• Sonuç bulunamadı

On approximation process by certain modified Dunkl generalization of Szasz-Beta type operators

N/A
N/A
Protected

Academic year: 2021

Share "On approximation process by certain modified Dunkl generalization of Szasz-Beta type operators"

Copied!
10
0
0

Yükleniyor.... (view fulltext now)

Tam metin

(1)

Research Article

Online:ISSN 2008-949X

Journal Homepage:www.isr-publications.com/jmcs

On approximation process by certain modified Dunkl

gener-alization of Sz´asz-Beta type operators

C¸ i ˘gdem Atakuta, Seda Karatekeb,∗, ˙Ibrahim B ¨uy ¨ukyazıcıa

aDepartment of Mathematics, Faculty of Science, Ankara University, Ankara, Turkey.

bDepartment of Mathematics and Computer Science, Faculty of Science and Letters, Istanbul Arel University, Istanbul, Turkey.

Abstract

In this paper, we give a generalization of the Sz´asz-Beta type operators generated by Dunkl generalization of exponential function and obtain convergence properties of these operators by using Korovkin’s theorem and weighted Korovkin-type theo-rem. We also establish the order of convergence by using the modulus of smoothness and the weighted modulus of continuity.

Keywords:Dunkl type generalization, Genuine-Sz´asz beta operators, modulus of smoothness, Lipschitz functions.

2010 MSC:41A10, 41A25, 41A36.

c

2019 All rights reserved.

1. Introduction

Approximation theory is concerned with approximating functions of a given class using functions from another, usually more elementary, class. The theory of approximation of function is now an ex-tremely extensive branch of mathematical analysis and this theory has very important applications in other branches. As it is known, linear positive operators play an important role in the study of approxi-mation of functions. One of the best known of these operators is the Sz´asz operator introduced by Sz´asz [13] and it is as below: Sn(f; x) = e−nx ∞ X k=0 f k n  (nx)k k! , x > 0, n ∈ N.

This operator is a generalization of Bernstein polynomials to the infinite interval. Sz´asz operators and their generalizations have been studied by many authors (see [1,4–10,12–15]). One of the generalizations of the Sz´asz operator including parameters anand bnwas given by ˙Ispir and Atakut [7] as follows:

San,bnn (f; x) := Sn(f; an, bn; x) = e−anx ∞ X k=0 f  k bn  (anx)k k! , x > 0, n ∈ N, (1.1) ∗Corresponding author

Email addresses: atakut@science.ankara.edu.tr (C¸ i ˘gdem Atakut), sedakarateke34@gmail.com (Seda Karateke), ibuyukyazici@gmail.com(˙Ibrahim B ¨uy ¨ukyazıcı)

doi:10.22436/jmcs.019.01.02

(2)

where{an} , {bn} are given increasing and unbounded sequences of positive numbers such that lim n→ 1 bn =0, an bn =1 + O  1 bn  . (1.2)

Note that the parameters an and bn have an important effect for a better approximation of the operator

San,bnn . An example of this situation will be illustrated in following Figure1.

Figure 1: The effects of the anand bnparameters on the approximation (an= n2, bn= n2+1).

For ν, x ∈ [0,∞) and f ∈ C [0, ∞) , in [12], Sucu introduced the following generalization of the Sz´asz operators (later, it was called as Dunkl analogue of Sz´asz operators) by using the generalization of the exponential function eνgiven in [11]:

S∗n(f; x) = 1 eν(nx) ∞ X k=0 f k + 2νθk n  (nx)k γν(k), where eν(x) = ∞ X r=0 xr γν(r) , (1.3)

and for r ∈N0and ν > −12, the coefficients γνare given by:

γν(2r) = 2 2rr!Γ r + ν +1 2  Γ ν +1 2  , γν(2r + 1) = 22r+1r!Γ r + ν +32 Γ ν + 1 2  , (1.4)

where the function Γ is well-known gamma function and also for p ∈N, θr=

0, if r=2p, 1, if r=2p+1, the recursion relation

γν(r +1) = (2νθr+1+ r +1) γν(r) (1.5)

holds. Also, it is easily seen that if we select ν = 0, then the operator S∗nturns into the operator Sn.

Very recently, in [1], C¸ ekim et al. have given the Dunkl analogue of Sz´asz-Beta type operators defined by Ln(f; x) = (n −1) eν(nx) ∞ X r=1 n + r − 2 r −1  (nx)r γν(r) ∞Z 0 sr−1(1 + s)−n−r+1f (s) ds + f (0) eν(nx) , (1.6)

(3)

where eν(x) and γν are as given in (1.3) and (1.4), respectively. In this paper, inspired by the operators

(1.1) and (1.6), for ν, x ∈ [0,∞) and f ∈ C [0, ∞) we define a modified Dunkl analogue of the Sz´asz-Beta type operators as follows:

Ln(f; an, bn, x) := L∗n(f; x) = (n −1) eν(anx) ∞ X r=1 n + r − 2 r −1  (anx)r γν(r) ∞Z 0 sr−1(1 + s)−n−r+1f s bn  ds + f (0) eν(anx) . (1.7)

Here the sequences {an} and {bn} have the properties given in (1.2). Note that the well-known beta

function is defined by B (r, n − 1) = ∞ Z 0 sr−1(1 + s)−n−r+1ds. (1.8)

For m ∈N, the beta integral (1.8) can be written as

B (r + m, n − m − 1) = ∞ Z 0 sm+r−1(1 + s)−n−r+1ds. (1.9) 2. Main Results

In this section, we will give some important results for the operator L∗n. For the proofs of the next

theorems the following simple results are needed.

Lemma 2.1. Let f(t) = ti, i = 0, 1, 2, 3, 4. For the operator L∗ndefined by (1.7), the following statements hold:

L∗n(1; x) = 1, (2.1) |L∗ n(t; x) − x| 6  1 n −2 an bn −1  x + 2ν n −2, (2.2) L∗n t2; x − x2 6  1 (n −2) (n − 3) a2n b2 n −1  x2+ 2an(1 + 2ν) b2 n(n −2) (n − 3) x + 4ν 2+ b2 n(n −2) (n − 3) , (2.3) L∗n t3; x − x3 6 1 (n −2) (n − 3) (n − 4)  a3 n b3 n − (n −2) (n − 3) (n − 4)  x3 +6 (ν + 1)a 2 n b3 n x2+ 12ν 2+20ν + 6 a n b3 n x + 12ν 3+2+20ν b3 n  , (2.4) L∗n t4; x − x4 6 1(n − 2) (n − 3) (n − 4) (n − 5) ×  a4 n b4 n − (n −2) (n − 3) (n − 4) (n − 5)  x4 + (8ν + 12) a 3 n b4 n x3+ 24ν 2+64ν + 36 a2 n b4 n x2 + 32ν 3+112υ2+96ν + 64 a n b4 n x + 16ν 4+64ν3+84ν2+84ν b4 n  . (2.5)

(4)

Proof. Firstly, we consider f (t) = 1. Using (1.9) and definition of eν, we have L∗n(1; x) = (n −1) eν(anx) ∞ X r=1 n + r − 2 r −1  (anx)r γν(r) ∞Z 0 sr−1(1 + s)−n−r+1ds + 1 eν(anx) = 1 eν(anx) ∞ X r=1 (anx)r γν(r) + 1 eν(anx) = 1 eν(anx) ∞ X r=0 (anx)r γν(r) =1.

Now, consider f (t) = t. For each n > 2, by using (1.5), (1.9), and eν(x), respectively, we obtain

L∗n(t; x) = (n −1) eν(anx) ∞ X r=1 (anx)r γν(r) ∞ Z 0 sr−1 (1 + s)n+r−1 n + r − 2 r −1  s bn ds + f (0) eν(anx) = 1 bneν(anx) 1 n −2 ∞ X r=1 r(anx) r γν(r) + f (0) eν(anx) = 1 bneν(anx) 1 n −2 ∞ X r=1 (anx)r γν(r) (r +2νθr) − 1 bneν(anx) 2ν n −2 ∞ X r=1 (anx)r γν(r)θr = 1 n −2 "  an bnx − n +2  − 2ν eν(anx) ∞ X r=1 (anx)r γν(r) θr # . Thus, |L∗ n(t; x) − x| 6 1 n −2 "  an bnx − (n −2) x  − 2ν eν(anx) ∞ X r=1 (anx)r γν(r)θr # 6  1 (n −2) an bn−1  x + 2ν (n −2) for all n > 2, which shows that (2.2) holds. For n > 3 and f (t) = t2 using (1.9), we get

L∗n t2; x = (n −1) eν(anx) ∞ X r=1 n + r − 2 r −1  (anx)r γν(r) ∞Z 0 sr−1(1 + s)−n−r+1 s 2 b2 n ds + f (0) eν(anx) = 1 b2 n(n −2) (n − 3) 1 eν(anx) ∞ X r=1 (anx)r γν(r) r (r +1) + f (0) eν(anx) . Then by using r (r +1) = − (r − 1) 2νθr+ (r +2νθr) (r −1) + 2r and (1.5), L∗nt2; x = 1 b2 n(n −2) (n − 3) 1 eν(anx)  X r=1 (anx)r γν(r) (r +2νθr) (r −1) − (r − 1) 2νθr+2r)  = 1 b2n(n −2) (n − 3) 1 eν(anx)  X r=1 (anx)r γν(r) (r +2νθr) (r −1) − 2ν ∞ X r=1 (anx)r γν(r) (r −1) θr+ ∞ X r=1 (anx)r γν(r) 2r  = 1 b2 n(n −2) (n − 3) 1 eν(anx)  X r=0 (anx)r+1 γν(r +1) γν(r +1) γν(r) r −2ν ∞ X r=1 (anx)r γν(r) (r −1) θr+ ∞ X r=1 (anx)r γν(r) 2r  .

Therefore, since θr6 1, we obtain L ∗ n  t2; x− x2 6 1 (n −2) (n − 3)  a2 n b2 n x2− (n −2) (n − 3) x2  +2νanx +2νanx +4ν2+2ν + 2anx +4ν

(5)

= 1 (n −2) (n − 3)  a2 n b2 n − (n −2) (n − 3)  x2+(4νan+2an) b2 n x +4ν 2+ b2 n =  1 (n −2) (n − 3) a2n b2 n −1  x2+ 4ν 2+ b2 n(n −2) (n − 3) .

Similarly, it can be shown that the inequalities (2.4) and (2.5) hold. The moments for the operator L∗nare stated in next lemma.

Lemma 2.2. The operators L∗nsatisfy the following inequalities:

1:= L∗n(t − x; x) 6  1 n −2 an bn −1  x + 2ν n −2, ∆2:= L∗n(t − x)2; x6  a2n (n −2) (n − 3) b2 n − 2an (n −2) bn +1  x2 +  2an(1 + 2ν) b2 n(n −2) (n − 3) − 4ν n −2  x + 4ν 3+ b2 n(n −2) (n − 3) , (2.6) ∆3:= L∗n  (t − x)4; x 6  a4n (n −2) (n − 3) (n − 4) (n − 5) b4 n + 6a 2 n (n −2) (n − 3) b2 n − 4a 3 n (n −2) (n − 3) (n − 4) b3 n − 4an (n −2) bn +1  x4+  8ν n −2− 24 (ν + 1) a2n b3 n(n −2) (n − 3) (n − 4) + (8ν + 12) a 3 n b4 n(n −2) (n − 3) (n − 4) (n − 5) + 12an(1 + 2ν) b2 n(n −2) (n − 3)  x3 + 24ν 2+64ν + 36 a2 n b4 n(n −2) (n − 3) (n − 4) (n − 5) + 6 4ν 2+ b2 n(n −2) (n − 3) − 4 12ν 2+20ν + 6 a n b3 n(n −2) (n − 3) (n − 4) ! x2+ − 4 12ν 3+2+20ν b3 n(n −2) (n − 3) (n − 4) + 32ν 3+112ν2+96ν + 64 a n b4 n(n −2) (n − 3) (n − 4) (n − 5) ! x + 16ν 4+64ν3+84ν2+84ν b4 n(n −2) (n − 3) (n − 4) (n − 5) . (2.7)

By using Lemma2.1 and applying the well-known Korovkin theorem, we have the following useful result.

Theorem 2.3. Let Lnbe given by (1.7). Then for any f ∈ C [0,∞) ∩ E, we have L∗n(f; x) ⇒ f (x) as n → ∞

on each compact subset K of [0,∞). Here E =

f∈ C [0,∞) : f satisfies the condition lim

x→

f (x) 1 + x2 <∞

.

The next theorem gives approximation of the operator L∗nin the weighted space. Firstly, the concepts of weighted spaces are introduced. Let R+ = [0,∞) and ρ(x) = 1 + x2. The weighted spaces of the

functions and the norm of Bρ(R+)are defined by,

(6)

Cρ(R+) =f∈ Bρ(R+) : fis continuous onR+ , C∗ρ(R+) = f∈ Cρ(R+) : lim x→ f (x) ρ(x) is finite , kfkρ= sup x∈[0,∞) f (x) ρ (x), f ∈ Bρ(R +) .

Note that a weighted Korovkin-type theorem is given by Gadjiev [2, 3]. The next theorem presents the approximation of the operators L∗n in the weighted space.

Theorem 2.4. For the operators L∗ngiven in (1.7) and each function f ∈ C∗ρ (R+), one has

lim

n→∞kL ∗

n(f; x) − f (x)kρ=0.

Proof. From (2.1), we can write limn→∞kL∗n(1; x) − 1kρ=0. By (2.2) and the following calculation

sup x∈[0,∞) |L∗ n(t; x) − x| 1 + x2 6  1 n −2 an bn−1  sup x∈[0,∞) x 1 + x2+ 2ν n −2x∈[0,sup∞) x 1 + x2 6  1 n −2 an bn −1  + 2ν n −2, we get lim n→kL ∗ n(t; x) − xkρ=0.

Finally, by (2.3) and the following calculation sup x∈[0,∞) L∗n t2; x − x2 1 + x2 6  1 (n −2) (n − 3) a2n b2 n −1  sup x∈[0,∞) x2 1 + x2 + 2an(1 + 2ν) b2 n(n −2) (n − 3) sup x∈[0,∞) x 1 + x2 + 4ν2+6ν b2 n(n −2) (n − 3) sup x∈[0,∞) 1 1 + x2 6  1 (n −2) (n − 3) a2n b2 n −1  + 2an(1 + 2γ) + 4ν 2+ b2 n(n −2) (n − 3) , we have lim n→ L∗n t2; x − x2 ρ =0.

Thus, we get limn→kL∗n(f; x) − f (x)kρ = 0 for each f ∈ C∗ρ(R+)according to weighted Korovkin-type

theorem.

The simplest method of estimating the degree of approximation by positive linear operators is with the aid of the first and second order modulus of continuity given by:

ω(f; δ) = sup |x−y|6δ{|f(x) − f(y)| : x, y ∈ [0, ∞)} and ω2(f; δ) = sup 0<h6δ {|f(x + h) − 2f(x) + f(x − h)| : x ∈ [0, ∞)} , respectively.

In the next theorems, we will give the degree of approximation using the operator L∗nby considering

(7)

Theorem 2.5. Let f ∈ eC [0,∞) ∩ E. Then the operators given in (1.7) satisfy the following inequality |L∗

n(f; x) − f (x)| 6 2ω (f; δn,x),

where eC [0,∞) is the space of uniformly continuous functions on [0, ∞), ω is the first order modulus of continuity of f, and δn,x = s  a2 n (n −2) (n − 3) b2 n − 2an (n −2) bn +1  x2+  2an(1 + 2ν) b2 n(n −2) (n − 3) − 4ν (n −2)  x + 4ν 3+ b2 n(n −2) (n − 3) .

Furthermore, if f ∈ LipM(α), the following inequality |L∗

n(f; x) − f (x)| 6 K (τn(x))α/2

holds, where τn(x) = ∆2 given by (2.6).

Proof. In view of (2.4), one gets |L∗ n(f; x) − f (x)| 6 L∗n(|f (t) − f (x)| ; x) 6  1 +1 δL ∗ n(|t − x| ; x)  ω (f; δ) 6  1 +1 δ p ∆2  ω (f; δ)

using Cauchy-Schwarz inequality. If we select δ = δn,x =

2, we obtain the desired result. Thus, the proof of first part of the theorem is finished.

Now, let f ∈ LipM(α), then we have |L∗

n(f; x) − f (x)| 6 L∗n(|f (t) − f (x)| ; x) 6 KL∗n(|t − x| α

; x) . From Lemma2.2and using H ¨older’s inequality, one gets

|L∗

n(f; x) − f (x)| 6 K (∆2)α/2.

Then choosing τn(x) = ∆2, the proof of the theorem is now completed.

Lemma 2.6. Let CB[0,∞) be the space of continuous and bounded functions on [0, ∞) . For f ∈ C2B[0,∞) =

f∈ CB[0,∞) : f0, f00 ∈ CB[0,∞) , we have |L∗ n(f; x) − f (x)| 6 χn(x) kfkC2 B[0,∞), where χn(x) = ∆1+ ∆2. Proof. For f ∈ C2

B[0,∞) , using the Taylor’s formula of the function f, we write

f (t) = f (x) + (t − x) f0(x) +(t − x) 2 2! f 00 (σ), σ ∈ (x, t) , by linearity of L∗n, we get L∗n(f; x) − f (x) = f0(x) L∗n(t − x; x) + f 00 (σ) 2! L ∗ n  (t − x)2; x= f0(x) ∆1+f 00 (σ) 2! ∆2. Then using Lemma2.2, one obtains

|Ln(f; x) − f (x)| 6  1 n −2 an bn−1  x + 2ν n −2  f 0 C2 B[0,∞)

(8)

+1 2  a2n (n −2) (n − 3) b2 n − 2an (n −2) bn +1  x2 +  2an(1 + 2ν) b2 n(n −2) (n − 3) − 4ν n −2  x + 4ν 3+ b2 n(n −2) (n − 3) f 00 C2B[0,∞) 6 (∆1+ ∆2)kfkC2 B[0,∞).

Choosing χn(x) = ∆1+ ∆2 finishes the proof.

Theorem 2.7. The operators L∗nsatisfy the following inequality

|L∗ n(f; x) − f (x)| 6 2M  min  1,χn(x) 2  kfkCB[0,∞)+ ω2 f; r χn(x) 2 ! , where f ∈ CB[0,∞) , x ∈ [0, ∞), M is a positive constant independent of n and χn(x).

Proof. For any g ∈ C2B[0,∞), we use Lemma2.6and the triangle inequality to get the following inequality |L∗ n(f; x) − f (x)| 6 |L∗n(f − g; x)| + |L∗n(g; x) − g (x)| + |f (x) − g (x)| 6 2 kf − gkCB[0,∞)+ χn(x) kgkC2B[0,∞) =2 kf − gkCB[0,∞)+ χn(x) 2 kgkC2B[0,∞) .

With the help of the Peetre’s K functional, and using the well-known relation between K2and ω2 one has

|L∗ n(f; x) − f (x)| 6 2M  min  1,χn(x) 2  kfkCB[0,∞)+ ω2 f; r χn(x) 2 !

and the proof of the theorem is completed.

In the last theorem, we will give rate of approximation of the operators L∗n in the weighted space by using the weighted modulus of continuity. The details about the weighted modulus of continuity are included below. For f ∈ C∗ρ(R+), the weighted modulus of continuity is defined by

Ω (f; δ) = sup

x∈[0,∞) |h|6δ

|f (x + h) − f (x)| (1 + h2) (1 + x2)

and has the following properties:

lim δ→0Ω (f; δ) = 0, and |f (s) − f (x)| 6 2  1 +|t − x| δ  1 + δ2 1 + x2  1 + (t − x)2  Ω (f; δ) , (2.8)

where t, x ∈ [0,∞). For further properties of the weighted modulus of continuity see [7]. Theorem 2.8. Let f ∈ Cρ(R+). Then the following inequality holds:

sup x∈[0,∞) |L∗ n(f; x) − f (x)| (1 + x2)3 6 Mν  1 + 1 n  Ω  f;√1 n  , where Mνis a constant independent of n.

(9)

Proof. By Lemma2.2and (2.8), we get |L∗ n(f; x) − f (x)| 6 (n −1) eν(anx) ∞ X r=1 (anx)r γν(r) ∞Z 0 sr−1 (1 + s)n+r−1 n + r − 2 r −1  × f  s bn  − f (x) ds + f (0) eν(anx) 6 2 1 + δ2 1 + x2 Ω (f; δ) (n −1) eν(anx) × ∞ X r=1 (anx)r γν(r) ∞ Z 0 sr−1 (1 + s)n+r−1 n + r − 2 r −1   1 + s bn − x δ   1 +  s bn − x 2! ds + f (0) eν(anx) =2 1 + δ2 1 + x2 Ω (f; δ) (n −1) eν(anx) ×    ∞ X r=0 (anx)r γν(r) ∞Z 0 sr−1 (1 + s)n+r−1 n + r − 2 r −1  ds +1 δ ∞ X r=0 (anx)r γν(r) ∞ Z 0 sr−1 (1 + s)n+r−1 n + r − 2 r −1  s bn − x ds + ∞ X r=0 (anx)r γν(r) ∞Z 0 sr−1 (1 + s)n+r−1 n + r − 2 r −1   s bn − x 2 ds + 1 δ ∞ X r=0 (anx)r γν(r) ∞Z 0 sr−1 (1 + s)n+r−1 n + r − 2 r −1   s bn − x 3 ds   . We use the Cauchy-Schwarz inequality to get

|Ln(f; x) − f (x)| 6 2 1 + δ2  1 + x2 Ω (f; δ)  1 +1 δ p ∆2+ ∆2+1 δ p ∆23  . With the help of (2.6) and (2.7), we have

|L∗ n(f; x) − f (x)| 6 2 1 + δ2 1 + x2 Ω (f; δ) 1 +  a2n (n −2) (n − 3) b2 n − 2an (n −2) bn +1  x2 +  2an(1 + 2ν) b2 n(n −2) (n − 3) − 4ν n −2  x +1 δ s  a2 n (n −2) (n − 3) b2 n − 2an (n −2) bn +1  x2+  2an(1 + 2ν) b2 n(n −2) (n − 3) − 4ν n −2  x +1 δ s  a2 n (n −2) (n − 3) b2 n − 2an (n −2) bn +1  x2+  2an(1 + 2ν) b2 n(n −2) (n − 3) − 4ν n −2  x  ∆3 

and finally, by choosing δ = √1

(10)

References

[1] B. C¸ ekim, ¨U. Dinlemez Kantar, ˙I. Y ¨uksel, Dunkl generalization of Sz´asz beta-type operators, Math. Methods Appl. Sci., 40 (2017), 7697–7704. 1,1

[2] A. D. Gadjiev, The convergence problem for a sequence of positive linear operators on unbounded sets, and theorems analogous to that of P P Korovkin, Dokl. Akad. Nauk SSSR., 218 (1974), 1001–1004. 2

[3] A. D. Gadjiev, Theorems of the type of P P Korovkin theorems, Math. Zametki, 20 (1976), 781–786. 2

[4] A. R. Gairola, Deepmala, L. N. Mishra, Rate of approximation by finite iterates of q-Durrmeyer operators, Proc. Nat. Acad. Sci. India Sect. A, 86 (2016), 229–234. 1

[5] A. R. Gairola, Deepmala, L. N. Mishra, On the q-derivatives of a certain linear positive operators, Iran. J. Sci. Technol. Trans. A Sci., 42 (2018), 1409–1417.

[6] R. B. Gandhi, Deepmala, V. N. Mishra, Local and global results for modified Sz´asz–Mirakjan operators, Math. Method. Appl. Sci., 40 (2017), 2491–2504.

[7] N. ˙Ispir, C¸ . Atakut, Approximation by modified Szasz–Mirakjan operators on weighted spaces, Proc. Indian Acad. Sci. Math. Sci., 112 (2002), 571–578. 1,2

[8] M. Le´sniewicz, L. Rempulska, Approximation by some operators of the Szasz–Mirakjan type in exponential weight spaces, Glas. Mat. Ser. III, 32 (1997), 57–69.

[9] V. N. Mishra, K. Khatri, L. N. Mishra, Deepmala, Inverse result in simultaneous approximation by Baskakov-Durrmeyer-Stancu operators, J. Inequal. Appl., 2013 (2013), 11 pages.

[10] V. N. Mishra, S. Pandey, I. A. Khan, On a modification of Dunkl generalization of Sz´asz Operators via q-calculus, Eur. J. Pure Appl. Math., 10 (2017), 1067–1077. 1

[11] M. Rosenblum, Generalized Hermite polynomials and the Bose-like oscillator calculus, Oper. Theory Adv. Appl., 73 (1994), 369–396. 1

[12] S. Sucu, Dunkl analogue of Sz´asz operators, Appl. Math. Comput., 244 (2014), 42–48. 1,1

[13] O. Sz´asz, Generalization of S. Bernstein’s polynomials to the infinite interval, J. Research Nat. Bur. Standards, 45 (1950), 239–245. 1

[14] S. Varma, S. Sucu, G. ˙Ic¸ ¨oz, Generalization of Sz´asz operators involving Brenke type polynomials, Comput. Math. Appl.,

64(2012), 121–127.

[15] Z. Walczak, On certain modified Szasz–Mirakjan operators for functions of two variables, Demonstratio Math., 33 (2000), 92–100. 1

Şekil

Figure 1: The effects of the a n and b n parameters on the approximation (a n = n 2 , b n = n 2 + 1).

Referanslar

Benzer Belgeler

[r]

exact order of approximation, quantitative Voronovskaja-type theorems, simultaneous approximation properties for complex q-Bernstein - Kantorovich polynomials ,

Many properties and results of these polynomials, such as Korovkin type ap- proximation and the rate of convergence of these operators in terms of Lipschitz class functional are

A note on stochastic methods in connection with approximation theorems for positive linear operators. Some probabilistic methods in the theory of approximation

Keywords: Exponential operators, Weyl, Sack, Hausdorff and Crofton identities, Mono-.. miality principle,Hermite-Kampe de Feriet polynomials, Laguerre polynomials

These results show that acute administration of rapamycin, especially in 5 mg/kg dose of rapamycin prolongs the latency of maternal aggression, and decreased the number of attacks,

[Ammâ odaların biri] yani anda hıfzı şart olunan oda [kargir ve diğeri] yani müstevda‘ın hilâf-ı şart olarak hıfz ittiği oda [ahşap olmak] ya biri

• Our study shows that median pain scores of multiple myeloma patients decreased significantly following percutaneous vertebroplasty (PV).. • PV decreases back pain due