• Sonuç bulunamadı

Mechanical and durability properties of ground calcium carbonate-added roller-compacted concrete for pavement

N/A
N/A
Protected

Academic year: 2021

Share "Mechanical and durability properties of ground calcium carbonate-added roller-compacted concrete for pavement"

Copied!
11
0
0

Yükleniyor.... (view fulltext now)

Tam metin

(1)

https://www.journals.elsevier.com/journal-of-materials-research-and-technology Availableonlineatwww.sciencedirect.com

Original

Article

Mechanical

and

durability

properties

of

ground

calcium

carbonate-added

roller-compacted

concrete

for

pavement

Sadik

Alper

Yildizel

a

,

Gokhan

Calis

a,∗

,

Bassam

A.

Tayeh

b

aKaramanogluMehmetbeyUniversity,FacultyofEngineering,CivilEngineeringDepartment,Turkey bCivilEngineeringDepartment,FacultyofEngineering,IslamicUniversityofGaza,Palestine

a

r

t

i

c

l

e

i

n

f

o

Articlehistory: Received25June2020 Accepted14September2020 Availableonline30September2020

Keywords:

Roller-compactedconcrete Groundcalciumcarbonate Freeze–thawcycles

Magnesiumsulphateresistance Durabilityproperties

a

b

s

t

r

a

c

t

This research aimed toinvestigate the mechanical and durability properties of roller-compacted concrete (RCC) containing ground calcium carbonate (GCC). Five different mixturecombinationswerepreparedbyreplacingcementwithGCCatthelevelsof5%, 10%,15%,20%and25%byweight.Thewatercontentsofthemixturewereoptimisedwith themaximumdensitymethod.ThecompressiveandflexuralstrengthsoftheRCCmixtures wereevaluatedupto90days.Durabilitycharacteristics,suchaswaterabsorptionrates, sul-phateandfreeze–thawresistances,werealsoevaluatedinthisstudy.TheGCCinclusionof upto15%increasedthemechanicalstrengthvaluesandenhancedthedurability charac-teristicsoftheRCCmixtures.Scanningelectronmicroscopyimagesoftheadditional15% GCCwerealsoutilised.ResultsrevealedthatGCCinclusionexhibitedanimprovementin thedurabilitypropertiesofthespecimens.

©2020TheAuthor(s).PublishedbyElsevierB.V.Thisisanopenaccessarticleunderthe CCBY-NC-NDlicense(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1.

Introduction

Roller-compactedconcrete(RCC)hasbeenwidelystudieddue toitsbenefits,suchaslowapplicationcost,high-density con-structiontechnologyandreducedcementcontents,compared with other types of concrete pavement [1]. RCC is gener-allydesignedwithzero-slumpvaluesandcompactedsimilar to soil [2,3]. Moreover, considerable amounts of construc-tioncompactionenergyandincreasedaggregatecontentsare requiredforthetraditionalRCCdesigns[4].

RCC structures are continuously and directly exposed toenvironmentaldeteriorativefactors,suchasfreeze–thaw cyclesand chemicals.Therefore, inadditiontoits strength

Correspondingauthor.

E-mail:gokhancalis@kmu.edu.tr(G.Calis).

characteristics,thedurabilitypropertiesofRCCpavementsare alsovital[5].Especiallyincoldregions,deteriorationsonRCC structuresareacceleratedwithcontinuousfreeze–thawcycles andtheuseofde-icingsalts[6].Concretedamages,suchas cracksandsurfacescaling,canemergeasaresultof harm-fulmechanisms.Numerousstudieshavebeenconductedto predict andeliminatetheeffectsoffreeze–thawcycles and chemicalattacks[7,8].Theoptimisationofwater-to-cement ratio and the usage ofsupplementary cementitious mate-rials andair-entrainingchemicalswerewidelyevaluatedin manydurabilityreports[9–11].Inaddition,air-entrainedRCC productionispopularamongstscientistsinthelastdecade; however, itsapplicationwaslimitedduetoutilisation diffi-cultiesofair-entrainingchemicalsduringtheRCCdesign[8].

The interest in utilising supplementary cement materi-als to formulate nature-friendly and economical concrete has increased in recent years due to environmental rea-https://doi.org/10.1016/j.jmrt.2020.09.070

2238-7854/©2020The Author(s).Published byElsevier B.V.Thisis anopen accessarticleunderthe CC BY-NC-NDlicense (http:// creativecommons.org/licenses/by-nc-nd/4.0/).

(2)

sons.Therefore,manystudieshavebeenfocusedoncement replacementand alternative binding materialsin the con-crete productionindustry [12–14]. Utilising ground calcium carbonate (GCC)as acementreplacementmaterialin con-crete mixturesmay improve its strength and cohesiveness behaviour.GCCisgenerallyusedtoeliminatestructuralpores inthemicrostructureofconcretes.Inaddition,GCCusagein theRCCdesigncanlimitthenegativeeffectofbleedingand shrinkagemechanisms[15].

Themechanical and durabilitypropertiesofGCC-added RCCwereinvestigatedinthisstudy.Themechanical exper-imental study focused on the compressive and flexural strength test results at 7, 28 and 90 days. Durability tests include determination of sulphate and freeze–thaw resis-tancesandwaterabsorptiontests.Inaddition,theabrasion resistanceofthepreparedmixeswasmeasured with sand-blasting.

Supplementary cementitious materials, suchas flyash, silica fume and furnace slags, can be used as partial replacements of cement in concrete mixture designs to reducecement production-originatedcarbon dioxide emis-sions[16,17]. The addition ofthese kinds ofmaterials not onlylimitsthenegativeimpactsontheenvironmentbutalso resultsinenhancedlong-termmechanicalbehavioursof con-cretes.Supplementarycementitiousmaterialshavealsobeen widelyusedinvarioustypesofconcretes,includingRCC pave-ments[18,19].Severaltypesofresearchhavebeenfocusedon thereplacementofcementbynaturalandindustrialmaterials [18,20].Literaturereportsindicatedthatcementreplacement materialscanbeusedtoenhancethemechanicaland dura-bilitypropertiesoftheRCCpavements.

RCCisespeciallypreferredforroadanddamconstruction projectsduetoits rapidsettingcharacteristics.Inaddition, RCC ismoresuitable forthe construction ofroad surfaces comparedwiththeasphalticcoversbecauseitdevelopshigh compressivestrengths[21,22].TheuseofRCCindamprojects requireshighwater-to-cementratiosandlowcement quanti-ties.Lowwater-to-cementcontentusageinRCCroadsleads to decrease in bleeding [23]. The bleeding and shrinkage behavioursoftheconcretecanalsobelimitedbyGCC inclu-sion. GCCadditions increased the compressive strength of

theconcretewiththecuringageaccordingtotherelated lit-erature studies[24–26]. Theprincipal advantageofutilising GCCinconcretemixesnotonlyleadstoimprovedmechanical anddurabilitypropertiesbutalsoprovideslessCO2emissions

caused bythecement industry.However,high dosageGCC additionascementreplacementmaterialsinconcretemixes canresultindecreasedstrengthvalues[27].Thereactivityof GCCisrelatedtoitsspecificsurfacearea,andsmallparticles haveanadditionalsurfaceareaforC3Areactions[25].

Grind-ingoftheGCCrequireslesserenergyconsumptioncompared withthatofothercementreplacementmaterialsbecauseGCC haslowhardness[28].

TheGCCinclusiontoconventionalconcretehasprovided improved structural, mechanical and durability properties accordingtoliteraturereportsinthelastdecades.However, resultsontheGCCadditiontoRCCmixturesarelimited.This study aimsto enrich the available experimentaldata con-cerning GCC utilisationinRCC pavementstoreach aclear understandingofitsbehaviour.

2.

Materials

and

methods

2.1. Materialsandmixturepreparations

River sand was utilised asfine aggregates, and crush rock materialcontaininglimestonewasusedascoarseaggregates inthisexperimentalwork.Themaximumaggregatesizewas chosenas20mmtopreventsegregation.Allaggregateswere cleanedfromanyorganicmaterialsfollowingtheair-drying process. Theaggregates were utilisedaccording tothe ACI requirements [29]. A commercial product, Betocarb®, was usedastheGCCfillermaterial.Thecombinedgradationcurves and material propertiesofthe aggregates are presentedin Fig.1andTable1,respectively.Scanningelectronmicroscopy (SEM)imagesoftheGCCparticlesareprovidedinFig.2.

CemItypecementconformingtotheEN197[32]standard wasutilisedasthethebindermaterial.Table2presentsthe chemicalandphysicalpropertiesofthecementandGCC.

Table3showsthemixtureproportionsofthestudiedRCC. SixdifferentRCCmixtureswerepreparedinthis

(3)

Table1–Aggregatematerialproperties.

MaterialProperty FineAggregate(FA) CoarseAggregate(CA) Betocarb®

ModulusofFineness 2.62 –

SpecificGravity 2.64 2.76

Bulking,% 7.3 –

SiltContent,% 0.72 –

Waterabsorption(ASTMC138)[30],% 1.1 3.2

LosAngelesabrasion(ASTMC131)[31],% 21 24

TotalMoisture,% 0.10 0.40

Bluevalue,g/kg <10

d50%,(␮m) 5–30

Table2–Materialpropertiesofthecement.

Chemicalandphysicalproperty Cement GCC(Betocarb)

Iron(III)oxide(Fe2O3) 3.52 0.052

Calciumoxide(CaO) 60.24 97.81

Aluminiumoxide(Al2O3) 4.39 0.055

Magnesiumoxide(MgO) 2.39 1.89

SiO2 – 0.119

SrO – 0.024

Sulphurtrioxide(SO3) 2.64 0.019

K2O – 0.015

Freecalciumoxide(CaO) 1.73 –

LOI,% 2.92 –

Morphology – Cubicorhexagonal

Colour – White

Specificgravity 3.11

Soundness,mm 0.51 –

Fineness,cm2/g 3620

Settingtime,min.(Ini.–Fin.) 175–225 –

Compressivestrength,MPa(2,7and28days) 27.90,42.85,52.14 –

Table3–RCCmixtureproportions.

Mixturecode Cement(kg) GCC(kg) FA(kg) PA(kg) W/(C+GCC) Compactionratio(%) Optimumwatercontent(%)

R 260 0 750 1128 0,4 100 5.29 RCC-5 247 13 750 1128 0,41 100 5.34 RCC-10 234 26 750 1128 0,42 100 5.42 RCC-15 221 39 750 1128 0,44 100 5.50 RCC-20 208 52 750 1128 0,45 99 5.55 RCC-25 195 65 750 1128 0,46 98 5.6

Fig.2–SEMimagesofGCCparticles.

tal study,and thesemixtures were coded in linewith the GCCinclusions.‘R’definesthereferencemixturewithnoGCC content.Othermixtureswereclassifiedas‘RCC-x’,where‘x’ representsthecementreplacementratioofGCCbyweight.

ThecementreplacementlevelswithGCCwereconsidered tobe5%,10%,15%,20%and25%byweight.Thespecimens werecompactedinthreelayerswithacompactorattheblow countof1000and1870r/min(10kgsurcharge)inaccordance withthe ASTM C1435procedure [33].Theoptimumwater content oftheconcretes isprovidedinTable 3. Cylindrical specimens(150mm×300mm)withwater-to-cementratiosof 0.35,0.4,0.45and0.50werepreparedtodeterminethe opti-mummoisturecontentoftheRCCmixtures. Theoptimum watercontentoftheRCCmixesgenerallyvariesbetween4.6% and5.6%[34].AllthepreparedRCCspecimenwatercontents werewithinthelimitsoftheserates.

Themixtureswere preparedwitha60Lpan mixer.The aggregates,namely,Betocarb® andcement,wereinitiallydry mixed,andthentherequiredwaterwasadded.Themixerrate waskeptconstantat250r/minfor5mintoobtaina homoge-nousmixture. Thespecimenswere cured atthe laboratory temperaturefor24h.Then,allspecimenswereremovedfrom themouldsandkeptunderlime-saturatedwater(23◦C)until

(4)

themechanical tests.Theconsistencyofthemixtureswas measuredwithaVe–Betestat10,20and30minaftercasting. Thefreshdensityofthemixtureswasalsorecorded.

2.2. Mechanicalanddurabilitytests

The 100mm×100mm cubic specimens were prepared for thecompressivestrengthtests.Thesetestswereconducted usingacompressivestrengthtestingmachinewithaloading rateof0.3MPa/s.Flexuralstrengthtestswereconductedon 100mm×100mm×500mmrectangularsamples.Auniversal testmachine withaloadingrate of1.00MPa/minwas also used.Thestaticmodulusofelasticityvalueswasmeasured onthedifferentmixtures(150mm×300mmcylindrical sam-ples)at90daysaccordingtotherequirementsofASTMC469 [35].Youngmodulusofelasticityvalueswasdeterminedwith thefollowingformulapresentedinEq.(1),where‘E’represents Youngmodulusofelasticity;‘␴1’and‘␴2’definecompressive

strengthwith50microstrainandstressunder40%ultimate load,respectively;and‘␧2’representsthelongitudinalstrain

under␴2stress.

E= (␴1−␴2)/(␧2−0.000050). (1)

Modulusofelasticitytestswereperformedonthree sam-ples from each mix. Modulus of elasticity was evaluated utilisingthe chord method. All mechanicaltests were per-formed with the guide ofEN 12390-2, EN 12390-3 and EN 13390-5standardrequirements[36–38].

ThewaterabsorptionratesoftheRCCsampleswere mea-suredaccording totheASTM C642 [39]requirements.The specimenswerefirstlydriedinanovenat105◦Cforoneday and cooled under laboratorytemperature (23◦C), and their weightswererecordedas‘W1’.Thesamesampleswereboiled

for5hinacontainerandcooledandthenboiledagain.The cooledweightswererecordedas‘W2’.Thewaterabsorption

(Wa,%)oftheRCCmixeswasdeterminedbyEq.(2).

Wa=[(W2−W1)/W1]×100. (2)

The freeze and thaw resistance of the specimens was determinedaccordingtotheASTMC666standard[40].The compressive strength losses wererecorded at90 days.The magnesium sulphateeffectontheRCCsampleswas inves-tigatedwiththecompressivestrengthchange.Onegroupwas keptincuringwater,andthesecondgroupwasexposedtothe magnesiumsulphateconcentrationsof10inaseparate con-tainer.Themagnesiumsulphateconcentrationwasrenewed every15daysuntiltheendoftestingtime(90days).The abra-sionresistanceoftheRCCmixtureswasdeterminedaccording totheASTMC418:AbrasionResistanceofConcreteby Sand-blastingstandard.

3.

Results

and

discussions

3.1. FreshandmechanicalpropertiesofRCCmixtures

As shown in Table 3, high optimum water contents were gainedwiththeincreaseinthesupplementarycementitious materialamount.Thisphenomenoncanbeattributedtothe higherspecificsurfaceareaandthesmallerspecificgravityof GCCcomparedwiththoseofcement[41].

TheconsistencyoftheRCCmixtureswasinvestigatedwith modifiedVe–Betestsat10,20and30minfollowingthe cast-ingprocessaccordingtotheASTMC1170standard[42].The Ve–BetestresultsaregiveninFig.3.TheresultsshowthatGCC addedconcretemixturesshowlessVe–Betimethanthe refer-encemixture.Withtheadditionof%5GCCtothesample,vebe timeof30mintestincreasedtwiceastheothertestresults.Itis determinedthatadditionofGCChasgreaterimpacton10min Ve-betestresultsthan20minVebetestresults.The consis-tencyofthemixturesconsiderablyimprovedascementwas replacedwithGCC.Thisimprovementcouldbeattributedto thehighfinenessvalueandpartlyroundedsurfacesoftheGCC particles(Fig.2).Thetestresultsshowedparallelresultswith thesupplementarycementmaterial-addedRCCpavement lit-erature[8,18].

The test results of wet density are presented in Fig. 4. Asshowninthefigure,GCCadditionconsiderablyincreased the wetdensity ofthe mixturescomparedwiththatofthe

(5)

Fig.4–WetdensityoftheRCCmixtures.

referencemix.Thiscondition canbeclarified bythe filling of voids by the GCC particles. As a result, the same vol-ume is filled with higher amount of mass. Figs. 3 and 4 also show that low Ve–Be times correspond with high wet density. Wet density test results also reflected the utilisation boundaries for different types of implementa-tions.

The compressive strength test results are presented in Fig.5,whereGCCinclusionupto15%increasedthetestresults comparedwiththoseofthereferencemixture.GCCinclusion alsocontributedtotheearlystrengthdevelopmentoftheRCC mixtures.However,the samplescontain10%and 15%GCC havealittleincreasein7dayscompressivestrength(0.6%and 0.9%).Thisfindingindicatesthattheuseofvariouscement replacementmaterialsor fibres haspositive effectson the compressivestrengthofRCC[43–45].ItwasobservedthatGCC mainlyactedascementreplacementmaterialandincreased thestrength.Theremainingmaterialfromthehydration pro-cessactedasfillermaterialduetoparticlesize.Ontheother hand,thecompressivestrengthvaluesofthemixtures con-tainingmorethan15%GCCcontentreducedatallages.This resultcan beattributedto the high GCCcontents and the dilutioneffect.Thosesampleshavemorethan15%ofGCC, havemorevoidsandhigherwater/cementratiowhichresults adecreaseincompressivestrength.RCC-15showedthebest performanceat42.71MPacomparedwiththatoftheotherRCC mixturesat90days.Allcompressivestrengthtestresultsat28 dayswereobtainedwithintherangeofACI325-10R require-ments[46].

The flexural strength test results at 7, 28 and 90 days are presentedinFig.6. All measuredflexural strengthtest resultsvaried between3.11 and 5.11MPa. Itis determined thatthetrendofcompressiveand flexuralstrength testsis alike.GCCadditionupto15%improvedtheflexuralstrength developmentatallages.Thisimprovementcanbeexplained asthe filler and accelerationeffects ofGCC on the hydra-tion process ofcementas stated insomeprevious studies [47–49].Thisoutcome alsosupportsthe deductionthatthe utilisationofcementreplacementfillingmaterialhasan

incre-mental impact on RCC compressive and flexuralstrengths [50].

Themodulusofelasticityresultswerechangedfrom32.17 and37.56GPa.Thereplacementofcementwith20%GCC rep-resentsasimilarmodulusofelasticityof35.04GPacompared withthatofthereferencemixture(35.20GPa).GCCinclusion up to 15% increasedthe modulusofelasticity test results. The maximum test result was obtained as 37.56GPa with the ‘RCC-15’mixture.GCCaddition intothemixturesmore than15%hadnegativeimpactontheresults.Previousreports mentionedthatGCCcouldenhancemechanicalpropertiesby providingadditionalintegratedmicrostructures[48].

3.2. DurabilitypropertiesofRCCmixtures

Waterabsorptiontestresultsat7,28and90daysarepresented inFig.7.Thewaterabsorptionratesofthespecimensvary between2.41%and3.01%at28days,andRCC-15hadthe min-imumtestresults.Unlikefibre-addedRCC[44],GCCaddition decreasedthewaterabsorptionrates.Thisdecreasecanbe attributedtothefillingoutofporesbytheGCCminerals.

The compressive strength reduction percentage of RCC mixturesareplottedinFig.8,following300freeze–thawcycles. Comparedwiththereferencemixture,compressivestrength lossesdecreasedastheGCCreplacementincreasedupto15%, andsimilarlossvalueswereobtainedfortheotherRCC mix-tures.InadditiontothepositiveeffectsofGCCadditionsonthe microstructure,theseresultscanbeattributedtotwofactors. Thedecreaseinthecompressivestrengthafterfreeze–thaw cycles issimilar tothatofanotherstudy [44],inwhichthe macro syntheticfibre-added RCCisinvestigated. The com-pressivestrengthlossescoulddecreasewiththecompactivity leveloftheRCCmixtures.AsshowninTable3,RCC-5, RCC-10andRCC-15hadbettercompaction ratioscomparedwith thoseofRCC-20andRCC-25mixtures.Itcanbeconcludedthat RCCsampleshavereachedtheoptimummixturedesignwith 15%GCCaddition.BeyondthispointGCCadditionwillrequire additionalwatertobondwiththeconcrete.Thecompressive strengthlossescanalsobeattributedtotheW/C+GCCratio.

(6)

Fig.5–Compressivestrengthtestresults.

Fig.6–Flexuralstrengthtestresults.

Theincreaseinthisratioalsoraisedthevolumeandnumber ofcapillarypores withfreezablewaterpotentialincement paste.Thesamplethathavehigherthan15%GCCaddition showhighercompressivestrengthloseafterfreezeandthaw cycles.Thistypeofeffectisexpectedasthosesampleshave morewater content and voids than the other samples. In addition,themaincauseofinternalexpansionduring freez-ing can be due to this increase as stated in the literature [41].

Theabrasion resistancetest results ofspecimens at90 daysarepresentedinFig.9.SandsconformingwiththeASTM C778[51]standardwereblastedwithaninjectortypegunat arateof690kPathroughthecentreofthespecimens.Fig.9

shows that GCC addition up to15% decreased the weight losses ofspecimens exposed duringsandblasting. Thetest results were in parallel with the mechanical compressive strength testresults.Thestrengthofmixturesisan impor-tant factorintheabrasionresistancetestresults,asstated inthe literature[43]. AllGCC hassomesilica content,and this materialpresents concerns on theabrasion resistance dependingonitsparticlesizeandconcentration[52].Notably, the utilisedBetocarb® had aconsiderableamount ofsilica content based on the improvement in abrasion resistance characteristics ofspecimenscomparedwiththatofthe ref-erencemixture.

(7)

Fig.7–Waterabsorptiontestresults.

Fig.8–Compressivestrengthlossesafterfreeze–thawcycles.

MagnesiumsulphateresistanceofRCCmixturesis plot-tedinFig.10.RCC-5,RCC-10andRCC-15specimensshowed the lowest compressive strength losses compared with the other mixtures. The overall test results indicated that cement replacement with certain amounts of GCC (up to 15%)had asignificant effect onRCC interms ofdurability properties. Utilisingcertain amounts ofGCC enhancedthe sulphateresistancebehavioursoftheRCC mixturesby fill-ingvoidsinitsstructures.Theeffectsofmagnesiumsulphate attacksalsoincreasedwiththe exposuretimeasshown in Fig.10.

Figs.11and 12representtheSEMimagesoftheRCC-15 specimenswithmagnificationsof1000×and5000×, respec-tively. Thefigures show thatthe pores are filled withGCC particles. This phenomenon can be attributed to reduced waterabsorptionrateandimprovedtransportationproperties ofthespecimen.

Fig.12showsthatporesarequitereplacedwiththeGCC particles.BycomparingFigs.11and12,thecompletefillingof poresinthescannedareaswasalsoobserved.

4.

Conclusion

The influences of utilising GCC as cement supplementary materials on the RCC mixtures were examined in this research.Themainconclusionofthisstudycanbedrawnas follows.

• CementreplacementwithGCCupto15%increasedthe opti-mumwatercontentofthemixturescomparedwiththatof thereference.

• UtilisingGCCupto15%alsoresultedinlowwater absorp-tion rates and less compressive strength losses against

(8)

Fig.9–Weightlossesofspecimensexposedtosandblasting.

Fig.10–Compressivestrengthlossesaftermagnesiumsulphateattack.

freeze–thawcycles.Thiscanbeattributedtofillerand poz-zolaniceffectofGCC.WiththeadditionofGCCresultsin decreaseinvoidsofthespecimens.

• The early strength characteristics of specimens were enhancedwithacertainamountofGCCinclusionthatis resultofthepositiveeffectofGCCadditioninthehydration processofcement[25].

• Magnesium sulphate attacked the resistance ofthe RCC improvedwiththepreparedmixtures.RCC-15showedthe bestperformanceagainstsulphateattacks.Duetoreduce intheporewiththeadditionofGCC,theeffectofsulphate attacksdecreases.

• Atotalof15% cementreplacementwithGCCwasfound tobeeffectivethroughstrengthanddurabilityproperties. Thisapproachcanbeutilisedforcostoptimisationstudies ofRCCmixtures.

• Similartoutilisationofflyash[50],GCCincorporationalso has a positive impact in reducing the pores in RCC as observedintheSEManalysisfigures.

• Besidesimprovingmechanicalanddurabilitypropertiesof concrete,GCCadditionmightbebeneficialtoproduce sus-tainableconcrete.WiththeuseofGCCascementreplacing material,lessenergyconsumedduringcementproduction. InthisrespectlessCO2willbereleasedfromthefactories.

(9)

Fig.11– SEMimagesoftheRCC-15specimenat1000×magnification.

Fig.12– SEMimagesoftheRCC-15specimenat5000×magnification.

Conflicts

of

interest

Theauthorsdeclarenoconflictsofinterest.

Acknowledges

Theauthorswouldliketoacknowledgetothestaffof KMU-BILTEMfortheirhelpandsupports.

r

e

f

e

r

e

n

c

e

s

[1]LaHucikJ,DahalS,RoeslerJ,AmirkhanianAN.Mechanical propertiesofroller-compactedconcretewithmacro-fibers. ConstrBuildMater2017;135:440–6,

http://dx.doi.org/10.1016/j.conbuildmat.2016.12.212. [2]LinY,KaradelisJN,XuY.Anewmixdesignmethodforsteel

fibre-reinforced,rollercompactedandpolymermodified bondedconcreteoverlays.ConstrBuildMater2013;48:333–41, http://dx.doi.org/10.1016/j.conbuildmat.2013.06.020. [3]DelatteN.Roller-compactedconcretepavements.In:

Concretepavementdesign,construction,andperformance. seconded;2014,http://dx.doi.org/10.1201/b17043-16. [4]NeocleousK,AngelakopoulosH,PilakoutasK,GuadagniniM.

Fibre-reinforcedroller-compactedconcretetransport

pavements.ProcInstCivEng-Transp2011, http://dx.doi.org/10.1680/tran.9.00043.

[5]PigeonM.Durabilityofconcreteincoldclimates;2018, http://dx.doi.org/10.1201/9781482271447.

[6]AlirezaS,RadM,ModarresA.Coldregionsscienceand technologydurabilitypropertiesofnon-airentrainedroller compactedconcretepavementcontainingcoalwasteashin presenceofde-icingsalts.ColdRegSciTechnol

2017;137:48–59,

http://dx.doi.org/10.1016/j.coldregions.2017.02.006. [7]RamezanianpourAA,JafariNadooshanM,PeydayeshM,

RamezanianpourAM.Effectofentrainedairvoidsonsalt scalingresistanceofconcretecontaininganewcomposite cement.KSCEJCivEng2014,

http://dx.doi.org/10.1007/s12205-014-0365-x. [8]NiliM,ZaheriM.Deicersalt-scalingresistanceof

non-air-entrainedroller-compactedconcretepavements. ConstrBuildMater2011,

http://dx.doi.org/10.1016/j.conbuildmat.2010.10.004.

[9]OmranA,HarbecD,Tagnit-HamouA,GagneR.Productionof roller-compactedconcreteusingglasspowder:fieldstudy. ConstrBuildMater2017;133:450–8,

http://dx.doi.org/10.1016/j.conbuildmat.2016.12.099. [10]KhayatKH,LibreNA.Rollercompactedconcrete-field

evaluationandmixtureoptimization.ANatlUnivTransp CentMissouriUnivSciTechnol2014.

[11]JayasreeS,GanesanN,AbrahamR.Effectofferrocement jacketingontheflexuralbehaviourofbeamswithcorroded

(10)

reinforcements.ConstrBuildMater2016,

http://dx.doi.org/10.1016/j.conbuildmat.2016.05.131. [12]JuengerMCG,WinnefeldF,ProvisJL,IdekerJH.Advancesin

alternativecementitiousbinders.CemConcrRes2011, http://dx.doi.org/10.1016/j.cemconres.2010.11.012. [13]ShowK-Y,TayJ-H,LeeD-J.Cementreplacementmaterials.

SustainSludgeManag2018,

http://dx.doi.org/10.1142/97898132382680005.

[14]MayooranS,RagavanS,SathiparanN.Comparativestudyon openairburntlow-andhigh-carbonricehuskashaspartial cementreplacementincementblockproduction.JBuildEng 2017,http://dx.doi.org/10.1016/j.jobe.2017.07.011.

[15]Antoni,ChandraL,HardjitoD.Theimpactofusingflyash, silicafumeandcalciumcarbonateontheworkabilityand compressivestrengthofmortar.ProcediaEng2015, http://dx.doi.org/10.1016/j.proeng.2015.11.132.

[16]RosellóJ,SorianoL,SantamarinaMP,AkasakiJL,MonzóJ, PayáJ.RicestrawashApotentialpozzolanicsupplementary materialforcementingsystems.IndCropsProd2017, http://dx.doi.org/10.1016/j.indcrop.2017.03.030.

[17]KeenEC,BliskovskyVV,MalagonF,BakerJD,PrinceJS,Klaus JS,etal.Supplementarymaterialssupplementarymaterials andmethods.MBio2017,https://doi.org/000112383[pii]. [18]GhahariSA,MohammadiA,RamezanianpourAA.

Performanceassessmentofnaturalpozzolanroller compactedconcretepavements.CaseStudConstrMater 2017;7:82–90,http://dx.doi.org/10.1016/j.cscm.2017.03.004. [19]AghaeipourA,MadhkhanM.Effectofgroundgranulated

blastfurnaceslag(GGBFS)onRCCPdurability.ConstrBuild Mater2017,

http://dx.doi.org/10.1016/j.conbuildmat.2017.03.019. [20]GanjianE,JalullG,Sadeghi-PouyaH.Usingwastematerials

andby-productstoproduceconcretepavingblocks.Constr BuildMater2015,

http://dx.doi.org/10.1016/j.conbuildmat.2014.12.048. [21]SilvaRV,DeBritoJ,DhirRK.Propertiesandcompositionof

recycledaggregatesfromconstructionanddemolitionwaste suitableforconcreteproduction.ConstrBuildMater2014, http://dx.doi.org/10.1016/j.conbuildmat.2014.04.117. [22]CopeJL,SchraderEK,Abdun-NurEA,CannonRW,McEwen

WD,AndersonFA,etal.Rollercompactedmassconcrete. ACIMaterJ1988.

[23]HansenWG,ReindhardtKD.In:Roller-CompactedConcrete Dams.Tokyo:McGraw-Hill;1991.

[24]DeSilvaP,BuceaL,MooreheadDR,SirivivatnanonV. Carbonatebinders:reactionkinetics,strengthand microstructure.CemConcrCompos2006,

http://dx.doi.org/10.1016/j.cemconcomp.2006.03.004. [25]MatscheiT,LothenbachB,GlasserFP.Theroleofcalcium

carbonateincementhydration.CemConcrRes2007, http://dx.doi.org/10.1016/j.cemconres.2006.10.013. [26]YipCK,ProvisJL,LukeyGC,vanDeventerJSJ.Carbonate

mineraladditiontometakaolin-basedgeopolymers.Cem ConcrCompos2008,

http://dx.doi.org/10.1016/j.cemconcomp.2008.07.004. [27]QianX,WangJ,WangL,FangY.Enhancingtheperformance

ofmetakaolinblendedcementmortarthroughin-situ productionofnanotosub-microcalciumcarbonate particles.ConstrBuildMater2019,

http://dx.doi.org/10.1016/j.conbuildmat.2018.11.134. [28]ChenY,YuH,YiL,LiuY,CaoL,CaoK,etal.Preparationof

groundcalciumcarbonate-basedTiO2pigmentbyatwo-step coatingmethod.PowderTechnol2018,

http://dx.doi.org/10.1016/j.powtec.2017.11.040. [29]ACI318-95.Buildingcoderequirementsforstructural

concrete(ACI318-95)andcommentary(ACI318R-95). https://www.doi.org/30CFR250.901(d)(1),2011.

[30]ASTM:C138.ASTMC138:standardtestmethodfordensity (unitweight),yield,andaircontent(Gravimetric).ASTMInt 2013,http://dx.doi.org/10.1520/C0138.

[31]ASTMC131-12.Standardtestmethodforresistanceto degradationoflarge-sizecoarseaggregatebyabrasionand impactintheLosAngelesMachine.ASTMInt2012, http://dx.doi.org/10.1520/C0131.

[32]EN197-1:2004.EN197-1:composition,specifications,and conformitycriteriaforcommoncements.EurStand2004, http://dx.doi.org/10.3403/30205527U.

[33]TestCC.Standardpracticeformoldingroller-compacted concreteincylindermoldsusingavibratinghammer1. AnnuBookASTMStandSect11WaterEnvironTechnol2010, http://dx.doi.org/10.1520/C1435.

[34]USArmyCorpsofEngineers.Standardpracticeforconcrete forcivilworksstructures.EngStruct2000,

http://dx.doi.org/10.1016/0141-0296(95)90030-6. [35]ASTMC469.StandardtestmethodforstaticModulusof

elasticityandPoisson’sratioofconcrete;2015, http://dx.doi.org/10.1520/C0469.

[36]BSEN12390-3.BSEN12390-3.Test.HardenedConcr.-Part3 compressivestrengthtestspecimens;2009.

[37]BSEN12390-5.Testinghardenedconcrete-Part5:flexural strengthoftestspecimens.BrStand2009.

[38]EN12390-2.EN12390-2.Test.HardenedConcr.-Part2Mak. Curingspecimensstrengthtests;2009.

[39]ASTMInternational.ASTMC642-06standardtestmethod fordensity,absorption,andvoidsinhardenedconcrete. UnitedStatesAmSocTestMater2008,

http://dx.doi.org/10.1520/C0642-13.5.

[40]AstmC666/C666M-03.Standardtestmethodforresistance ofconcretetorapidfreezingandthawing.ASTMInt2008, http://dx.doi.org/10.1520/C0666.

[41]Mardani-AghabaglouA,Andic¸-C¸akirÖ,RamyarK. Freeze-thawresistanceandtransportpropertiesof high-volumeflyashrollercompactedconcretedesignedby maximumdensitymethod.CemConcrCompos

2013;37:259–66,

http://dx.doi.org/10.1016/j.cemconcomp.2013.01.009. [42]ACTMC1170/C1170M.Determiningconsistencyanddensity

ofroller-compactedconcreteusingavibratingtable.Annu BookASTMStandSect11WaterEnvironTechnol2014, http://dx.doi.org/10.1520/C1170.

[43]RaoSK,SravanaP,RaoTC.Abrasionresistanceand mechanicalpropertiesofRollerCompactedConcretewith GGBS.ConstrBuildMater2016;114:925–33,

http://dx.doi.org/10.1016/j.conbuildmat.2016.04.004. [44]AlginZ,GerginciS.Freeze-thawresistanceandwater

permeabilitypropertiesofrollercompactedconcrete producedwithmacrosyntheticfibre.ConstrBuildMater 2020;234:117382,

http://dx.doi.org/10.1016/j.conbuildmat.2019.117382. [45]LuhrD.(DepartmentofTAUSACofE.Engineeringanddesign

ROLLER-COMPACTEDCONCRETE);2006.

[46]HesamiS,ModarresA,SoltaninejadM,MadaniH. Mechanicalpropertiesofrollercompactedconcrete pavementcontainingcoalwasteandlimestonepowderas partialreplacementsofcement.ConstrBuildMater2016, http://dx.doi.org/10.1016/j.conbuildmat.2016.02.116. [47]BeddeyA,MarzoukiA,LecomteA,BenOuezdouM,Diliberto

C.Theeffectsofgrindingonthepropertiesof Portland-limestonecement.ConstrBuildMater2013, http://dx.doi.org/10.1016/j.conbuildmat.2013.07.053. [48]DeWeerdtK,KjellsenKO,SellevoldE,JustnesH.Synergy

betweenflyashandlimestonepowderinternarycements. CemConcrCompos2011,

(11)

[49]NejadFM,ToloueiM,NazariH,NaderanA.Effectsofcalcium carbonatenanoparticlesandflyashonmechanicaland permeabilitypropertiesofconcrete.AdvCivEngMater 2018;7:651–68,http://dx.doi.org/10.1520/ACEM20180066. [50]CaoC,SunW,QinH.Analysisonstrengthandflyasheffect

ofroller-compactedconcretewithhighvolumeflyash.Cem ConcrRes2000;30:71–5,

http://dx.doi.org/10.1016/S0008-8846(99)00203-3.

[51]C778A.Standardspecificationforstandardsand.AmSoc TestMater2017,http://dx.doi.org/10.1520/D7544-09.2. [52]AbrasionCharacteristicsofGroundCalciumCarbonate

Products.Focuspowdercoatings;2018, http://dx.doi.org/10.1016/j.fopow.2018.09.032.

Şekil

Table 3 shows the mixture proportions of the studied RCC. Six different RCC mixtures were prepared in this
Table 1 – Aggregate material properties.
Fig. 3 – Ve–Be test results.
Fig. 4 – Wet density of the RCC mixtures.
+5

Referanslar

Benzer Belgeler

Ermenilerin, Miladi IV. asırda Hıristiyanlığı kabul etmelerinden sonra 451 yılında Bizans kilisesinden ayrılmaları, Türklerin Anadolu’yu fetih ve iskânlarına kadar süren bir

on properties of steel fibrous concrete containing mixed fibers in fresh and hardened state showed that maximum increase in compressive strength of SFRC containing

On top of these, using waste glass in concrete improves both the physical (workability and water absorption capacity) and mechanical properties (compressive strength,

The effects of PPF on normal concrete and lightweight self-compacting concrete was analyzed by (Mazaheripour et al., 2011). They compared the mechanical properties of

Fracture properties of steel fiber reinforced high strength concrete using work. of fracture and size

Also, extended information on an important clustering tecnique, Fuzzy c-means method, which is needed in student clustering for construction of student groups is given in

Yapılan bir çalıümada Summers ve arkadaüları (), Crohn hastal ıùında klinik remisyonu saùlamada SS, prednizon ve azatiyopürinin etkinli ùini plasebo ile kar

Akciğer rezeksiyonu sonrası komplikasyonların önceden belirlenmesinde merdiven çıkma ve 6-dakika yürüme testlerinin yeri Amaç: Akciğer rezeksiyonlarından sonra kaçınılmaz