• Sonuç bulunamadı

Electrospun polymeric nanofibrous composites containing TiO2 short nanofibers

N/A
N/A
Protected

Academic year: 2021

Share "Electrospun polymeric nanofibrous composites containing TiO2 short nanofibers"

Copied!
4
0
0

Yükleniyor.... (view fulltext now)

Tam metin

(1)

MaterialsChemistryandPhysics129 (2011) 701–704

ContentslistsavailableatScienceDirect

Materials

Chemistry

and

Physics

jo u r n al h om ep a ge : w w w . e l s e v i e r . c o m / l o c a t e / m a t c h e m p h y s

Materials

science

communication

Electrospun

polymeric

nanofibrous

composites

containing

TiO

2

short

nanofibers

Ali

E.

Deniz,

Asli

Celebioglu,

Fatma

Kayaci,

Tamer

Uyar

UNAM-InstituteofMaterialsScience&Nanotechnology,BilkentUniversity,Ankara,06800,Turkey

h

i

g

h

l

i

g

h

t

s

• PolymericnanofibrouscompositescontaininganataseTiO2shortnanofibers(TiO2-SNF)wereproducedviaelectrospinning. • PMMA,PAN,PETandPCelectrospunnanofiberscontainingTiO2-SNFwereobtained.

• ThenanofibrouscompositescontainingTiO2-SNFhasshownphotocatalyticactivity.

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received19February2011

Receivedinrevisedform13May2011 Accepted12June2011 Keywords: Compositematerials Nanostructures Polymers Electronmicroscopy

a

b

s

t

r

a

c

t

Inthisstudy,polymericnanofibrouscompositescontaininganataseTiO2shortnanofibers(TiO2-SNF) weresuccessfullyproducedviaelectrospinning.Thefabricationofthenanofibrouscompositestructure includestwosteps.First,anataseTiO2nanofiberswereobtainedbycalcinationofelectrospunPVP/TiO2 nanofibersandthencrushedintoshortnanofibersrangingfromfewmicronsinlength.Second,these TiO2-SNFweredispersedintopolymersolutionsandthenelectrospunintonanofibrouscomposites.We obtainednanofiberscontainingTiO2-SNFfromdifferentpolymertypesincludingPMMA,PAN,PETand PC.TheSEMandTEMimagingindicatedthatsomeoftheTiO2-SNFwerefullycoveredbythepolymeric matrixwhereassomeTiO2-SNFwerepartiallycoveredand/orstickonthesurfaceofthefibers.The photocatalyticactivityofnanofibrouscompositescontainingTiO2-SNFwasevaluatedbymonitoringthe photocatalyticdecompositionofamodeldye(rhodamine-6G)underUVirradiation.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Functional nanofibers can be easily produced from var-ious polymers, polymer blends, sol–gels, composites and metal oxides via electrospinning technique [1–8]. Electrospun nanofibers/nanowebshaveseveralremarkablecharacteristicssuch asaverylargesurfaceareatovolumeratioandnanoporous fea-turesalongwithphysical,chemicalandsurfacefunctionalization

[1–8].Inaddition,itisfairlyeasytoimprovethefunctionalityof theelectrospunnanofibersbyelectrospinningofpolymermatrix containing functional additives (e.g. nanoparticles) [2,3,9]. For instance,theincorporation ofmetaloxide nanoparticlessuchas TiO2 into electrospunpolymeric nanofibers were reported and

itwasshownthatthesefunctionalnanofibrouscompositeshave potentialstobeusedinfiltrationsinceTiO2 nanoparticlesshow

photocatalyticactivityand arevery effectivefor degradationof organicpollutantsand/orkillingbacteria[10–13].Yet,theleaching ofnanoparticlesfromthesepolymericcompositesandtheir

recov-∗ Correspondingauthor.Tel.:+903122903571;fax:+903122664365. E-mailaddress:tamer@unam.bilkent.edu.tr(T.Uyar).

eryisalwaysanenvironmentalissue[14,15].Recently,ithasalso beenreportedthatelectrospunTiO2 shortnanofibershavingfew

micrometersinlengthhaveshownbetterphotocatalyticactivity comparedtoTiO2nanoparticles[16].

In this study,we used TiO2 short nanofibers(TiO2-SNF)for

producing polymeric nanofibrous composite structures. These polymericnanofiberscontainingTiO2-SNFweresuccessfully

pro-duced via electrospinning with the goal to develop functional nanofiltrationmaterialssinceTiO2isknowntobeveryeffectivefor

degradationoforganicpollutantsduetoitsphotocatalytic activ-ity.WeelectrospunnanofiberscontainingTiO2-SNFfromdifferent

polymer types which are commonly used as filtration materi-alssuchaspoly(methylmethacrylate)(PMMA),polyacrylonitrile (PAN),polyethyleneterephthalate(PET)andpolycarbonate(PC).As apreliminarystudy,thephotocatalyticactivityofPETnanofibers containingTiO2-SNFwasinvestigatedforphotocatalytic

decom-positionofrhodamine-6GunderUVirradiation.Tothebestofour knowledge,thisistheveryfirstreportshowingthatmetaloxide shortnanofiberscan beincorporatedintopolymeric nanofibers viaelectrospinning.Suchnanofibrouscompositestructurescanbe obtainedfromdifferentpolymertypesand willbeapplicablein variousareasdependingonthepolymertypeandthefunctionof metaloxides.

0254-0584/$–seefrontmatter © 2011 Elsevier B.V. All rights reserved. doi:10.1016/j.matchemphys.2011.06.018

(2)

702 A.E.Denizetal./MaterialsChemistryandPhysics129 (2011) 701–704

Fig.1.(a)RepresentativeSEMimage,(b)and(c)EDXelementalmapsand(d)EDXspectrumofelectrospunTiO2nanofibers,(e)SEMimageofTiO2-SNFobtainedafter

crushingtheelectrospunTiO2nanofibers.

2. Experimentaldetails

2.1. Materials

Titanium(IV)-isopropoxide(97%,Aldrich),glacialaceticacid(100%,Merck), ethanol(≥99.8%, Sigma–Aldrich),dimethylformamide(DMF)(Riedel, Pestenal), tetrahydrofuran(THF)(≥99.5%,Sigma),dichloromethane(DCM)(≥99%,Sigma), trifluoroaceticacid(TFA)(99%,Sigma–Aldrich),polyvinylpyrrolidone(PVP,Mw ∼1,300,000,Aldrich),poly(methylmethacrylate)(PMMA)(Mw∼350,000,Aldrich), polyacrylonitrile(PAN)(donatedbyAKSACo.,Turkey),polyethyleneterephthalate (PET)(donatedbyKorteksCo.,Turkey),polycarbonate(PC)(Mw∼64,000,Aldrich) wereusedas-received.

2.2. PreparationofTiO2nanofibers

Titanium(IV)-isopropoxide(2.88ml)precursorwasmixedwithglacialacetic acid(2ml)andethanol(2ml)solventsystem.Afterstirringfor10min,PVP(0.6g) dissolvedinethanol(3ml)wasaddedtothissolution.Theresultingmixturewas constantlystirredfor12h,andtheyellowishsol–gelwasobtained.ThePVP/TiO2

solprecursorwasplacedintoa1mlsyringehavingmetallicneedletip(inner diameter=0.4mm)forelectrospinning.Thesolutionwasfedbyasyringepump hor-izontally(Model:SP101IZ,WPI).Electricfieldwascomprisedbythehighvoltage powersupply(MatsusadaPrecision,AUSeries,Japan).Theelectrospinning param-eterswereasfollows:appliedvoltage=15kV,feedrate=0.5mlh−1,tip-to-collector

distance=10cm.Electrospunnanofibersweredepositedonagroundedstationary cylindricalmetalcollectorcoveredbyapieceofaluminumfoil.Theelectrospinning wascarriedoutinenclosedplexiglassboxandat23◦Cat26%relativehumidity.The electrospunnanofibersweredriedovernightunderthehoodandthencalcinatedat 500◦Cfor3hinanoveninordertoobtainpureTiO2nanofibers.

2.3. PreparationofpolymericnanofiberscontainingTiO2shortnanofibers

TiO2shortnanofibers(TiO2-SNF)rangingfrom∼1to∼10␮minlengthwere

obtainedbycrushingtheelectrospunTiO2nanofibersinamortar.The

concentra-tionofthepolymersolutionsandtheelectrospinningparameterswereoptimized inordertogetbead-freeuniformfibers.Thepolymersolutionswerepreparedas follows:PMMAandPANweredissolvedinDMFusing12.5%(w/v)and20%(w/v) polymerconcentration,respectively.Inaddition,20%(w/v)PETwasdissolvedin TFA:DCM(1:1,v/v),while25%(w/v)PCwasdissolvedinTHF:DMF(3:2,v/v) sol-ventsystem.Then,6%TiO2-SNF(w/w,withrespecttopolymer)inPMMAand

2%TiO2-SNF(w/w,withrespecttopolymer)inPAN,PETandPCsolutionswere

dispersedbystirringfor1h.The%loadingofTiO2-SNFwasaffectingthe

electro-spinning,therefore,TiO2-SNFloadingwaschosenforeachpolymersolutionthat

didnotaffecttheelectrospinningofbead-freenanofibers.Subsequently,PAN,PET, andPCsolutionswereelectrospunwiththefollowingparameters:applied volt-age=15kV,tip-to-collectordistance=10cmandfeedrate=1mlh−1.ForPMMA

Fig.2. XRDpatternofTiO2-SNF.

solutiontheparameterswereasfollows:appliedvoltage=10kV,tip-to-collector distance=15cmandfeedrate=1mlh−1.

2.4. PhotocatalyticactivityofpolymericnanofiberscontainingTiO2short

nanofibers

Thephotocatalyticactivitywasanalyzedbyphotodegradationof rhodamine-6G(Rh-6G)(2×10−5M)inaqueousmedium.ElectrospunPETnanowebcontaining

TiO2-SNF(PET-NF/TiO2-SNF)(weightofnanoweb:2mg,dimensionofthenanoweb:

1.0cm×1.0cm)wasputintoquartzcuvette(width:1cm,length:1cm,andheight: 5cm,Hellma)filledwithrhodamine-6Gsolution.Thecuvettewasplacedwitha distanceof5cmfromtheUVsource(8W,UVLMS-38EL)andkeptunderUV irra-diationat254nmwavelength.Atknowntimeintervals,thedyeconcentrationwas measuredbyusingUV-visspectrophotometer.DuringtheUV–vismeasurement,the PET-NF/TiO2-SNFnanowebwasfloatingonthetopofthedyesolutionandtherefore

thenanowebdidnotinterferewiththeUV–vismeasurement. 2.5. Measurementandcharacterization

Scanningelectron microscope (SEM) (FEI – Quanta 200 FEG) and trans-missionelectron microscope (TEM)(FEI – Tecnai G2F30) were usedfor the

(3)

A.E.Denizetal./MaterialsChemistryandPhysics129 (2011) 701–704 703

Fig.3.SEMimagesofnanofibrouscompositeswith(1)lowmagnificationand(2)highmagnification:(a1)and(a2)PMMA-NF/TiO2-SNF,(b1)and(b2)PAN-NF/TiO2-SNF,

(c1)and(c2)PET-NF/TiO2-SNFand(d1)and(d2)PC-NF/TiO2-SNF.

Fig.4. TEMimagesofthePMMA-NF/TiO2-SNFfromtwodifferentfibersshowingthat(a)theTiO2-SNFwasembeddedinthePMMAfibermatrixand(b)thesmallTiO2-SNF

wasembeddedandthelargeTiO2-SNFwasstickingoutfromthePMMAfibermatrix.TiO2-SNFwasvisualizedasadarkobjectintheTEMimage.

morphologicalinvestigationofthenanofibers.Thefiberdiameterrangeandthe averagefiberdiameterweredeterminedfromtheSEMimagesandaround100 fiberswereanalyzed.EnergydispersiveX-ray(EDX)wasperformedforthe ele-mentalanalysisoftheTiO2nanofibers.TheX-raydiffraction(XRD)patternforTiO2

nanofiberswereobtainedbyusingPANanalyticalX’PertPowderdiffractometerwith CuK␣radiationinarange2Â=10–75◦.UV–vis–NIRspectrophotometer(VarianCary

5000)wasusedattherange400–600nmwavelengthtomonitorthephotocatalytic degradationofrhodamine-6Gdyesolution.

3. Resultsanddiscussion

Pure TiO2 nanofibers were produced via electrospinning of

PVP/TiO2 sol precursor followedby removal oforganic

compo-nent(PVP)bycalcinationat500◦Cfor3h.Duringthecalcination process of PVP/TiO2, thematerial maintained its fibrous

struc-tures and brittle TiO2 nanofibers were obtained. The scanning

Fig.5.TheUV–visspectrumoftheRh-6GsolutioncontainingPET-NF/TiO2-SNF(a)asafunctionoftheUVirradiationtime,(b)therate(C/C0)ofRh-6Gdegradation.The

(4)

704 A.E.Denizetal./MaterialsChemistryandPhysics129 (2011) 701–704

electronmicroscopy(SEM)andtheenergydispersiveX-ray(EDX) spectroscopyanalysesofTiO2nanofiberswereperformed(Fig.1).

Bead-free TiO2 nanofibers having diameters in the range of

40–500nm with average fiber diameter of 200±120nm were obtained. The elemental mapping of TiO2 nanofibers by EDX

showed that titanium and oxygen are the main elements of thenanofibers(Fig.1(b)–(d)).Electrospun TiO2 nanofiberswere

crushed into short nanofibers (TiO2-SNF) ranging from ∼1 to

∼10␮minlength(Fig.1(e)).

ThecrystallinestructureofTiO2-SNFwasidentifiedbyX-ray

diffraction(XRD).Fig.2hasshowntheXRDofTiO2-SNFwithseries

ofdiffractionpeakscorrespondingtoanatasephasewhichisknown foritsphotocatalyticactivity[17–19].Thesalientpeakat2Â=25.4◦ correspondstothe(101)planeoftheanataseTiO2structureand

theotherpeaksat2Â=38.1◦,48.4◦,54.3◦,55.3◦,63.0◦,69.1◦,70.3◦ correspondtothediffractionof(004),(200),(105),(211),(204), (116),and(220)planes,respectively[20].XRDpatternoftheTiO2

-SNFhasnodiffractionpeakat2Â=27.5◦whichischaracteristicfor therutile phasesignifying thatcalcinationprocessyieldedTiO2

nanofibershavingpureanatasestructure.

Thefabricationofelectrospunpolymericnanofibers contain-ing TiO2-SNF includes two steps. In the first step, PVP/TiO2

electrospunnanofiberswerecalcinated in order toobtainpure anataseTiO2 nanofibersand thentheywerecrushedintoshort

nanofibers ranging from ∼1 to ∼10␮m in length (Fig. 1(e)). These TiO2-SNF were blended with polymer solutionand then

electrospunintonanofibrouscompositestructures.Inthisstudy, weelectrospunnanofibersfromseveraldifferentpolymertypes including poly(methyl methacrylate) (PMMA), polyacrylonitrile (PAN),polyethyleneterephthalate(PET) andpolycarbonate(PC) containingTiO2-SNF.Theseelectrospunnanofibrouscomposites

wereabbreviatedas:PMMA-NF/TiO2-SNF,PAN-NF/TiO2-SNF,

PET-NF/TiO2-SNFandPC-NF/TiO2-SNF.TherepresentativeSEMimages

ofthesenanofibrouscompositesaredepictedinFig.3.Weobserved thattheincorporationofTiO2-SNFdidnotaffectthe

electrospin-ningofthesepolymersandbead-freenanofiberswereobtained inallcases.Wefurtheranalyzedthesenanofibrouscompositesby transmissionelectronmicroscopy(TEM).TherepresentativeTEM imagesofthePMMA-NF/TiO2-SNFcompositenanofibersaregiven

inFig.4.SEMandTEManalysesrevealedthatsomeoftheTiO2-SNF

werefullycoveredbythepolymericmatrixwhereassomeTiO2-SNF

werepresentonthesurfaceofthepolymericmatrixand/or stick-ingoutfromthepolymericmatrix.Asmentionedabove,TiO2-SNF

hasanatasestructurewhichisknownforitsphotocatalytic activ-ity.Asapreliminarystudy,wealsoinvestigatedthephotocatalytic activityofPET-NF/TiO2-SNF.

Thephotocatalyticdegradationofrhodamine-6G(Rh-6G)dye solutionwasusedasamodelphotoreaction,anditsdegradation wasfollowedbytheUV–vismeasurementofthesolution contain-ingPET-NF/TiO2-SNF.ThechangeintheabsorbanceontheUV–vis

spectrumoftheRh-6GsolutioncontainingPET-NF/TiO2-SNFasa

functionoftheUVirradiationtimeisshowninFig.5.Thechangeof theabsorptionpeakpointofRh-6Gat526nmwasusedfor calcu-latingtherate(C/C0)ofRh-6GdegradationwhereC0andCindicate

theinitialconcentrationofRh-6GbeforeUVirradiationandafterUV irradiationattimet,respectively.AsthephotodegradationofRh-6G

occurredwithrespecttoUVirradiationtime,theabsorbanceofthe Rh-6GsolutionintheUV–visspectrumdecreasedgradually,and theredcolorofthesolutiondisappearedtotallyafter24hofUV irra-diationindicatingthatalmost100%oftheRh-6Gwasdecomposed. ThisresultconfirmedthephotocatalyticdegradationofRh-6Gby PET-NF/TiO2-SNFnanofibrouscomposite.

4. Conclusion

Here,wesummarizedtheproductionofpolymericnanofibrous compositescontaininganataseTiO2 shortnanofibers(TiO2-SNF)

viaelectrospinningtechnique.Wehaveshownthat nanofibrous compositescontainingTiO2-SNFfromdifferentpolymerssuchas

PMMA,PAN,PETandPCcaneasilybeobtainedvia electrospin-ning.TheSEMandTEMstudiesrevealedthatsomeTiO2-SNFwere

fullyinside thepolymericmatrix whereassomeTiO2-SNFwere

partiallycoveredandstickonthefibersurface.Thephotocatalytic activityofthesenanofibrouscompositescontainingTiO2-SNFwas

evaluatedbythephotocatalyticdecompositionofrhodamine-6G underUVirradiation.Ourpreliminaryresultsindicatedthatthese nanofibrouscompositeshavephotocatalyticactivityandcouldbe usefulfortreatmentoforganicpollutants.Moreover,such nanofi-brouscompositestructurescanalsobeapplicableinotherareas dependingonthepolymertypeandthefunctionofmetaloxides.

Acknowledgements

StatePlanningOrganization(DPT)ofTurkeyisacknowledged forthesupportofUNAM-InstituteofMaterialsScienceand Nano-technology. Dr. Uyar acknowledges Marie Curie International Reintegration Grant (IRG) for funding NANOWEB (PIRG06-GA-2009-256428) project. A. Celebioglu and F. Kayaci thank to TUBITAK-BIDEBfornationalgraduatestudyscholarships.

References

[1]A.Greiner,J.H.Wendorff,Angew.Chem.Int.Ed.46(2007)5670. [2]W.E.Teo,S.Ramakrishna,Comp.Sci.Technol.69(2009)1804. [3]X.Lu,C.Wang,Y.Wei,Small5(2009)2349.

[4]S.Agarwal,J.H.Wendorff,A.Greiner,Macromol.RapidCommun.31(2010) 1317.

[5]V.Thavasi,G.Singh,S.Ramakrishna,EnergyEnviron.Sci.1(2008)205. [6]S.Agarwal,A.Greiner,J.H.Wendorff,Adv.Funct.Mater.19(2009)2863. [7]K.Yoon,B.S.Hsiao,B.Chu,J.Mater.Chem.18(2008)5326.

[8]J.Y.Chen,H.C.Chen,J.N.Lin,C.Kuo,Mater.Chem.Phys.107(2008)480. [9]J.Bai,Q.Yang,M.Li,S.Wang,C.Zhang,Y.Li,Mater.Chem.Phys.111(2008)

205.

[10]M.Roso,S.Sundarrajan,D.Pliszka,S.Ramakrishna,M.Modesti, Nanotechnol-ogy19(2008)285707.

[11] H.R.Pant,M.P.Bajgai,K.T.Nam,Y.A.Seo,D.R.Pandeya,S.T.Hong,H.Y.Kim,J. Hazard.Mater.185(2011)124.

[12]P.Zhao,J.Fan,J.Membr.Sci.355(2010)91.

[13]T.He,Z.Zhou,W.Xu,F.Ren,H.Ma,J.Wang,Polymer50(2009)3031. [14]D.R.Reinhart,N.D.Berge,S.Santra,S.C.Bolyard,WasteManage.30(2010)

2020.

[15]R.Kaegi,B.Sinnet,S.Zuleeg,H.Hagendorfer,E.Mueller,R.Vonbank,M.Boller, M.Burkhardt,Environ.Pollut.158(2009)2900–2905.

[16]S.K.Choi,S.Kim,S.K.Lim,H.Park,J.Phys.Chem.C114(2010)16475. [17]X.Chen,S.S.Mao,Chem.Rev.107(2007)2891.

[18]A.L.Linsebigler,G.Lu,J.T.Yates,Chem.Rev.95(1995)735. [19]R.Liu,H.Ye,X.Xiong,H.Liu,Mater.Chem.Phys.121(2010)432. [20]P.K.Khanna,N.Singh,S.Charan,Mater.Lett.61(2007)4725.

Şekil

Fig. 1. (a) Representative SEM image, (b) and (c) EDX elemental maps and (d) EDX spectrum of electrospun TiO 2 nanofibers, (e) SEM image of TiO 2 -SNF obtained after crushing the electrospun TiO 2 nanofibers.
Fig. 5. The UV–vis spectrum of the Rh-6G solution containing PET-NF/TiO 2 -SNF (a) as a function of the UV irradiation time, (b) the rate (C/C 0 ) of Rh-6G degradation

Referanslar

Benzer Belgeler

On behalf of Scientific and Organizing Committee we have the pleasure to inform you your abstracts entitled “VOLATILE CONSTITUENTS OF THREE PINUS SPECIES S

Apart from meeting the needs of learners with different learning style preferences and having the potential of improving different skills, another strength of the software is that

As can be seen the figure, the device has been shown that the measure capacitance decreases with increasing frequency and capacitance decreases with decreasing voltage at

In this study, our population (F 1001) samples should be classified as a separate and new species called Veronica edremitense.. We believe that this work will

BiOCl nanosheet like structures exhibited superior photocatalytic activity (PCA) for the degradation of ARS dye and their half-life was estimated from the kinetic plots of PCA..

(“Osmanlı-Türk Hamamının Queered Bir Mekân Olarak Eleştirel Bir Okuması”). Yayımlanmamış Doktora Tezi. Orta Doğu Teknik Üniversitesi, 2014. “Literature.” Encyclopedia

If compositional mentality were to require that mental properties depend on relations between parts of a system, then compositional mentality could not possibly be a

Since the discovery of TP53 as the first mutated gene in HCC over 20 years ago [10] and until very recently, only four genes were known to display frequent alterations in