthesoftwarewerefound compatible.Therefore,themainexpectedimpactofthepresentstudyistomaketheanalysisofrepeater Fwaveseasierprimarilyinmotorunitnumberestimationstudies,sincethereiscurrentlyacontinuing needforsuchautomatedprogramsinclinicalneurophysiology.

Submaximalrecordingswereexaminedonlybythedevelopedsoftware.Theextractedfeatureswere: maximumMresponseamplitude,meanpowerofMresponse,meanofsMUPvalues,MUNEvalue,number ofbaskets,persistenceofF-waves,persistenceofrepeaterF-waves,meanofF-waves’powers,medianof F-waves’powers.Featureselectionmethodswerealsoappliedtodeterminethemostvaluablefeatures. Variousclassifierssuchasmulti-layerperceptron(MLP),radialbasisfunctionnetwork(RBF),support vectormachines(SVM)andknearestneighbors(k-NN)weretestedtodifferentiatetwoclasses. Ini-tiallyallfeatures,thendecreasednumbersoffeaturesafterfeatureselectionprocesswereappliedtothe aforementionedclassifiers.Theclassificationperformanceusuallyincreasedwhendecreasedfeatures wereappliedtointelligentsystems.Ulnarrecordingsundersubmaximalstimulationshowedbetter per-formancewhencomparedwithsupramaximalequivalentsormediannerveequivalents.Thehighest performancewasobtainedas90%withk-NNalgorithmwhichwasacommitteedecisionbasedclassifier. Thisresultwasachievedwithonlytwofeatures,namelymeanofsMUPamplitudeandMUNEvalue.

©2019ElsevierLtd.Allrightsreserved.

1. Introduction

F-wavesareoneofthelateresponsesacquiredduringroutine

EMGstudies.Theletter“F”comesfromtheinitialof“foot”whichis

thefirstrecordinglocationofthatsignal[1].F-wavesappearafter

theMresponsefollowingthenervestimulation[2].F-waves

con-sistoftheactionpotentialswhicharedebouncedfromthelower

motorneurondendritesandreturnedtomusclewheretheyare

beingrecorded[3].TheactionpotentialscontributedtoF-waves

∗ Correspondingauthor.

E-mailaddresses:tugrulartug@arel.edu.tr(N.T.Artu˘g),

gorkemsirin@yahoo.com.tr(N.G.S¸irin),emeloguz@yahoo.com(E.O.Akarsu), mbbaslo@istanbul.edu.tr(M.B.Baslo),aemreoge@istanbul.edu.tr(A.E.Öge).

arealsopresentinMresponse[4–6].However,allcomponentsthat

formMresponsecan’tdebouncefromspinalcord.F-waveschange

fromstimulustostimulusbecauseanF-wavemaybeaproduced

signalfromamotorunitoritcanbeacombinedsignalfrom

sev-eralmotorunits[3,7].HoweverthemorphologyoftheF-wavefor

asinglemotorunitisthesame[3].

F-waveshavelatenciesafterthelatencyofMresponsebecause

ofthelongpathwaytheyhavetotravel.Thelengthofthis

path-waydeterminesthelatencyofF-wave[8].Itisseenadecrement

inthenumberofF-waveproducingmotorneuronsindenervation

whichisdepictedbytheirdecreasedpersistencewhiletheratio

ofrepeaterF-wavesincreases[8–11].F-wavesarelowamplitude

signalsinhealthystatebutitcanbeobservedthatsomesignals

mayreachupto700␮Vamplitude[12,13].TheabilityforF-wave

generationchangesfrommuscletomusclesuchastherearemore

https://doi.org/10.1016/j.bspc.2019.02.025 1746-8094/©2019ElsevierLtd.Allrightsreserved.

(2)

stimulatingthemedian,peroneal,ulnarandtibialnerves.Theyalso

questionedtheeffectofheight,ageandgenderinthisstudy.They

foundthat10cmincrementinheightcauses1.6to3ms

prolonga-tionofminimumF-wavelatencyaccordingtothelocalizationof

recordingmuscle.Agealsohasaneffectonlatencyprolongation

butlesspronouncedcomparingtotheheight.Genderwasfound

ineffective.

RepeaterF-wavesareknownastheF-wavesthathavethesame

latency,sameamplitudeandsamemorphology[3].Theideal

pop-ulationtodoastudyonrepeaterF-wavesisobtainedastheresult

ofatleast90stimuli[3,27].Inthestudythatwasconductedby

Stashuketal.300stimuluswereapplied[15].

Indailypracticethemeasureableparametersof F-wavesare

evaluatedmanuallybyneurologist.Therearestudiesaboutdoing

the investigations automatically. The developed algorithm by

Stashuketal.evaluatesF-wavesautomatically[15]andcalculates

maximumMresponse,sumofF-waves,meanofS-MUAPaswellas

theestimationofthenumberofmotorunits.Eveniftheprogram

doesthesecalculationsautomaticallytheselectionofS-MUAPis

donethebyoperatormanually.For motorunitnumber

estima-tion(MUNE)300F-wavesarerecordedwithsupramaximalstimuli.

Thedevelopedalgorithmcanbeappliedtoeverymusclethathas

F-wavelatencymorethan20ms.

Hachisukaetal.conductedastudy[28]aboutcalculatingthe

MUNEvalue.TheyrecordedF-wavesofmedianandtibialnerves

from43Poliopatientsand20healthyindividualsinresponseto

100stimuli.TheyobserveddecreasedpersistenceoftheF-waves

alongwithanincrementinthenumberofrepeaterF-wavesinthe

patients.Theyalsohavefoundanegativecorrelationbetweenthe

numberofrepeaterF-wavesandtheMUNEvalue.

AstudyconductedbyChronietal.[29]determinedthe

char-acteristicsofrepeaterF-wavesbyexcitinglowandhighthreshold

motorfibersinhealthyindividuals.Collisiontechniqueand

sub-maximalstimuluswereusedforthispurposetoexamineifmotor

neuronsubgroupswereresponsibleofrepeaterF-waves.Collision

techniquewaspreferredtoeliminatetheF-wavesgeneratedfrom

lowthresholdneurons.Therecordingswereacquiredfromulnar

nerves(ADMmuscle)of12healthyparticipantsinfivedifferent

sessionsbyusingsupramaximalandsubmaximalstimuli.Anew

softwarewasdevelopedandintroducedfordetectingrepeater

F-waves.TheirstudyshowedthatthepresenceofrepeaterF-waves

weremorerelatedtohighpersistenceratherthantheneuron

sub-groupsgeneratingthem.

Kamel etal.’s study[30] wasabout combiningF-wave with

singlefiberconductionvelocity.Theyincluded16healthy

partici-pantsand16patientswithmildneuropathy.F-wavemeasurement

wasdonefromfibularnerve (EDBmuscle) with20

supramaxi-malstimuliusingasurfaceelectrode. Theextractedparameters

wereminimumandmaximumF-wavelatency,F-wavedispersion,

thedifferencebetweenFmaxandFmin,F-wavepersistence.

Sin-glefiberF-waverecordingsweredonefromthesamemuscle.In

wavesautomatically,

bTesttheperformanceofthemethodbycomparingtheresults

ofF-waveanalysismanuallydonebyanexpertwiththeonesof

developedsoftware

cExtract some features from F-waves to classify patients and

healthyindividualswithintelligentsystems

ThepapercontinueswithmaterialsandmethodsinSection2.

Theory/Calculationpartcontainsthealgorithmandflowchartfor

detectingF-waveswhichisinSection3.Resultsarepresentedin

Section4.InSection5,Discussionpartarguestheprosandconsfor

theproposedmethodandcomparesthemwithpreviousstudies.

ThispaperendswiththeConclusion.

2. Materialandmethods

Inthisstudyatwoclassdatasetisformedthatcontains

neuro-genicpatientsandhealthyindividuals.F-waveswererecordedin

responsetosupramaximalandsubmaximalstimuli.Interpretation

wasdonebothwithmanuallybyanexpertclinical

neurophysiolo-gistandbythedevelopedalgorithm.Resultsofbothinterpretations

werecompared.

Thestudyhasbeenapprovedbythelocalethicscommitteeof

IstanbulUniversity,IstanbulMedicalFaculty(2016/162).

2.1. Subjects

Ten patientswithALSand tenhealthy controlswere

evalu-atedforpreliminaryanalysisofautomatedF-wave.Themeanage

was53.4±10.2inpatients(ranged36 to64)and 51.5±13.6in

healthycontrols(ranged30to67).Eightofthepatientswere

clas-sifiedasdefiniteALSandtwowereclassifiedaspossibleALSdue

toAwajicriteria[31].Inthepatientgroup,meandurationof

symp-tomswas15.2±20.2months(2–72)andmeanALS-FRSscorewas

41.4±5.3(34–47)[32].Patientswhohadsensorimotor

polyneu-ropathy,carpaltunnelsyndrome,ulnarentrapmentneuropathy,

diabetes,uremia,chronicalcoholuse,ormalignancywereexcluded

fromthestudy.Patientshavingcompoundmuscleaction

poten-tial(CMAP)amplitudes less than 1mV in eitherof the studied

muscleswereexcludedfromthestudy.Healthycontrolshad

nor-malneurologicalexamination,normalEMGstudiesandnoclinical

symptomsofcarpaltunnelsyndrome,ulnarentrapment

neuropa-thyorpolyneuropathy.

2.2. Electrophysiologicalevaluation

CompoundmuscleactionpotentialsandF-waveswererecorded

fromthelessaffectedupperextremityinthepatients.Ifbothupper

extremities wereaffectedequally,then non-dominantside was

(3)

chosen.MedianandulnarCMAPswereelicitedbystimulatingthe

nervesatthe wristandrecording fromabductor pollicisbrevis

(APB)andabductordigitiminimi(ADM)musclesrespectively,with

aMedelecSynergyEMGmachine.Disposablerecordingelectrodes

wereplacedovermusclesaccordingtothe“belly-tendon

record-ing”principleasdescribedpreviously[33].CMAPwasrecordedin

bothmusclesbysupramaximalstimulus.Thefiltercut-offsettings

werearrangedas20Hz-10kHz.Then,cathodeofthestimulatorwas

placedproximaltoanodeforF-waverecording.Forthe

prelimi-naryanalysis,90F-waveswereelicitedbysupramaximalstimuliat

afrequencyof0.5Hzforeachmuscle.ForF-waveMUNEanalysis,

stimulusintensitywasdecreasedtoalevelof10–50%ofthebaseto

peakamplitudeofmaximumCMAPwhichisknownassubmaximal

stimulus.Then,300F-waveswererecordedbysubmaximalstimuli

atafrequencyof0.5Hzforeachmuscle[15,17].

2.3. Manualanalysis

NinetyF-waveswereanalyzedvisuallybythesameexperienced

clinicalneurophysiologist(EOA) fromprint-outsmadewiththe

sensitivityof500␮V-1mV/divisionandsweepdurationof100ms

withoutsplittingthescreen.RepeatingF-wavesmorethanonce

withsamelatency,amplitudeandshapewereconsideredassingle

motorunitpotential(sMUP).Peaktopeakamplitudesofrepeating

F-wavesweremeasuredinordertocalculatethemeanamplitude

ofsMUPs.

TheMUNEvaluewascalculatedbydividingtheamplitudeofthe

CMAPtothatofthemeansMUPforbothmethods.Aftercalculating

sMUPandMUNEvalues,oneoftheresearchersperformedthe

sta-tisticalanalysisforpreliminaryanalysis.CalculatingMUNEvalues

from300F-waveselicitedbysubmaximalstimuliwereperformed

onlybyautomatedanalysis.

2.4. Automatedanalysis

AnalgorithmwasdevelopedforextractingF-wavesfromeach

signalrecordandgroupingeachrepeaterF-waveindifferent

“bas-kets”,calculatingthenumberofrepeaterF-wavesandthenumber

ofrepeatsforeachrepeaterF-waveinthebaskets.Thesoftware

isalsoabletodisplaythemostsimilarF-wavepairs, calculates

theMresponsemaximumamplitudevalue,F-wavepeaktopeak

amplitudevalue,powervalueforeachF-waveandMUNEvalue.

SPSSv21wasusedtoperformstatisticalanalysis.MUNEand

sMUPwerecalculatedvisuallybytheneurophysiologistand

auto-maticallybytheproposedmethod.Theresultswerecomparedwith

Wilcoxonsingleranktest.Spearman’srhotestwasusedtomeasure

thecorrelationbetweenthetwomethods.

3. Theory/calculation

ThemethodforextractingF-wavesanddeterminingrepeater

F-wavesaredescribedasfollows.Firsttherecordedsignalsare

fil-teredfromnoisebyusingwavelettransformbasednoisereduction

method.TheDaubechieswaveletispreferredfornoisereduction.

Thethresholdfunctionischosenashardthreshold.Inthemulti

res-olutionanalysis,decompositionlevelwasselectedas3.Thegraphic

forthe15recordedsamplesignalswhichbelongstoapatientis

giveninFig.1.

Twomillisecondpartfromthebeginningofeverysignalis

dis-carded.Thispartcontainsstimulusartifact soitis unnecessary

forcalculations.ThenthemaximumamplitudeofMresponseis

determinedforeachrecordedsignalandmeanofitiscalculated

(MGloMax).

AftertheF-wavesarecutfromthebeginningandtheend

loca-tions,themaximum(Fmax)andtheminimum(Fmin)amplitude

valuesarecalculated.ThelocationsofFmaxandFminarerecorded.

ThegraphicfortheF-wavesaftercuttingfromtherawsignalsis

showninFig.2.

Ifasignal’speaktopeakamplitudevalueVpp<=40␮V,itis

acknowledgedasnoise, flooredtolevel 0and is notevaluated,

accordingtotherecommendationsfortheclinical

neurophysiol-ogystudies[3,14].Thesignalsthathaveamplitudesgreaterthan

40␮VareapprovedasF-waves.Moreover,ifasignaldoesnotgoes

down40␮Vtotheleftandrightin3msfromtheFmaxlocation,

thissignalisevaluatedasnoiseandisflooredtolevel0too.

Aftertheseprocesses,allsignalsarealignedaccordingtotheir

Fmaxlocations.BecausetherepeaterF-wavesmusthavethesame

amplitude,samelatencyandsamemorphology;thesignalpairs

thatarecloserthan0.5msuptotheFmaxandFminlocationsare

determinedasrepeaterF-wavecandidates.

IfthedifferencevalueforFmaxbetweencandidatesislower

than10%andthedifferenceofindividualpowervaluesbetween

themislowerthan20%,theykeeptheircandidacy.Besides,the

correlationcoefficientbetweencandidatesisinspected.Ifthe

coef-ficientislowerthan0.9thatpairisdiscardedfromcandidacy.

Thedifferenceofamplitudesforcandidatesignalpairsis

calcu-latedandthedifferencesignalsarerectifiedtocalculatepowers.A

“similaritycoefficient”iscalculatedaccordingtothesecandidates’

amplitudedifferenceandpowerdifference.Thethresholdvaluefor

similaritycoefficientisdeterminedas0.6,duringthepreparation

periodofthepresentstudyafterexaminingamultitudeofdifferent

signals.Ifanycandidate’ssimilaritycoefficientislowerthan0.6it

becomesarepeaterF-wave.IfanyotheridenticalrepeaterF-wave

pairispresent,theyarecombinedinthesamebasket.

Theuniquesignalsthatarenotinanybasketarealignedupto

theFminlocationthistime.Ifsignalpairsarecloserthan0.5ms

uptotheFminlocations,theyaredeterminedasrepeaterF-wave

candidates.

IfthedifferencevalueforFminbetweencandidatesislowerthan

5%andthedifferenceofindividualpowervaluesbetweenthemis

lowerthan10%,theykeeptheircandidacy.

Thedifferenceofamplitudesforcandidatesignalpairsis

calcu-latedandthedifferencesignalsarerectifiedtocalculatepowers.A

“similaritycoefficient”iscalculateduptothesecandidates’

ampli-tudedifferenceandpowerdifference.Ifanycandidate’ssimilarity

coefficientislowerthan0.6itbecomesarepeaterF-wave.Ifany

otheridenticalrepeaterF-wavepairispresent,theyarecombined

inthesamebasket.

Themeanofthepeaktopeakamplitudes(sMUP)ofallsignalsin

abasketiscalculated.Themeanvalueforallbaskets’sMUPvalueis

calculated.MUNEvalueiscalculatedwiththeformulagivenbelow:

MUNE=



MGloMaxj



k=1 sMUPk



/j (1)

ThenumberofF-wavesisdisplayed.Howmanyofthemarein

abasketandhowmanyofthemareuniquecanbeseenonthe

monitor.LastlyMUNEvalueisdisplayed.Themostsimilarsignal

pairscanbeplottedoneundertheotheroroverlappedwith

simi-laritycoefficientvalue.ThemostsimilarF-waverepeatersamong

therecordedsamplesignalscanbeseeninFig.3.

ThealgorithmforthedevelopedsoftwareisgiveninFig.4.

3.1. Featureextractionfromdataset

Nine features were extracted from this dataset.These were

mean of maximum M response amplitude, mean power of M

response,meanofsMUPvalues,MUNEvalue,numberofbaskets,

persistenceofF-waves,persistenceofrepeaterF-waves,meanof

(4)

Fig.1. M-ResponsesandF-Wavesin15RecordedSampleSignals.

(5)

Fig.3.MostSimilarRepeaterF-WavePairAmongtheRecordedSampleSignals.

FirstthemaximumamplitudeforallMresponsesfrom

base-linewasdeterminedandtheirmeanwascalculated.Thenpower

valueforallMresponsesfrombaselinetopositivepeakvaluein

eachrecordwascalculated.MeanofpowervaluesforM-responses

wascalculated.Thirdfeaturewascalculatedasthemeanofeach

F-waverepeaterbasketsMUPvalues.MUNEvaluewascalculatedas

thefourthfeatureasdescribedbefore.NumberofdifferentF-wave

repeaterswasthenumberofbaskets.Persistencewastheratioof

F-wavesignalstotheallsignalrecords.Seventhfeaturewas

per-sistenceofrepeaterF-waves.Itcanbecalculatedasgivenbelow.

PersistanceofrepeaterF−waves

=(AllRecordsAllRecordsNoiseSignals)NoiseSignalsUniqueSignals (2)

NextfeaturewasmeanofallindividualF-wavepowervalues

andthelastfeaturewasthemedianvalueofallindividualF-wave

powervalues.

3.2. Featureselection

Infeature selectionprocess ReliefFalgorithm waspreferred.

Reliefalgorithmwasdevelopedformulti-featureddatasetson

fea-tureselectionprocess.Inthealgorithmtwonearestneighborsare

determinedfromeachclassforeachsample.Neighborinthesame

classwiththesampleismarkedasnearesthit(H),other

neigh-borismarkedasnearestmiss(M)[34].Foreachfeatureaweightis

calculatedandfeaturesareevaluatedtobeselectedbytheir

impor-tance(weights).ReliefFalgorithmwasdevelopedtoovercomethe

drawbackofgenericReliefalgorithmwhichcanonlyseparatetwo

classes[35].In ReliefFalgorithmknearestneighborsare

deter-minedinsteadoftwoneighborsforeachsample.

3.3. Classificationofdata

Afterthefeatureextractionprocesssupramaximalrecordings

had10instancesinmediannerveand8instancesinulnarnerve

foreachclasswhich werehealthyindividualsand ALSpatients.

Table1

SpecificationsforDataSet.

StimulationType #instances #features Median Ulnar Median Ulnar

Supramaximal 10Healthy 8Healthy 9

10ALS 8ALS

Submaximal 5Healthy5ALS 8

Thereasonforlowernumberofinstancesinulnarnervewasno repeaterF-wavewasdetectedbythesoftware,andso2instances fromeachclasswerediscarded.Afterthisprocess5-foldcross vali-dationformediannerveand4-foldcrossvalidationforulnarnerve couldbeapplied.Submaximalrecordingshad5instancesforeach classbuttheyhad8featuresbyexcludingMresponsemeanpower. AsummaryfordataspecificationsweregiveninTable1.

Fourdifferentclassifiersweretestedforseparationofthetwo

classes.Firstoneismulti-layerperceptron(MLP).Ithastwo

hid-den layers and there are 18 and 9 neurons for supramaximal

records,16and 8neuronsforsubmaximalrecordsinthose

lay-ers.Levenberg–Marquardtwasselectedasthetrainingalgorithm

forMLPnetwork.

Secondclassifierwasradialbasisfunctionnetwork(RBF).Spread

parameterwas0.2formediannerverecordingsand0.6forulnar

nerverecordings.RBFnetworkshaveonlyonehiddenlayerandthe

algorithmaddsneuronstoitformeetingtheperformancegoal.The

algorithmwasadded25neuronstoitshiddenlayerforeachtrial

inthisclassificationtask.

Supportvectormachines(SVM)weresuitableforthis

classifi-cationproblembecauseitwassufficientforrecognitionofthetwo

classes.

Lastclassificationalgorithmwask-NNandneighborhoodvalue

wasselectedas1,3and5.

4. Results

IfnorepeaterF-waveisobservedinanervebytheexpert

(6)

Fig.4. AutomatedF-WaveRepeaterDetectionAlgorithm.

analysis.Afterthisprocess,atotalof18medianand16ulnarnerve

recordingsareevaluatedforsupramaximalstimuli.For

submaxi-malstimulation,5recordingsforeachnerveacquiredbothfrom

healthyparticipantsandALSpatientswereincluded.

4.1. Statisticalanalysis

Maininterestfortherecordingswithsupramaximalstimulation

(7)

Table2

MeansMUPandMUNEValuesAcquiredbySupramaximalStimulationforHealthyParticipants.

HealthyControls8Median,7Ulnar Software[mean±SD](min-max) Neurologist[mean±SD](min-max)

MeansMUPMedian[␮V] 347.45±158.21(145.9-568) 437.34±296.99(132.5–903.6)

MeansMUPUlnar[␮V] 283.26±149.37(148.3–552) 257.82±282(78.3–873.5)

MUNEMedian 28.08±14.1(16.3–53.4) 40.43±35.28(12.1–110.2)

MUNEUlnar 31.26±12.74(15.6–50.2) 70.29±40.95(13.6–141.8)

Table3

MeansMUPandMUNEValuesAcquiredbySupramaximalStimulationforALSPatients.

Patient(ALS)10Median,9Ulnar Software[mean±SD](min-max) Neurologist[mean±SD](min-max)

MeansMUPMedian[␮V] 466.37±292.84(184.4–1083) 509.26±321.85(186.8–1120.5)

MeansMUPUlnar[␮V] 373.38±165.14(157.5–619.5) 486.14±220.52(238–849.4)

MUNEMedian 17.34±11.14(3.2–40.9) 19.81±10.5(4.4–35.2)

MUNEUlnar 15.62±7.96(5.8–28.4) 17.49±8.77(5.1–30.3)

comparisonsweredonebetweentheresultsofthesoftwareand theexpertneurologist.However,fortherecordingsofsubmaximal stimulation,itwasaimedtotest theperformance ofthe devel-opedsoftwareindifferentiationbetweenthehealthyonesandALS patients.

For supramaximal stimulation, 8 median and 7 ulnar nerve recordingswereevaluatedforhealthyparticipants.sMUPvalues formedian nerve arecalculated as437.34␮Vand 347.45␮Vby anexpertneurologistandsoftware,respectively.Thesamevalues forulnarnerveare257.82␮Vand283.26␮V.MeanMUNEvalue formediannerve iscalculatedas40.43and28.08bytheexpert neurologistandthesoftwarerespectively,thisvalueisobtainedas 70.29and31.26fortheulnarnerve.Descriptivestatisticalvaluesfor healthyparticipantswhichwereacquiredfrommedianandulnar nervesaregiveninTable2.

sMUPvalueof ulnar nervein healthy controlswastheonly

parameterwhichhasasignificantcorrelationbetweentheexpert

neurophysiologistandthesoftware(p<0.05).

Ten median and 9 ulnar nerve records were evaluated for

patients.sMUPvaluesformediannervearecalculatedas509.26␮V

and466.37␮V.Thesamevaluesforulnarnervearecalculatedas

486.14␮Vand373.38␮V.MeanMUNEvalueformediannerveis

calculatedas19.81and17.34;thisvalueisobtainedas17.49and

15.62fortheulnarnerve.

DescriptivestatisticalvaluesforALSpatients’datawhichwere

acquiredfrommedianandulnarnervesaregiveninTable3.

InALSpatients’data,therewassignificantcorrelations(p<0.05)

betweenthecalculatedsMUPandMUNEvalueswhichweredone

bytheexpertneurologistandthesoftware.

Fig.5showsthecorrelationofthevaluesbythesoftwareand

theexpertneurologistwhichdepictsthesMUPandMUNEvalues

frommedianandulnarnervesoftheALSpatients.

Thefeaturesotherthan meansMUPand MUNEvalues were

unnecessarytobepresentedinthispaperbecausetherewasno

significantcorrelationbetweenthevaluesprovidedbytheexpert

neurologistandthedevelopedsoftware.

Fivemedian and ulnarnerve recordingsin response to

sub-maximalstimulationinhealthyparticipantsandALSpatientswere

evaluatedbythedevelopedsoftware.

DescriptivestatisticalvaluesforbothhealthycontrolsandALS

patientdatawhichwereacquiredfrommedianandulnarnerves

aregiveninTable4.

MeanofsMUPvaluesforhealthycontrolsandALSpatientsin

mediannervearecalculatedas184.74␮Vand200.12␮V

respec-tively. The same values for the ulnar nerve are calculated as

154.17␮Vand241.73␮V.MeanMUNEvalueformediannervein

thehealthycontrolsandALSpatientsarecalculatedas56.2and

33.09;thisvalueisobtainedas63.87and32.62fortheulnarnerve.

The MUNE values acquired from median and ulnar nerves

weresignificantlylowerinpatientswithALScomparingtothose

acquiredfromhealthyparticipants(p<0.05).Theintergroup

dif-ferencebetweenthemeansMUPamplitudeswasonlysignificant

fortheulnarnerverecordings(p<0.05).Fortheotherfeatures

cal-culated,therewasnosignificantdifferencebetweenthehealthy

participantsandALSpatients.

4.2. PowerspectraldensityofF-wavesignals

Signalsfromapatientandahealthyvolunteerwerepresented

assuperimposedtracesinFig.6.

Thepersistence ofF-waves inhealthy volunteer was81.11%

whileitwaslowinthepatient(21.11%).Sumoftherectifiedtraces

werecalculatedandthepowerspectraldensity(PSD)wasobtained.

Thepointsusedin thediscreteFourier transformweresameas

thoseoftheinputsignal.Thesamplingfrequencywas20KHzfor

therecordings.ThePSDgraphforsignalsfromahealthyvolunteer

andapatientwasgiveninFig.7.

Inthehealthyvolunteer,thepowerofthesignalwashighlike

thepersistenceoftheF-waves.Frequencyspectrumyieldedawider

bandcomparingtopatient’sdata,probablyrelatedtothehigher

variability of F-wave in healthy situation. Conversely, patient’s

spectrum revealedless powerthat wasin accordancewiththe

lowpersistenceoftheF-waves.Likewisepatient’sdatashoweda

narrowbandreflectingthepresenceofrepeaterF-waves.

4.3. Classificationresults

Theclassificationaccuraciesforallfourdifferentclassifiersare

giveninTable5.

Thehighestperformance(90%)wasobtainedintheulnarnerve

withsubmaximalstimulationbyusing1-NNalgorithm.Bothofthe

mediannervewithsupramaximalstimulationbyusing5-NNand

theulnarnervewithsubmaximalstimulationbyusingMLPand

RBFgave80%classificationaccuracy.

AfterfeatureselectionwithReliefFalgorithmtheclassification

accuracythatwasacquiredforallpreviousclassifiersisgivenin

Table6.

Thehighestperformance(90%)wasobtainedintheulnarnerve

withsubmaximalstimulationbyusingk-NNalgorithmforallk

val-uesrelyingonmeansMUPamplitudeandMUNEvalues.Median

andulnarnerveswithsubmaximalstimulationbyMLPnetwork

performed80%accuracy.

5. Discussion

Underthetermof“lateresponses”,F-wavesareproducedbythe

(8)

stim-Fig.5.CorrelationGraphsofsMUPAmplitudesandMUNEValuesofMedian(M)andUlnar(U)NervesforALSPatients.

Table4

CalculatedFeaturesAcquiredbySubmaximalStimulationforHealthyParticipantsandALSPatients.

(5Median,5Ulnar) HealthyControls Patient(ALS) [mean±SD](min-max) [mean±SD](min-max)

MeansMUP(M)[␮V] 184.74±45.22(138.8–238.18) 200.12±57.36(120.02–278.57)

MeansMUP(U)[␮V] 154.17±37.29(91.87–181.18) 241.73±55.43(151.92–288.86)

MUNE(M) 56.2±11.02(47.74–75.37) 33.09±17.99(9.83–53.60)

MUNE(U) 63.87±18.53(49.12–94.7) 32.62±8.25(21.46–44.76)

#baskets(M) 24±13,27(14–47) 19.6±10.43(9–35)

#baskets(U) 14.2±4.27(10–19) 17±8.46(7–30)

MeanofMaxMAmp(M)[␮V] 10,200±2185.18(7600-12500) 6920±4613.24(2100-11700)

MeanofMaxMAmp(U)[␮V] 9360±1388.52(8100–11700) 7560±1180.25(6200–9100)

Persistence(M) 0.54±0.17(0.3–0.75) 0.52±0.15(0.3-0.7)

Persistence(U) 0.4±0.15(0.24–0.62) 0.45±0.16(0.21–0.64)

PersistenceF-Rep(M) 0.52±0.11(0.34–0.65) 0.51±0.16(0.27–0.67)

PersistenceF-Rep(U) 0.53±0.23(0.26-0.78) 0.62±0.22(0.25-0.78)

MeanofF-waves’Powers(M) 3.92±2.51(1.68–7.91) 2.6±1.24(0.84–3.91)

MeanofF-waves’Powers(U) 3.91±2.18(1.1–6.13) 4.82±3.4(1.9-8.91)

MedianofF-waves’Powers(M) 3.55±2.28(1.45–7.17) 1.88±1.26(0.47–3.75)

MedianofF-waves’Powers(U) 3.62±2.03(1.03-5.96) 3.85±3.43(0.72-8.23)

Table5

ClassificationAccuracyforClassifiers.

AllFeatures MLP RBF SVM 1-NN 3-NN 5-NN

Supramaximal Median 55 50 45 50 70 80

Ulnar 75 56.25 50 50 50 68.75

(9)

Fig.6.SuperimposedF-WaveTracesofaHealthyVolunteer(a)andanALSPatient(b).

Table6

ClassificationAccuracyAfterFeatureSelectionforClassifiers.

ReliefF MLP RBF SVM 1-NN 3-NN 5-NN

Supramaximal Median 55(4) 35(3) 70(3) 60(4) 75(4) 60(4)

Ulnar 75(5) 56.25(4) 56.25(5) 56.25(5) 50(5) 50(5)

Submaximal MedianUlnar 8080(3)(4) 5070(3)(4) 6070(4)(2) 9050(2)(3) 9060(2)(3) 9050(3)(2)

(10)

Fig.7.PowerSpectralDensityofF-wavesCalculatedfromaHealthyVolunteer(BlueLine)andaPatient(RedLine).

ulation.Althoughsupramaximal stimulationrecruitsmore than onelowermotorneuron,itisalsopossibletorecordsingleaxon’s responsewithsubmaximalstimulation.Theshape,latencyandthe persistenceofF-wavesaretheindicatorsofdiseasestatesaffecting thelowermotorneuronanditsaxon[2,3,19].F-wavesareuseful

fortheestimationoffunctioninglowermotorneuroncountaswell

[15,17].

InordertogetmeaningfulresultsinF-wavestudies,itis

essen-tialtodeliveratleast20stimuliforsupramaximalandsometimes

hundredsofstimuliforsubmaximalstimulation[16,36].Manuel

analysisofthetracesharboringF-wavesiscumbersomeandthere

isalwaysapossibilityofmisrecognitionandfaultyinterpretation.

Automatedanalysissoftware,suchastheonewhichisdeveloped

inthepresentstudy,isaneedtoovercomethetroubledsideof

naked-eyeevaluation.

ScientistswerecuriousabouttheautomatedanalysisofF-wave

parameterssince1990s.Intheirstudy,Stashuketal[15]reported

analgorithmin1994,whichwasdevelopedforcalculating

maxi-mumMresponseamplitude,summingF-waves,calculatingmean

ofS-MUAPandestimatingthenumberofmotorunitsina

mus-cle.Theydemonstratedthattheestimatednumberofmotorunits

inthenarmusclescalculatedbytheirdevelopedsoftwarewhich

selectsS-MUAPsfromF-responsesautomaticallywasalmost

iden-ticaltotheonecalculatedbymanually.Theestimatednumberof

motorunitsbyusingF-wavesyieldedsimilarvalueswithanother

validated MUNE method, namely “multiple point stimulation”.

Althoughthealgorithm performs perfectly well,someoperator

controlmightbeneededforrecruitingtheS-MUAPsincasethey

couldnotbeselectedbythesoftwareforthecalculationofmean

S-MUAPvalue.

Fouryearslater,Felice,KJ[17]calculatedMUNEvalueofthenar

muscles in patientswith ALS byusing the software developed

by Stashuk et al [15] and demonstrated that the patients had

significantly low number of motor units comparingto healthy

participants.Sotheycarriedastepforwardbyshowingthatthe

Stashuk’salgorithmworksforthepatientssufferingfrommotor

neurondisease.

Morris A. Fisher questioned the accuracy of an automated

methodforthemeasurementofF-wavelatency.Inhispaper[37]

publishedin2005,hestudiedtheF-wavesof80peronealnerves

andshowedthatthecomputersoftware(NEUROMetrix)picksthe

correctsitesforlatencymeasurementofF-waveswhichwerein

concordancewiththeonesselectedmanually.

Inastudywherethereproducibilityofnerveconductionstudies

wasquestioned,Kongetal.[38]performedserialmeasurements

ofconduction parametersand developedsoftwarewhich

calcu-latesF-wavelatencyautomaticallyincombination withvarious

other features. Among them, automaticallycalculated mean

F-wavelatencywasthemostreproducibleone.

InanotherstudyofKongetal.[39],theauthorscomparedthe

F-waveparametersofperonealnervebothacquiredinresponseto

supraandsubmaximalstimulationforthesakeofpatient’s

com-fort.TheyusedautomatedalgorithmsforthecalculationofF-wave

parameterssuchastheamplitude,persistence,latency,duration

andchronodispersion.Itisclearthatthesubmaximalstimulation

is welltolerated.Althoughtheamplitudeand persistence were

highwith supramaximal stimulation,the latency,duration and

chronodispersionofF-waveswerealmostsimilar.

Chronietal.[14]conductedaretrospectivestudydealingwith

the quantified parameters of F-waves in 2012. They formed a

datasetwith50 healthyparticipantsand patientswithdiabetic

polyneuropathy, ALS,carpal tunnel syndrome, ulnar

mononeu-ropathyand L5 rootlesion.Each groupofpatientsconsistedof

50participants.Theystimulatedmedian,ulnarandfibularnerves

supramaximally20timesandrecordedMandF-wavesfrom

abduc-torpollicisbrevis,abductordigitiminimiandextensordigitorum

brevismusclesrespectively.Amongtheparameterscalculatedfrom

theirdataset,thosedealingwiththeF-wavesweremeanlatency,

maximumamplitude,persistence,repeaterneuronindex,total

F-repeaterindex,totalF-repeaterpersistence,non-repeaterF-wave

persistence,repeaterneuron meanlatencyand repeaterneuron

maximumamplitude.Comparingtohealthyparticipants,patients’

datarevealedsignificantlyhigherpercentagesofrepeaterneuron

(11)

decreasednumbersofmotorneuronscontributingtoF-waves.The

maximumamplitudeofrepeaterneuronswaslowerthanthe

F-wavemaximumamplitudeformedianandfibularnervesinhealthy

participantsandforallthreenervesinpatients.Thisfindingwasin

contrasttothestudyconductedbyGuiloffandModarres-Sadeghiin

1991[40].Theauthorsdiscussedthisfindingasthesmaller

ampli-tudeofrepeaterneuronsreflectsthebackfiringofsingleneurons

ratherthanbeingacombinedactivity.

In2017Chronietal.[29]developedacustomdesignedsoftware.

Theabilitiesofthissoftwarewereplottingtherecordings,detecting

F-waves,determiningtherepeatersandextractingtheirfeatures.It

alsoallowedsettingthepointsmanuallyinwhichthesignalleaves

andreturnstobaseline.However,theiralgorithmhassome

dif-ferencesfromours.Theyusedlowpassfilteringtosuppresshigh

frequencycomponentsofthesignal.Moreover,theyused

deriva-tivewithalowpassfiltertoremovethespikeswhichwerecaused

bytheoutliersofthesignals.Ontheotherhand,ouralgorithmuses

waveletbasednoisereductiontosmooththerecordingsandto

dis-cardnoisycomponents.Theiralgorithmfordeterminingrepeater

F-wavesisstricterthanours.Theydeterminedatoleranceband

of±0.05msforallnegativeandpositivepeaks,onsetandreturn

tobaseline ofthesignals.In additiontothose rules,their

algo-rithmhadanareabasedcriteria.Theyalsoseta25␮Vdifference

limittominimumandmaximumamplitudesforsignalpairs.Inour

study,weaimedtodevelopanalgorithmthatdecidesby

consider-ingminorvariabilityamongthesubjectsintoaccount.Firstofall,

ouralgorithmcalculatesthesignal’speaktopeakamplitude.Ifthis

valueislowerthan40␮V,thesignalismarkedasnoiseandisfloored

tolevel0.ThenitcheckstheFminandFmaxlocationsiftheyare

closetoeachotherina0.5mswindow.Afterthisstep,ifthe

ampli-tudedifferenceforFmaxvaluebetweensignalpairsislowerthan

10%anddifferenceofindividualpowervaluesbetweensignalpairs

islowerthan20%andlastlythecorrelationcoefficientbetween

themisgreaterthan0.9theyaremarkedascandidates.We

deter-minedaparameternamedassimilaritycoefficientwhichconsists

ofamplitudedifferenceandpowerdifferenceofsignalpairs.Iftheir

sumisbelowtheempiricallydeterminedthreshold,thesignalsare

markedasrepeaters.Afterthat,asecondinspectionisdoneandit

isgivenelaboratelyinPart3“Theory/Calculation”andin

summa-rizedformatFig.4.ThealgorithmofChronietal.andourstudy

grouprepeaterssimilartoeachother.Theiralgorithmadditionally

assignsacolorforeachrepeaterF-wave.

Inthepresentstudy,theresultsofthedevelopedsoftware

con-cerningsMUPandMUNEvaluesacquiredbysupramaximalstimuli

werefoundtobecompatiblewiththeobservationsoftheexpert

neurologist.Interestingly,thisconcordancewasmoreprominent

inALSpatientsthatcanbeexplainedbyreducedavailable

num-bersoflowermotorneuronsforF-wavegeneration.Supramaximal

stimulationmightalsocontributetolowernumbersofMUNE

val-uesbothinhealthyvolunteersandthepatients,byincreasingthe

sMUPamplitudeaswell.Nevertheless,meansMUPamplitudesfor

medianandulnarnerveswereclosetothevaluesofChroni’sstudy

[14].Theycalculatedthemaximumamplitudeofrepeaterneurons

as0.4and0.2mVformedianandulnarnervesinhealthy

individ-uals,respectively.Thesevalueswerefound0.35and0.28mVby

thedevelopedsoftwareformedianandulnarnervesinthepresent

study.ForpatientswithALS,Chroniatal[14].measuredthe

maxi-mumamplitudeoftherepeaterneuronsas0.5mVformedianand

0.4mVforulnar nerve,whileweautomaticallycalculatedmean

sMUPamplitudes as0.47mVand 0.37mVformedianandulnar

nervesrespectively.

TheMUNEvaluescalculatedfromsubmaximalstimulusdataset

revealedthattheALSpatientshadsignificantlydecreasednumbers

ofmotorunitsinbothoftheirmuscles,namelyabductorpollicis

brevisandabductordigitiminimi.F-waveswhichareproducedin

responsetosubmaximalstimulusarethoughtthattheyare

com-ingfromasinglemotorneuroniftheyrepeatatthesamelatency

andinthesameshape[15].MeansMUPamplitudewascalculated

fromtheserepeaterF-waveswhichwereautomaticallychosenby

thedevelopedsoftware.ThecalculatedmeansMUPamplitudewas

higherforboth musclesinALSpatientsalthoughthedifference

betweenhealthyvolunteersandpatientswasonlystatistically

sig-nificantforulnar nerve. Theincrease inmean sMUPamplitude

mightbeareflectionofreinnervationbycollateral sproutingin

affectedmuscles.MUNEvalueissimplycalculatedbydividingthe

M-responseamplitudebymeansMUPamplitude,sothata low

M-responseamplitudeincombinationwithhighsMUPamplitude

yieldeddecreasedMUNEvalueinpatients’groupafindingwhich

mightbeexpected.

FindingsoflowerMUNEvalue,decreased M-response

ampli-tudeandhighsMUPamplitudeinpatientswithALSisnotsurprising

becauseofALSischaracterizedbyprogressivelossoflowermotor

neuronsandreinnervationbycollateralsproutingfromthe

surviv-ingones.However,comparingtopreviousstudies,MUNEvalues

calculatedinthepresentstudywerealsolowforbothmusclesof

thehealthysubjectsaswell,afindingthatisnoteworthyto

dis-cuss.Previousstudiesreportedtheestimatednumbersofmotor

unitsaremorethantwohundredinhandmuscles[15,17,41].The

estimatedvaluesofmotorunitsinthepresentstudywerewithin

48to75forthemediannerveand49to95fortheulnarnerve.The

underlyingmechanismoflowMUNEvaluesinthisstudymightbe

relatedtotherecordingtechniqueoftheM-responseand/or

prefer-entiallyselectingthehigh-amplitudesMUPsforcalculation[42,43].

Nevertheless,techniquesdealingwithmotorneuroncountingare

indirectandtheygiveonlyestimatedvalues[44–47].MUNEis

valu-ablefordifferentiatingpatientsfromhealthyindividualsbutalso

itmakesa greatcontributionforpatient’sfollowupbytracking

thechangesintheMUNEvaluesoverthetime[48–51].Following

thepatientbyusingthesamemethodallowsforaccurate

predic-tionofthedeclineinlowermotorneuroncount,althoughitisjust

estimationratherthanrevealingtherealnumber.

A classification studywas also donetodetermine themost

effective features for differentiating ALS patients from healthy

volunteers.Extractedfeatureswereappliedtovariousintelligent

systemssuchasMLP,RBF,SVMandk-NN.First,alloftheextracted

features andthen, decreased numbersof featureswereapplied

whichweredepictedbyfeatureselection algorithms.Theulnar

nerve recordings with submaximal stimulation yielded highest

performance.Thedatasetcomposedbysupramaximalstimulation

didnotshowagreataccuracy(maximum75%).Howeverfor

sub-maximalstimulation,MLPnetworkrevealed80%accuracywhen3

or4featuresselectedformedianandulnarrecordingsrespectively.

Featureselectionincreasedtheclassificationperformancenearly

forallclassifiers.Acommitteedecisionbasedclassifierk-NNwas

superiortoallothersafterfeatureselectionatulnarnerve

record-ingsundersubmaximalstimulation.Thehighestperformancewas

obtainedas90%withonlytwofeatures.Themostvaluable

fea-tureswhichhelpdifferentiationoftwoclassesweremeanofsMUP

amplitudeandMUNEvalue.

Thesuperioraspectsofthepresentstudyare(1)algorithmwas

testedonbothhealthyindividuals andpatients,(2) comparison

withtheresultsofaneurologist(asforthegoldstandard)wasdone

totesttheperformanceofthedevelopedalgorithm,(3)original

fil-tersettingsfromtheEMGinstrumentwerekeptasthesamesothe

frequencycomponentsoftherecordedsignalswerenotdistorted.

Ontheotherhandtherearesomedrawbackssuchas(1)numbers

ofthecasesandthevarietyofdiseasegroupsareneededtobe

increased,(2)thealgorithmisplannedtobefullyautomaticfor

F-waveanalysisbutthereisanalgorithminastudy[15]whichallows

usertoselectrepeaterF-wavesmanuallyaswell.Thedeveloped

algorithmhasacomprehensiveviewersoanoptionmaybeadded

(12)

softwarewastested withsupramaximalrecordings.The results

wereinconcordancewiththeexpertneurologistformeansMUP

andMUNEvalue.Adatasetwasformedwithsupramaximaland

submaximal recordings. Some features were extracted from

F-wavestoclassifypatientsandhealthyindividualswithintelligent

systems.Featureselectionalgorithmswereappliedtodetermine

themost effective features. The classificationperformance was

increasedinmanyclassifierswhenthefeaturesweredecreased.

Theulnarnerverecordingsshowedhighestperformanceas90%

withk-NNalgorithm whenthestimulusstrengthwas

submaxi-mal.ThemostvaluablefeaturesweremeansMUPamplitudeand

MUNEvalue.

Acknowledgements

Theauthorswouldliketoacknowledgethevaluable

contribu-tionoftheirneurologistcolleagueswhoreferredthepatients,and

areespeciallygratefultoElifKocasoyOrhanandBaharErbasfor

theirhelpduringdatacollection.

References

[1]J.W.Maghdery,D.B.McDougal,Electrophysiologicalstudiesofnerveand reflexinnormalman.I.Identificationofcertainreflexesinthe

electromyogramandtheconductionvelocityofperipheralnervefibers,Bull. JohnsHopkinsHosp.86(1950)265–290.

[2]F.Mesrati,M.F.Vecchierini,F-waves:neurophysiologyandclinicalvalue, Neurophysiol.Clin.34(2004)217–243.

[3]M.A.Fisher,F-waves–physiologyandclinicaluses,Sci.WorldJ.7(2007) 144–160.

[4]G.D.Dawson,P.A.Merton,Recurrentdischargesformotoneurons,Proceedings oftheSecondInternationalCongressofPhysiologicalScience(1965)221. [5]J.Thorne,Centralresponsestoelectricalactivationoftheperipheralnerves

supplyingtheintrinsichandmuscles,J.Neurol.Neurosurg.Psychiatry28 (1965)482–495.

[6]C.H.Wulff,R.W.Gilliatt,F-wavesinpatientswithhandwastingcausedbya cervicalribandband,MuscleNerve2(1979)452–457.

[7]M.A.Fisher,Fresponselatencydetermination,MuscleNerve5(1982) 730–734.

[8]J.H.Petajan,F-wavesinneurogenicatrophy,MuscleNerve8(1985)690–696. [9]S.Peioglou-Harmoussi,F.R.Fawcett,D.Howel,D.D.Barwick,F-response

frequencyinmotorneurondiseaseandcervicalspondylosis,J.Neurol. Neurosurg.Psychiatry50(1987)593–599.

[10]W.N.Macleod,RepeaterFwaves:acomparisonofsensitivitywithsensory antidromicwrist-to-palmlatencyanddistalmotorlatencyinthediagnosisof carpaltunnelsyndrome,Neurology37(1987)773–778.

[11]C.J.Argyropoulos,C.P.Panayiotopoulos,S.F.Scarpalezos,FandM-wave conductioninamyotrophiclateralsclerosis,MuscleNerve1(1978)479–485. [12]R.F.Mayer,R.G.Feldman,ObservationsofthenatureoftheFwaveinman,

Neurology17(1967)147–156.

[13]M.Zappia,P.Valentino,L.P.Marchello,M.Panniccia,P.Montagna,F-wave normativestudiesindifferentnervesofhealthysubjects,Electromyogr.Clin. Neurophysiol.89(1993)67–72.

[14]E.Chroni,I.S.Tendero,A.R.Punga,E.Stålberg,Usefulnessofassessingrepeater F-wavesinroutinestudies,MuscleNerve45(2012)477–485.

[15]D.W.Stashuk,T.J.Doherty,A.Kassam,W.F.Brown,Motorunitnumber estimatesbasedontheautomatedanalysisofF-responses,MuscleNerve17 (1994)881–890.

latenciesandconductionvelocitiesinsinglemotorfibres,MuscleNerve15 (1992)1204.

[24]T.E.Feasby,W.E.Brown,Variationofmotorunitsizeinthehumanextensor digitorumbrevisandthenarmuscles,J.Neurol.Neurosurg.Psychiatry37 (1974)916–926.

[25]S.K.Yates,W.E.Brown,CharacteristicsoftheFresponse:asinglemotorunit study,J.Neurol.Neurosurg.Psychiatry42(1979)161–170.

[26]L.Puksa,E.Stålberg,B.Falck,ReferencevaluesofFwaveparametersin healthysubjects,Clin.Neurophysiol.114(2003)1079–1090.

[27]M.A.Fisher,ThecontemporaryroleofF-wavestudies.F-wavestudies:clinical utility,MuscleNerve21(1998)1098–1101.

[28]A.Hachisuka,T.Komori,T.Abe,K.Hachisuka,RepeaterF-wavesaresignsof motorunitpathologyinpoliosurvivors,MuscleNerve51(2015)

680–685.

[29]E.Chroni,D.Veltsista,C.Papapaulou,E.Trachani,GenerationofrepeaterF wavesinhealthysubjects,J.Clin.Neurophysiol.34(2017)236–242. [30]J.Kamel,R.Knight-Sadler,M.Cook,L.Roberts,Single-fiberFwavescompared

withconventionalsurfaceFwaves,andtheirutilityindetectingearlydiabetic neuropathy,MuscleNerve58(2018)665–670.

[31]M.deCarvalho,R.Dengler,A.Eisen,J.D.England,R.Kaji,J.Kimura,K.Mills,H. Mitsumoto,H.Nodera,J.Shefner,M.Swash,Electrodiagnosticcriteriafor diagnosisofALS,Clin.Neurophysiol.119(2008)497–503.

[32]ALSCNTFTreatmentStudy(ACTS)PhaseI-IIStudyGroup,Theamyotrophic lateralsclerosisfunctionalratingscale.Assessmentofactivitiesofdailyliving inpatientswithamyotrophiclateralsclerosis,Arch.Neurol.53(1996) 141–147.

[33]S.J.Oh,ClinicalElectromyography:NerveConductionStudies,thirded., LippincottWilliams&Wilkins,Philadelphia,2003.

[34]K.Kira,L.A.Rendell,Apracticalapproachtofeatureselection,Proceedingsof InternationalConferenceonMachineLearning(1992)249–256.

[35]M.Robnik-Sikonja,I.Kononenko,TheoreticalandempiricalanalysisofReliefF andRReliefF,Mach.Learn.J.53(2003)23–69.

[36]E.Chroni,N.Taub,C.P.Panayiotopoulos,Theimportanceofsamplesizefor theestimationofFwavelatencyparametersintheulnarnerve,MuscleNerve 17(1994)1480–1483.

[37]M.A.Fisher,ComparisonofautomatedandmanualF-wavelatency measurements,Clin.Neurophysiol.116(2005)264–269.

[38]X.Kong,E.A.Lesser,J.T.Megerian,S.N.Gozani,Repeatabilityofnerve conductionmeasurementsusingautomation,J.Clin.Monit.Comput.20 (2006)405–410.

[39]X.Kong,P.Bansal,J.T.Megerian,S.N.Gozani,PeronealF-wavecharacteristics undersubmaximalstimulation,Neurol.Neurophysiol.Neurosci.1(2006) 1–13.

[40]R.J.Guiloff,H.Modarres-Sadeghi,Preferentialgenerationofrecurrent responsesbygroupsofmotorneuronsinman,Brain114(1991)1771–1801. [41]T.J.Doherty,W.F.Brown,Theestimatednumbersandrelativesizesofthenar

motorunitsasselectedbymultiplepointstimulationinyoungandolder adults,MuscleNerve16(1993)355–3661.

[42]M.deCarvalho,P.E.Barkhaus,S.D.Nandedkar,M.Swash,Motorunitnumber estimation(MUNE):Wherearewenow?Clin.Neurophysiol.129(2018) 1507–1516.

[43]T.J.Doherty,D.W.Stashuk,W.F.Brown,Determinantsofmeanmotorunit size:impactonestimatesofmotorunitnumber,MuscleNerve16(1993) 1326–1331.

[44]M.P.Slawynch,C.A.Laszlo,C.Hershler,Areviewoftechniquesemployedto estimatethenumberofmotorunitsinamuscle,MuscleNerve13(1990) 1050–1064.

[45]M.B.Bromberg,Updatingmotorunitnumberestimation(MUNE),Clin. Neurophysiol.118(2007)1–8.

[46]C.L.Gooch,T.J.Doherty,K.M.Chan,M.B.Bromberg,R.A.Lewis,D.W.Stashuk, M.J.Berger,M.T.Andary,J.R.Daube,Motorunitnumberestimation:a technologyandliteraturereview,MuscleNerve50(2014)884–893. [47]H.Bostock,EstimatingmotorunitnumbersfromaCMAPscan,MuscleNerve

53(2016)889–896.

[48]S.Grimaldi,L.Duprat,A.M.Grapperon,A.Verschueren,E.Delmont,S. Attarian,Globalmotorunitnumberindexsumscoreforassessingthelossof

(13)

lowermotorneuronsinamyotrophiclateralsclerosis,MuscleNerve56 (2017)202–206.

[49]A.B.Jacobsen,R.S.Kristensen,A.Witt,A.G.Kristensen,L.Duez,S.Beniczky,A. Fuglsang-Frederiksen,H.Tankisi,Theutilityofmotorunitnumberestimation methodsversusquantitativemotorunitpotentialanalysisindiagnosisofALS, Clin.Neurophysiol.129(2018)646–653.

[50]J.Furtula,B.Johnsen,P.B.Christensen,K.Pugdahl,C.Bisgaard,M.K. Christensen,J.Arentsen,M.Frydenberg,A.Fuglsang-Frederiksen,MUNIXand incrementalstimulationMUNEinALSpatientsandcontrolsubjects,Clin. Neurophysiol.124(2013)610–618.

[51]J.M.Shefner,M.L.Watson,L.Simionescu,J.B.Caress,T.M.Burns,N.J. Maragakis,M.Benatar,W.S.David,K.R.Sharma,S.B.Rutkove,Multipoint incrementalmotorunitnumberestimationasanoutcomemeasureinALS, Neurology.77(2011)235–241.

Tu˘grulArtu˘gis anassistantprofessorin the Depart-mentofElectricalandElectronicsEngineeringatIstanbul ArelUniversity.Hehaseightyearsofacademic expe-rience at different universities. Artu˘gholds a BSc in ElectronicsandCommunicationEngineeringfromKocaeli University.HereceivedhisMScandPhDdegreesin Elec-tronicsfromYildizTechnicalUniversityin2010and2015 respectively.Hisresearchinterestsarebiomedicalsignal processing,imageprocessingandneuralnetworks.Heis alsoexperiencedinmicrocontrollers.Hehasparticipated ininternationalsymposiumsandsubmittedconference paperstoseveralnationalcongresses.

NerminGorkemSirinisworkingasafellowinclinical neurophysiologydepartmentinMarmaraUniversitysince 2017.Shewasgraduatedfrommedicalschoolin2006and startedNeurologyresidencyinthesameyear.After fin-ishingherresidency,sheworkedinCizreStateHospital asaneurologistforherobligatoryservicebetween2011 and2013.Afterfinishingherservice,sheworkedin sev-eralhospitalsinIstanbulasaneurologist.Shehadher MasterofSciencedegreeinclinicalneurophysiologyin IstanbulUniversityinJune2018.Heracademicinterests areclinicalneurophysiology,neuromusculardiseasesand electromyography.

EmelOguzAkarsuwasborninSilifke/MersinonApril 1982. She graduatedfrom IstanbulUniversity Cerrah-pasaSchoolofMedicine(EnglishProgram)in2007.She completedherresidencyprograminHasekiTrainingand ResearchHospitalin2011andshecompletedIstanbul UniversityIstanbulMedicalFacultyClinical Neurophys-iologyfellowshipprogramin2017.Shehasbeenworking asaclinicalneurophysiologistinSakaryaUniversity Train-ingandResearchHospitalsince2017.Sheisinterestedin epilepsy,neuromusculardisordersandelectrophysiology.

M.BarisBaslowasborninOctober1970inIstanbul. HegraduatedfromIstanbulUniversityMedicalFacultyin 1993.Hecompletedhisresidencyprograminthe Neurol-ogyDepartmentofthesamefacultyin1998.Hestudied neuroscienceatMayoClinicbetweenAugust1996and July1997.Heworkedasaconsultantneurologistuntil 2003whenhebecameanassociateprofessor.In2009, hewaspromotedtoProfessorofNeurologyatthesame departmentandtwoyearslaterhegothisdegreein “Clin-icalNeurophysiology”ashissubspecialty.Hisresearch mainlyfocusesonelectrophysiologyofneuromuscular disorders.

A.EmreÖgeisaprofessorinthedepartmentsof Neu-rologyandClinicalNeurophysiology,IstanbulUniversity, IstanbulFacultyofMedicine.Hismainareasofinterestand researchareperipheralnervediseases,facialnerve phys-iology, quantitativeelectromyographyincludingmotor unitnumberestimationstudiesandmagneticstimulation methodsintendedforproximalperipheralnerve disor-ders,corticalexcitabilityandsensory-motorintegration.

Şekil

Fig. 2. F-Waves After the Cutting Operation. a) Isometric view. b) Colormap of top view.
Fig. 3. Most Similar Repeater F-Wave Pair Among the Recorded Sample Signals.
Fig. 4. Automated F-Wave Repeater Detection Algorithm.
Fig. 5. Correlation Graphs of sMUP Amplitudes and MUNE Values of Median (M) and Ulnar (U) Nerves for ALS Patients.
+3

Referanslar

Benzer Belgeler

Erkip, Global existence and blow-up of solutions for a general class of doubly dispersive nonlocal nonlinear wave equations, Nonlinear Anal.. Boussinesq, Theorie des ondes et des

Törene TBM M Başkanı Yıldırım Akbulut, SHP Genel Baş­ kanı Erdal İnönü, SHP Grup Başkanvekilleri Deniz Baykal ve Hikmet Çetin, bazı milletvekilleri

Bu çal›flmada menopoz sonras› dönemde kemik mineral yo¤unluk ölçümü ile osteoporoz saptanan ve saptanmayan hastalar›n serumlar›nda kurflun düzeylerine bak›lm›fl ve

Nejla GÜNAY• Ankara Hacı Bayram Veli Üni.. Tayyar Arı •

We elaborate on several solution approaches, namely object-oriented design approach, aspect-oriented design approach, and composition of events and actions approach to tackle

İstanbul hayatında çok mühim bir yeri olan, bilhassa iç mimarî ve süslemeleri bakımından, çoğu bir san’at eseri mâhiyetinde olduğu bâzı eski resim

O günden sonra Barış Manço benim için çok önemli olmuştu.. Birçok sanatçının içinde olduğu &#34;gurbet kervanları&#34; konserlerine sırf onu izlemek için

Similarly, mil- lions of mosquito specimens have been collected over the past 100 years and stored in collections at the Bishop Museum in Hawaii, the National Museum of Natural