• Sonuç bulunamadı

Bernstein-Type Operators

N/A
N/A
Protected

Academic year: 2021

Share "Bernstein-Type Operators"

Copied!
58
0
0

Yükleniyor.... (view fulltext now)

Tam metin

(1)

Bernstein-Type Operators

Kawa Sardar Mohammad Ali

Submitted to the

Institute of Graduate Studies and Research

in partial fulfillment of the requirements for the degree of

Master of Science

in

Mathematics

Eastern Mediterranean University

June 2016

(2)

Approval of the Institute of Graduate Studies and Research

Prof. Dr. Cem Tanova Acting Director

I certify that this thesis satisfies the requirements as a thesis for the degree of Master of Science in Mathematics.

Prof. Dr. Nazim Mahmudov Chair, Department of Mathematics

We certify that we have read this thesis and that in our opinion it is fully adequate in

scope and quality as a thesis for the degree of Master of Science in Mathematics.

Prof. Dr. Sonuç Zorlu Oğurlu Supervisor

Examining Committee

1. Prof. Dr. Nazim Mahmudov

2. Prof. Dr. Sonuç Zorlu Oğurlu

(3)

iii

ABSTRACT

In this work we are interested in the approximation of some type of operators called

Bernstein-type. For this purpose, the operator Ln

f x,

fC

0, called the

Bernstein-type approximation operator is considered. The aim is to use some

probabilistic properties to improve and sharp to operator defined above. Also, the rates

of convergence as well as the continuity of the operator are studied. Various methods

of approaching the problem are evaluated in this study.

Keywords: Bernstein type operator, probabilistic approach, binomial distribution, rates of convergence.

(4)

iv

ÖZ

Bu çalışmada Bernstein - tipi operatörlerin yaklaşımlarıyla ilgilenilimiştir.Bunun için

,

0,

n

L f x fC  olarak belirtilen Bernstein tipi yaklaşım operatörü ele

alınmıştır. Yukarıda verilen operatör için bazı olasılıksal metodlar kullanılarak yaklaşım özellikleri çalışılmıştır. Ayrıca, yakınsama hızı yanı sıra operatörün

sürekliliği incelenmiş olup farklı yöntemlerle yaklaşım problemi de bu çalışmada değerlendirilmiştir.

Anahtar kelimeler: Bernstein tipi operatörler, olasılıksal yaklaşım, binom dağılımı, yaklaşım hızı.

(5)

v

ACKNOWLEDGMENT

I give all thanks to God Almighty for making this thesis a success. May his name be

praised. I also want to appreciate my loving parents who supported me in all areas to

make this thesis a success. I wish to acknowledge, with gratitude the contribution of

my most humble and understanding supervisor Prof. Dr. Sonuc Zorlu Oğurlu for her

constant help, encouragement and suggestions. I cannot appreciate you enough but

God bless and keep your family save. I will also like to appreciate my friends who by

(6)

vi

TABLE OF CONTENTS

ABSTRACT………... iii ÖZ... iv ACKNOWLEDGMENT………. v 1 INTRODUCTION………...………. 1 2 BERNSTEIN OPERATOR……….. 3 2.1 INTRODUCTION………. 3

2.2 Evaluation of Convergence Rates………. 4

2.3 Limitation Property of 𝐿𝐾………... 15

3 APPROXIMATION PROPERTIES OF BERNSTEIN POLYNOMIALS VIA PROBABILISTIC TOOLS………. 25

3.1 Introduction……..……….…….. 25

3.2 Investigation of no Gibbs Phenomenon of Bernstein Polynomials... 27

3.3 The Convergence Speed of

Bk

 

t Towards 

 

t ……….. 31

4 LIMITING PROPERTIES OF SOME BERNSTEIN TYPE OPERATORS……..39

4.1 Introduction……… 39

4.2 Limiting Properties………. 41

4.3 Convergence Rates………. 43

5 CONCLUSION………... 48

(7)

1

Chapter 1

INTRODUCTION

This work is divided in three main chapters as well as the introductory part and the

conclusion. An overview of what is developed in each of the chapter is given here.

The idea in chapter 2 is the following. Considering C

0,

to be the space of continuous functions on the half open interval

0, , , and given a function

0,

C

  , Butzer, Hahn and Bleimann

 

1 introduced an approximation operator called the Bernstein-type operator for approximation and defined it as follows:

 

0 1 , , 1 1 k k n k k n n n L t C t k n t             

k  .

 

1.1

They later proved the convergence of Lk

 

,t 

 

t (ask   ) for each t 

0,

. The convergence of the function mentioned above is investigated by the estimation of

the quantity Lk

   

,t  t . This investigation is actually possible provided that the continuity of the function CB

0, The notation

. CB

0, is set for the space of

all the functions which converge uniformly and are bounded on the half open interval

0, Some probabilistic arguments are used in what will follows to sharp, and add

. accuracy to the results mentioned above. The first two module of the continuity are

(8)

2

In the third chapter, the idea developed is the studies of two related approximation

problems of the Bernstein polynomials type Bk

 

t if given continuous function  on the closed interval

 

0,1 : The following two results are investigated. The first is that there is no any Gibbs phenomenon at any jump type discontinuity points of  and second result is the convergence of the first derivative

Bk

  

t of the initial polynomial Bk

 

t towards the first derivative 

 

t . The well-known and classical probabilistic arguments are used to prove the above results. The second result for

instance is obtained based on the computation of the expectation of a function of

random variables.

The fourth chapter which is the third main chapter of this work is centered on the

following idea. From the poineenring work of Bernstein, various research results have

proven that probabilistic arguments are suitable for any approximation problem which

is based on positive linear operators.

The problem is usually defined as follows, given I a real valued interval and given

1 2

, R , R ,..., t t t

R I-valued random variables with their density depending on a parameter

.

tI Let us consider two linear operators Y and Y positively defined associated to k the random variable Rt and t

k

R respectively. By the mean of

 

,

 

, t

YtER Yk

 

,tE

 

Rkt , CB

 

I , tI,

with E being the mathematical expectation of a random variable. CB

 

I is the space of all real valued continuous functions which are bounded on the interval I.

(9)

3

Chapter 2

BERNSTEIN OPERATOR

2.1 Introduction

Consider the space C

0, of real valued continuous functions defined on the half

open interval

0, Let us consider also the function

. C

0, The

. approximation operator of the Bernstein type initially defined by Hahn, Butzer, and

Bleimann, is given by

 

0 1 , , 1 1 k k n k k n n n L t C t k n t             

k  .

 

2.1

They proved that Lk

 

,t 

 

t (ask   ) for any t 

0, they also

, established that the convergence rate can be investigated by estimating

   

,

k

Lt  t of a continuity function CB

0, Some probabilistic arguments

. are used in what will follows to sharp, and add accuracy to the results mentioned above.

The first two module of the continuity are used to establish the rates of convergence.

We prove the relation Lk

   

,t  t 3 

, t

1t

2 k

, where   

,

stands for the first modulus continuity of . What follows is an improvement of the above theorem (inequality)

   

2

2

2 1 1 , 2 , , k t t t t L t t C k k                  

(10)

4

where   2

,

is the second modulus of continuity of CB[0, ), and

 0,

supt ( ) .t

     An approximation of the limit of L is the so called Szasz k operator.

2.2 Evaluation of Convergence Rates

Let W W W1, 2, 3,... be independent random variables with some probability distribution

such that P(Wi  1) p, P(Wi 0) where q, pt / (1 and t) q 1/ (1t), [0, ).

t   In order to avoid the case where t 0,assume that t 0. The summation

1 ...

k k

SW  W follows a binomial distribution b(n, , )k p whose parameters are k

and p, and P( ) ( ) , n 0,1, 2,..., . k n k n k n Snp q   k

 

2.2

Set TkSk / (kSk 1), k1, 2,..., it follows from

 

2.1 that Lk( , ) tE(Tk), with the character E being the expectation operator. The convergence of

k

Tp q  in probability as t k   implies that , Lk

 

,t ( ) as kt   by the law of large numbers for C

0, To get an accurate result, we first calculate

.

k

ET and 2 k

ET andsecondly, we estimate the quantity 2

( ) ( ) .

k k

e tE Tt It is an easy task to prove that

k k

ET  t tpt , as k  .

 

2.3

It follows from T and k

 

2.2 that

2 2 2 0 ( ) ( 1) k k k n n ET p S n k n     

(11)

5



 

2 1 ! 0 1 1 ! ! k n k n n n k p q k n k n k n n         



 

 

2 1 ! 1 1 ! 1 ! k n k n n n k p q k n k n k n n n         

1



 



! 1 1 ! 1 ! k n k n n n k p q k n n k n k n         

1



 

! 1 1 ! 1 ! k n k n n n k p q k n n k n        

Letting nm1



 

1 1 1 0 1 ! 1 1 1 1 ! 1 1 ! m k m k m m k p k m m k m q               

1 1 1 0 ( 1) ! ( ) ! ( )! m k m k m m k p k m m k m q         

 

 

1 1 1 1 1 1 0 0 ! 1 ! ! ! ! ! m m k k m k m k m m m k p k p k m m k m q k m m k m q                

 

 

1 1 1 1 1 1 1 0 ! ! 0 ! ! ! ! m m k k m k m k m m m k p k p k m m k m q k m m k m q                 

 

 

 

1 1 1 1 1 1 1 0 ! ! 1 ! ! ! ! m m k k m k m k m m m k p k p k m m m k m q k m m k m q                 



 

 

1 1 1 1 1 1 1 0 ! ! 1 ! ! ! ! m m k k m k m k m m k p k p k m m k m q k m m k m q                 



 

 

1 1 1 0 1 0 1 1 ! ! 1 ! ! 0 0! 0 ! k m k m k m k k p q p q k m m k m k k               

 

1 1 1 1 ! ! ! k m k m m k p q k m m k m        



 

1 1 1 1 1 ! 1 ! ! k k m k m m pq k p q k k m m k m           

(12)

6

 

1 1 1 1 ! . ! ! k m k m m k p q k m m k m        



 

1 1 1 1 1 1 1 ! 1 1 1 1 ! ! k k m k m m t k t t t p q k k m m k m                          

 

1 1 1 1 ! ! ! k m k m m k p q k m m k m        

  

1



 

1 1 1 1 1 ! 1 1 1 1 ! ! k m k m k m t k t p q t t k k m m k m         

  

 

1 1 1 1 ! ! ! k m k m m k p q k m m k m        



 

1 1 1 1 1 ! 1 ! ! k m k m k m t t p k k q k m m k m         

 

1 1 1 1 ! . ! ! m k m k m p k q k m m k m        

Letting nm1 and exploiting the binomial distribution condition p   1 q / (1 ) t  it follows that t

 

 

1 1 2 2 1 1 0 ! 1 ! 1 1 ! 1 1 n k k k n k n t k k n p ET k n n k n k n q k t                  

 

 

1 1 2 1 1 0 ! 1 ! 1 ! 1 n k n k n k k n p k n n k n k n q               

  

2 2 2 0 ! 1 ! ! 1 n k k n k n t k k n p k n n k n q k t            



 

  

2 2 2 0 ! 1 1 ! ! n k n k n k k n p k n n k n n q           

(13)

7

 

 



2 2 2 2 2 2 0 0 1 1 1 1 k k n k n k k n n k n n k n n t t k n p k n p k k n q k n n q                 

 

2

2 2 0 (1 ) 1 ( 1)( 1) k k n k n n k n t t p k n k n k q k n n k n                    

 

2





 

2 2 0 1 (1 ) 1 1 k k n k n n k n k n n k n t t p k q k n n                    

 

2

 



2 2 0 1 1 (1 ) 1 1 k k n k n n k n k n n t t p k q k n n                        

 

2





2 2 0 2 (1 ) . 1 1 k k n k n n k n n k n t t p k q n k n              

Since





2 1 1 ( 2)( ) ( 1)( 1) 1 1 n k n n k n n k n k n n            









1 1 1 1 1 1 1 1 1 n k n n k n k n n k n n k n n k n                  

 





1 1 1 1 1 1 1 n k n k n n k n n k n             









1 1 1 1 1 1 1 1 1 n k n n k n n k n n k n n k n                 



1 1 1 1 1 1 1 k n k n n k n           



1 1 1 1 1 1 1 k n k n n k n           

 

 



1 1 1 1 1 1 1 1 k n n n k n          

(14)

8



1 1 1 1 1 1 1 n n k n n         



2 1 1 1 1 1 1 1 n n n k n          



 



1 1 1 1 1 1 1 1 1 n n n k n n k n            

 





1 1 1 1 1 1 1 1 1 1 1 1 k n n k n n n k n n k n                    







2 1 1 , 1 1 1 1 k n n k n k n n k n            then we have,

 

2 2 2 2 2 2 2 0 0 ( 1) ! (1 ) ( )! ! 1 ( 1) k k k n k n n k n k k n n n t k k ET p q p q k t k n n n k n               

   

 

2 2 2 2 2 2 0 0 ( 1)! (1 ) ( )!(n 1)! 1 k k k n k n n k n n k n n t k p q p q k t k n k n               

   

 

 

 

2 2 1 2 1 2 2 2 1 0 (1 ) k k n k n k k k k k k k k n k k k n t p q p q p q k t                  

2 2 2 0 ( 1)! ( )! 1 !( 1) k n k n n k p q k n n k n           

 

2

 

1 2 0 ! (1 ) 1 ! 1 ! n k k k n k n k n t p k p k t q k k k q         

  

2 2 2 2 2 0 ! ( 1)! ! ! ( )! 1 !( 1) n k n n k n k p k p k k k q k n n k n q          

   

 

2

2 1 1 2 2 0 1 ! ! (1 ) 1! 1 ! 0! ! n n k k k n k n k n k k t p k p p q k t q k k q             

2 2 2 0 ( 1)! ( )! 1 !( 1) n k n k n k p k n n k n q           

(15)

9

 

2 2 2 2 1 1 0 (1 ) k k n k n k k n k n t p q p q kp q k t             

2 2 2 0 ( 1)! ( )! 1 !( 1) k n k n n k p q k n n k n           

 

2 2 2 2 0 1 1 (1 ) 1 1 1 1 k k k n k n n k n t t t t p q k t t t t                          

1 1 2 2 2 0 1 ( 1)! 1 1 ( )! 1 !( 1) k k n k n n t k k p q t t k n n k n                         

 

2 2 2 2 2 1 2 1 (1 ) 1 1 1 k k k t t t t t t k t t t t      

 

2

2 2 0 ( 1)! 1 ( )! 1 !( 1) 1 1 k k n k n k n tt k k t p q k n n k n t t               

2 2 , (1 ) 1 1 k k k t t t t t kt R k t t t               

 

2.4 where

2 2 2 0 ( 1)! . ( )! 1 !( 1) k n k n n k R p q k n n k n           

Let us now analyze the term R Letting . n 1 m we obtain

 

 

1 1 1 1 1 1 1 m 1 1 1 ! . 1 ! ! m k m m k m k k k m m k p q p q R k m m k m k m                  

Since

 

 

 

1 2 1 1 2 2 2 k m k m k m k m k m k m k m               

 

1

 

2

 

1 2 2 k m 2 1 , 1 -1 k m k m m k k m k m k m                   

(16)

10

1 2

2 1 3 2 , 1 k m k m k k             

1 3 2 , km   k  m

k 2 ,

we obtain

 

1 1

 

1 1 1 1

 

1

1 1 1 1 1 1 2 1 1 0 3 3 3 2 2 2 m k m m k m m k m k k k k k k m m m m m m p q p q p p q R k m k m q k m                            

 

1 1 1 1 2 0 3 1 2 , 1 1 k k m k m m m t t p q k m t           

with

1 0 ; 1, 1 k m b m k p    

, considering the binomial distribution b k p

,

 

 

2

1 3 1 2 1 t R t E k m t       .

 

1

 

1 3 1 1 1 3 1 1 ,

Rtt E k   m   tt E   where W follows binomial distribution b k

1,p

, and    k 1 W with b k

1,q

, q   Hence a result 1 p. of Chao and Strawderman [2, p. 430] gives

2 3 1 1 2 k t t p R k q     



2 3 1 1 1 2 1 1 k t t t t k t       

 

 

2 2 3 1 1 1 2 1 k k t t t t k t        

 

 

2 2 2 1 1 3 1 2 1 k k k t t t t t k t             

 

 

 

 

2 2 2 2 2 2 3 1 1 3 1 1 1 2 1 2 k k k k k k t t t t t t t t t k t k                

(17)

11

 

 

 

 

2 3 2 3 3 1 3 3 1 3 1 2 1 2 1 2 k k k k k k k t t t t t t t k t k t k            

 

 

2 3 2 3 1 3 3 1 2 1 2 2 k k t t t t t k t k k          

2 3 1 . 2 t t R k   

 

2.5

Letting ek

 

tE T

kt

2 it follows from

   

2.3 , 2.4 , and

 

2.5 that

 

2 2 2 2 k k k k e tE TtE TtTt

 

2 2 2 k k k e tETtETt

 

1

2 2 1 1 2

2 k k k k k t t t e t t t kt R t t tp t t t k t                  

 

1

2 2 1 1 2 2 2 2 1 2 k k k k t t t t e t t t kt R t t t t t t k t                       

 

1

2 1 1 k k k k t t t e t t kt R t t k t              

 

2 2 3 1 1 2 1 1 k k k k k t k t t t e t kt t t k k t t             

2 2 1 2 3 1 . 1 2 1 k k k t t t k t t k t t k k k t            Since

t

1t

k  

1 t

k, we have

 

2 2 1 3 1 k t t t t t e t k k k     

(18)

12

2 3 1 1 1 t t t t t k k     

2 2 3 1 1 t t t t t k k     

2 2 3 1 1 2 t t t t t k k     

2

2

2 1 3 1 4 1 t t t t t t k k k      

 

2 4 1 . k t t e t k  

 

2.6

Consider the space CB

0, of continuous function which is bounded on the half open

interval

0, It is clear that the space,

. CB

0,

defined previously. To produce our first result, let us consider  CB

0,

and set

,

sup

   

t w :t w , ,t w

0,

, 0.

            The convergence rate is obtained in terms of the first modulus of continuity   

,

, as defined in the following theorem.

Theorem 1. Consider Lk

 

,t be defined by

 

2.1 and CB

0, Then

.

   

2 , 3 , 1 , k 1. k Lt  t    tt k

 

2.7

Proof. Let  and 0   Tkt ,

 

a stands for the greatest integer a.

Obviously,

   

Tk  t   

,



1

, and

(19)

13

The inequality E  E2  ek

 

t 2 add to

 

2.6 lead to

   

 

2 , , 1 , k k Lt  t     e t

   

2

2 4 1 , , 1 k k t t Ltt               

   

,

,

1 2 1

k t t L t t k                

and

 

2.7 is obtained by setting   

1 t

t k.

   

2 1 , , 1 1 k t t L t t t t k k             Lk

f x,

  

 t   

,



1 2

Lk

   

,t  t 3  

,

   

2 , 3 , 1 . k Lt  t    tt k

The second modulus of continuity can also be exploited to obtain Theorem 1. (cf. [1]).

Let  supt 0,

 

t , where CB

0, with

,

  

2 2 2 B 0, . t y t y t C             

Let us define the second modulus of continuity by

2 2 : , sup , y y          0.

(20)

14 EgETkt , with k k ET  t tpt as k   . k Eg  t tpt

1

k Eg  t t ttt

1

k Eg  t tt

1

k Egt tt

1

. 1 k t t Eg t t t k        

 

2.8

An improved version of a result established by Bleimann, Butzer, and Hahn is given

below by dropping the condition kN t

 

24 1

 in Theorem t

2 of

 

1 . Let us consider the following trivial result. Consider hCB

0,

h  and hCB

0,

.

With gTkt we note that

   

0

g k h Th t

h t y dy uh t

y

duh t

y dy

dv 1 vy

   

0

0

g g k h Th t

h t y dygh t g

yh t y dy

   

2

0 2 g k y h Th tgh t gh t y

   

2 1 2 k h Th tgh t gg h t g .

(21)

15

Taking expectation and using

 

2.6 and

 

2.8 it is easy to see that

   

2 1 , 2 k L h th tEg h  Eg h

 

 

1

1

2 , 2 k k t t L h t h t h E t t h k        where ek

 

tE t

kt

2

   

 

1

1 , 2 k k t t L h t h t h e t h k       where

 

2 4 1 k t t e t k  

   

2 1 14 1 , . 2 k t t t t L h t h t h h k k        It follows that

   

2

2 1 , . k t t L h t h t h h k      

 

2.9

Using

 

2.9 the following stronger version of the theorem is obtained. Theorem 2. Consider CB

0,

, t

0,

. Then for k 1, 2, ...,

   

2

2

2 1 1 , 2 , , k t t t t L t t C k k                  

where C is a constant, with the saturation condition given by

   

 

1

0

(22)

16

The saturation properties depend on  and  , it is not an improvement of Theorem 2.

2.3 Limitation Property of

Lk

Consider the function CB

0, and define the Szasz operator by

 

 

0 , , ! n jt j n jt n S t e j n            

t 0,

2.10

with j being a positive and fixed integer. Sj

 

,t is a suitable limit function of Lk

is an interesting consequence. The limiting property established is proved via the

following lemma.

Lemma. Letn

jk t,

 

njk

  

t k n 1t k

jk , n0, 1, ..., jk, and

 

exp

  

!, n n jt jt jt n    n 0, 1, 2, ... Then

 

in

 

jt exp

n n

1

 

jk  n 1

 n

jk t,

 

2 exp , n jt jt n t   

 

ii 0

,

 

0 jk n n n jk tjt    

as k   ,

 

iii 0max n jkn

jk t,

n

 

jt  as 0 k   .

Proof. Since ey  1 y

0 y 1 ,

it follows that

,

 

1 n jk jk n n t t jk t k k              

,

 

1 n n jk jk n n t k t t jk t k k t k                      

,

 

n n jk jk n n t k t k t jk t k t k k                      

(23)

17

,

 

n n jk jk n n t k k jk t k t k t k t                      

,

 

n jk n jk n n t k t t jk t k t k t                 

,

 

n jk n jk n n t k t t jk t k t k t k t                 

,

 

1 1 n n jk jk n n t t t jk t k t k t k t                     

,

 

1 n n jk jk n n t k t t t jk t k t k t k t                        

 

, 1 n jk n jk n n n n k t t t jk t k k t k t      

,

 

! 1 ! ! jk n n n jk t t jk t jk n n k k t         Since

  

jk ! jkn

  

! jk n, we have

,

  

1

 

! ! n n jk jk n n n jk t t k t t jt jk t n k k t k t n              

,

1

 

, ! n jk n jt t jk t k t n         where

 

 

, ! n jt n jt jt e nn 0, 1, 2, ...

 

 

! n jt n jt jt e n 

,

 

1 . jk jt k n t jk t jt e k t        

(24)

18 n

jk t,

n

 

jt exp

 

jt exp

 

t jk

kt

n

 

jt exp

jtjkt

kt

n

 

jt exp

jt k

 t

jkt

 

kt

 

 

2 exp n jt jkt jt jkt k t     

 

2 , exp . n jk tn jt jt k t   

Since

1

exp



1

0

  1 ,

it follows that

,

 

1 n jk jk n n t t jk t n k              

 

! , ! ! jk n n n jk t k t jk t jk n n k k         

,

 

! ! ! jk n n n n n jk j t k jk t jk n n j k k t        

 

! , ! ! jk n n n n n jk j t k t t jk t n jk n j k k t          

  

 

  

! , ! ! n jk n n jt jk k t t jk t n jk n jk k t k t          

    

 



  

1 ... 1 ! , 1 ! ! n jk n n jt jk jk jk n jk n t jk t n jk n jk k t          

    

 

 

1 ... 1 , 1 ! n jk n n jt jk jk jk n t jk t n jk k t       

    

 

 

1

1

, 1 ! n jk n jt jk jk jk n t jk t n jk jk jk k t            

(25)

19

  

1 1 , 1 1 ! n n jk n i jt i t jk t njk k t          

  

1 , 1 1 . ! n n jk n jt n t jk t n jk k t              

Since n

 

jt exp

  

jt jt n n!, n being a positive integer, Thus,

 

 

 

exp ! n n jt jt jt n  .

 

 

1 , exp 1 1 n jk n n n t jk t jt jt jk k t                .

Since

1

exp



1

,for 0   1,

 

 

1

1 , exp exp 1 n n n n n jk t jt jt jk jk            

 

exp t jk 1 t k t k t          

 

 

1

1 , exp exp n n n n jk n jk t jt jt jk jk            

 

exp t jk k k t k t       

,

 

exp

 

exp

 

1

 

1 n n n n jk jk t jt jt jk jk n           

exp jkt k t k t k          

(26)

20

,

 

exp

 

exp

1

exp

 

1 n n n n jk t jt jt jt jk n            n

jk t,

n

 

jt exp

n n

1

 

jk  n 1 .

To prove

 

ii let un  n

jk t,

n

 

jt ,

n

n

 

jt

exp

jt2

kt

1 ,

and

 

1 exp

1

 

1

.

n n jt n n jk n

      

Since  n un nfrom

 

i , and un  nn, we have

0 0 0 . jk jk jk n n n n n n u       

2.11

It is obvious that

 

2 exp 1 n n jt jt k t    

 

2

0 0 exp 1 jk jk n n n n jt jt k t       

2

 

0 0 exp 1 jk jk n n n n jt k t jt       

2

 

0 0 exp 1 exp ! jk jk n n n n jt k t jk jt n       

2

  

0 0 exp 1 exp ! jk jk n n n n jt k t jk jt n       

2

  

0 0 exp 1 exp ! jk n n n n jt k t jk jt n        

, where

 

 

0 ! exp n n jt n jt   

2

 

0

exp 1 exp exp

jk n n jt k t jk jt      

(27)

21

2

0 exp 1 0 jk n n jt k t      

as k  .

2.12

 

1 exp

1

1 n n n n jt jk n           

 

0 0 1 1 exp 1 jk jk n n n n n n jt jk n                   

,

since exp

 

   1 min 1,

  

 0 ,

it follows that

 

0 0 1 1 1 min 1, 1 jk jk n n n n n n jt jk n                     

 

0 1 1 1 min 1, 1 jk n n n n jt jk n               

 

0 0 1 min 1, 1 jk jk n n n n n n jt jk n            

 

0 1 1 exp , 1 jk n n n n jt jk n                 

where

1

1 1 n n jk n     . Using, n n

 1

 

jk    n 1

0 njk 1 we have

  

1 0 2 1 0 1 jk jk n n n n n n jt jk n          

  

  

1 0 2 1 1 1 1 0 1 1 jk jk n n n n n jk n n n n jt jt jk n jk n                  

(28)

22

  

  

1 0 2 1 1 1 1 0 exp , 1 ! 1 n jk jk n n n n jk n n jt n n jt jk jk n n jk n                  

where

exp

   

! n jt P U n jt n   

  

1 0 2 1 1 , 1 jk jk k n n n n n jt P U jk jk n               

with U being the Poisson random variable with mean .jt One can easily check the following relation

 

 

2 0 1 0 1 1 jk n n jt P U jk jk jk          

, as k   .

2.13

 

ii results from

2.11 ,

2.12 , and

2.13 , and

 

ii implies

 

iii .

Theorem 3. Consider L and k Sj defined by

 

2.1 and

2.10

respectively for

0,

.

B C

  It follows that for each t 

0, and for any fixed integer ,

j

 

, , 1 jk j kt t L S t t k             , as k   .

2.14

Proof. From

 

2.1 and

2.10 we have

 

0 1 , 1 1 1 1 n jk jk jk jk n n kt t kn jk n t t L t k n jk n k k                                

 

 

0 1 , 1 1 1 1 n jk jk jk jk n n kt t kn jk n t t L t k jk n n jk n k k                                   

 

 

0 1 , 1 1 1 1 n jk jk jk jk n n jk n kt t kn t t L t k jk n jk k k                                

 

 

 

0 , 1 , 1 1 n jk jk jk jk n k n kt t kn t t L j t t k jk k k                            

 

Referanslar

Benzer Belgeler

Soon, in [8], Almali and Gadjiev proved convergence of exponentially nonlinear integrals in Lebesgue points of generated function, having many applications

Tezin esas amacı yaklaşımlar teorisinde yapılan çok çeşitli çalışmalar ve bu çalışmalarda verilen farklı Lineer Pozitif Operatörleri göz önüne alarak

exact order of approximation, quantitative Voronovskaja-type theorems, simultaneous approximation properties for complex q-Bernstein - Kantorovich polynomials ,

Many properties and results of these polynomials, such as Korovkin type ap- proximation and the rate of convergence of these operators in terms of Lipschitz class functional are

In this subsection we obtain the rate of convergence of the approximation, given in the previous subsection, by means of modulus of continuity of the function, elements of the

Bu çalışmada öncellikle Baskakov ve Kantorovich operatörleri hatırlatılacak, daha sonra

1921’de Mülkıye’den mezuni­ yetiyle başlayan düşünsel çalış­ malarıyla Ülken, felsefe, mantık ve çeşitli toplum bilimlerini kap­ sayan çok geniş bir alanda

Arsız zaylan popülasyonlarının bulunduğu habitatlar, habitatın büyüklüğü ve içerisinde zaylanla kaplı alan oranı, en yüksek bitkinin boyu, eni ve komunitedeki