• Sonuç bulunamadı

An experimental and first-principles study of the effect of B / N doping in TiO2 thin films for visible light photo-catalysis

N/A
N/A
Protected

Academic year: 2021

Share "An experimental and first-principles study of the effect of B / N doping in TiO2 thin films for visible light photo-catalysis"

Copied!
10
0
0

Yükleniyor.... (view fulltext now)

Tam metin

(1)

ContentslistsavailableatSciVerseScienceDirect

Journal

of

Photochemistry

and

Photobiology

A:

Chemistry

j o u r n al hom ep age : w w w. e l s e v i e r . c o m / l o c a t e / j p h o t o c h e m

An

experimental

and

first-principles

study

of

the

effect

of

B/N

doping

in

TiO

2

thin

films

for

visible

light

photo-catalysis

Md.

Nizam

Uddin

a,b,∗

,

Sayed

Ul

Alam

Shibly

a

,

Rasim

Ovali

c

,

Saiful

Islam

a

,

Md.

Motiur

Rahaman

Mazumder

a

,

Md.

Saidul

Islam

a

,

M.

Jasim

Uddin

d,e

,

Oguz

Gulseren

c

,

Erman

Bengu

b

aDepartmentofChemistry,ShahjalalUniversityofScienceandTechnology,Sylhet-3114,Bangladesh bDepartmentofChemistry,BilkentUniversity,06800Ankara,Turkey

cDepartmentofPhysics,BilkentUniversity,06800Ankara,Turkey

dHigh-PerformanceMaterialsInstitute,FloridaStateUniversity,Tallahassee,FL32310,USA eDepartmentofChemicalEngineeringandPolymerScience,Sylhet-3114,Bangladesh

a

r

t

i

c

l

e

i

n

f

o

Articlehistory: Received30July2012 Receivedinrevisedform 15December2012 Accepted30December2012 Available online 19 January 2013 Keywords: TiO2 Photo-catalyst Thinfilm Doping Dipcoating

a

b

s

t

r

a

c

t

ThinfilmsofTiO2andboron–nitrogen(B/N)co-dopedTiO2onglasssubstrateshavebeenpreparedby

asimplesol–geldipcoatingroute.Titanium(IV)isopropoxide,boricacidandureahavebeenusedas titanium,boronandnitrogensources,respectively.ThefilmswerecharacterizedbyX-raydiffraction, X-rayphoto-electronspectroscopy,scanningelectronmicroscopy,RamanspectroscopyandUV–vis spec-troscopy.TheTiO2thinfilmswithco-dopingofdifferentB/Natomicratios(0.27–20.89)showedbetter

photo-catalyticdegradationabilityofmethylenebluecomparedtothatofbare-TiO2undervisiblelight.

TheTiO2filmdopedwiththehighestatomicconcentrationofNshowedrepeatedlythebest

photo-catalyticperformance.Thehighactivityofco-dopedTiO2thinfilmstowardorganicdegradationcanbe

relatedtothestrongerabsorptionobservedintheUV–visregion,redshiftinadsorptionedgesand sur-faceacidityinducedbyB/Ndoping.Furthermore,severalatomicmodelsforB/Ndopinghavebeenused toinvestigatetheeffectofdopingonelectronicstructureanddensityofstatesofTiO2throughab-initio

densityfunctionaltheorycalculations.Thecomputationalstudysuggestedasignificantnarrowingofthe bandgapduetotheformationofmidgapstatesandtheshiftofFermi-levelfortheinterstitialNmodel supportingtheexperimentalresults.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Theutilizationofsolarirradiationtosupplyenergyortoinitiate chemicalreactionsisalreadyawellestablishedidea[1].Anatase phaseoftitaniumdioxide(TiO2),anon-toxicandbiocompatible wide-bandgap semiconductor, when irradiatedwitha suitable wavelengthlightisknowntofacilitatechemicalprocessesonits surfaceincludingdegradationreactions.Inaddition,TiO2isoneof themostimportantandwidelyinvestigatedphoto-catalyst materi-als[2].Itcanbeusedindecompositionofvariousenvironmentally hazardouscompounds(organic,inorganicandbiologicalmaterials) inbothgaseousandliquidphases[3].

ItiswellknownthatTiO2hasthreepolymorphs:brookite,rutile andanatase.Mixed-phasephoto-catalystswithrutileandanatase,

∗ Correspondingauthorat:DepartmentofChemistry,ShahjalalUniversityof Sci-enceandTechnology,Sylhet3114,Bangladesh.Tel.:+8801926372680;

fax:+88082171525.

E-mailaddresses:nizam3472@yahoo.com,uddinnizam@hotmail.com (Md.N.Uddin).

e.g.P25Degussa[4],phaseshavebeenreportedtoexhibitenhanced photo-activityrelativetosingle-phaseanatase.However, synthe-sisofrutile–anatasephasemixturerequiresahightemperature treatment; heatinganatase upto 600–700◦C is needed for the transformationofanatasetorutile[5].Furthermore,therearestill problemsintheuseofTiO2forpracticalandwide-spread photo-catalyticapplications:

(1)Recycling of nano-particulate TiO2 requires costly separa-tion/filteringprocesses.

(2)TiO2photo-catalysthasawidebandgap(3.2eV,foranatase), and can only be activated by UV radiation (<387nm) which constitutes only a small fraction (3–5%) of the solar spectrum. Thus, the use of visible light (400–750nm, ∼45% of thesolar spectrum) byanatase shouldbe enabled [6].

(3)TiO2 has a relatively low rate of electron transfer to oxy-genandahighrateofrecombinationwhichresultsinalow quantum yield rateand also a limited photo-oxidation rate [7].

1010-6030/$–seefrontmatter © 2013 Elsevier B.V. All rights reserved. http://dx.doi.org/10.1016/j.jphotochem.2012.12.024

(2)

remediationoftheissueslistedabove.Someoftheeffortsarelisted asaccordingly:

(1)Nano-crystallineTiO2thinfilmshaveattractedagreatdealof attention[8,9]owingtotheirflexibilityintreatingwastes,e.g. noseparationrequiredandreuseofphoto-catalyticproducts. (2)AnyredshiftintheopticalresponseofTiO2fromtheUVband

towardthevisiblespectrumwillhaveaprofoundeffectonthe photo-catalytic efficiency[10,11].Withthis view,doping of pureTiO2hasbeenundertakenbyanumberofresearchgroups [12–30]in thelast decade.Modificationby noble-transition metalshasbeenhistoricallyregardedasthefirststrategyandby nonmetalsasthesecondstrategy[12].However,these metal-doped TiO2 materials suffered from thermal instability and low-quantumefficiencybecauseofincreasedcarriertrapping afterdoping[13,14].

Incontrastaniondopinghasshowngreatpotentialin introduc-ingbathochromismandintensiveeffortshavebeenundertakento synthesizeanion-dopedtitaniatowardvisible-light-active photo-catalysts[15–23],usually byintroducing localizedstates inthe bandgap.Fittipaldietal.hascriticallydiscussedthelimitations andfuturechallenges intheuseofelectronparamagnetic reso-nancetechniquein theinvestigationofaniondopedTiO2 based photocatalyst[31].Recentemphasishasbeenplacedonco-doped systems,thatis,thoseinvolvingcombinationsofcationsandanions [24]ortwoanionstogetherwithintheoxidelattice,inwhicha dra-maticenhancementofphoto-catalyticbehaviorhasbeenreported [25–28].

Thus,manyresearchersstartedtoinvestigateanionicnonmetal dopantssuchasC[32–35],N[34,36–43],S[44,45],andB[46,47]for extendingthephoto-catalyticactivityintothevisible-lightregion because,therelatedimpuritystatesforsuchdopantsappearnear thevalencebandedgebutdonotactaschargecarriers[34]. Gom-bacetal.havestudiedBandNco-dopedpowdered-TiO2,where asignificantimprovementinactivityarisesmainlyfromthered shift in the absorption edge, and also B is reported to inhibit growththerebyresultinginhighsurfaceareapowders[48]. Espe-cially,surface constructionof titaniaduring N-dopinghasbeen demonstratedbothexperimentallyandtheoretically[37,49]. How-everN-dopingoftitaniabythermaltreatmentunderanammonia atmoshphereusuallyleadstoverylimitedvisiblelightactivitybut greatlyimpairstheUVactivity[11].Divergentresultshavebeen reportedforless-studiedsysteminvolvingB-dopedTiO2[17,46,47]. Itisthereforehighlyimportanttodesignandconstructeffective photocatalystsurfacestructureswithsomesortsofco-dopingwith properratioofdifferentanionsaimingsynergyeffectsthatenhance theseparationandtransferofthecarrierstodevelopefficient vis-iblelightphotocatalysts.However,there isstillgreat debateon thelocationof thedopants,thesynergyeffects on photoactivi-tiesandtheimportanceoftherelativeratiosonphotoactivities [17,50].

In this work, we focused on thesynthesis of B/N co-doped anatasethinfilmsonglasssubstratesbyasimplesol–geldip coat-ingroute.Itwasouraimtoexplorepossiblesynergisticadvantages arisingfromthesimultaneouspresenceofBandNasdopantsin theTiO2structure.Asmentionedearliertherearealreadyreports onthephoto-catalyticbehaviorofboronandnitrogendopedTiO2 nano-powders[51–54]andmesoporousforms[50].Tothebestof ourknowledge,thereisnoreportonthephoto-catalyticactivity ofboronandnitrogendopedanatasethin films.Detailed struc-tural,compositionalandopticalcharacterizationoftheco-doped titaniathinfilmshasbeendone.Then,thesefilmswereemployed asphoto-catalystsundervisiblelightirradiationinthe degrada-tionofaqueousmethyleneblue(MB),adyeofteninvestigatedas

tivestudyofthecatalyticefficiencywasevaluatedasafunctionof thedopantnatureandatomicratioofthedopant.

A varietyof internal charge transfersmay takeplace inthe dopedsystems[57].Co-dopingmayalsobebeneficialtoreducethe numberofintrinsicdefectswhicharesupposedtobe detrimen-talinphotocatalyticprocessessincetheyareconsideredtofavor electron–holerecombination[57].Inordertoexplainthe improve-mentinthephoto-catalyticactivityobservedfortheco-dopedfilms weperformedfirst-principlesplane-wavecalculations[58]based onthedensityfunctionaltheory(DFT)[59,60]onvariousatomic modelsdepictingB/Ndopinginanatasestructure.Theresultsof thesetheoreticalworkswereusedtobetterexplainthechanges inducedinthebondingbehaviorandthebandgapofanataseby doping.

2. Experimental 2.1. Materials

Titanium(IV)isopropoxide(TIP)(≥97.0%,SigmaAldrich)and triethylamine(TA)(≥99%,SigmaAldrich)wereusedasTisource andstabilizer,respectively.Microscopicsodalimeslideglasswas usedassubstrate.MBwaspurchasedfromMerck.Solutionsof1M HCland1MNaOHwereusedtoadjustthepHofthesolution.All reagentswereanalyticalgradeandusedwithoutfurther purifica-tion.

2.2. PreparationofTiO2film

TIP (1.5ml) was added to anhydrous (Anh.) ethanol (10ml) under vigorous stirring conditions and then TA (0.35ml) was addedas a stabilizerof thesolutionand stirredat 200rpm for 2–3min under N2 environment (solution-A). A secondsolution wasprepared separatelyby mixing hydrochloricacid(0.92ml), water(0.15ml)andAnh.ethanol(10ml)usingamagneticstirrer at200rpm(solution-B).Thetwosolutionswerethenmixeddrop wiseandstirredvigorouslyfor60minunderN2environment.The formedTiO2solwastransparent,quitestableandhighlysensitive totheamountofTAandwater.Thenthesolwasagedfor24hand servedforfilmpreparation.Thetransparentsolwasstableforthree weeks.

TiO2 thinfilmswerepreparedbyadip-coatingmethod.Prior tothecoating process,soda-lime–silicaglasssubstrates (micro-scopeslides)withdimensionof 10mm×60mm×1.5mmwere grinded by a commercial bench grinder (model: ST-150), then cleanedinpotassiumdichromateanddichloromethanesolution. Finally those abrasive substrateswere rinsed withalcohol and deionizedwaterandthendriedat100◦Cinamicrooven.TheTiO2 gelfilmwasobtainedbydippingthesubstrateintheprecursor solutionbathandpulledupwardswithaspeedabout4cm/min. Thesubstratescoatedwithgelwerepretreatedinroom temper-atureandthenannealedfor20minusingamicroovenat200◦C and finally thefilm wasvapor treated in the vapor of boiling waterfor30storemovethelooselybondedparticles.The coat-ingprocesswasrepeatedfivetimesforthickfilmpreparationand finallyannealedat500◦Cfor2husingamufflefurnace(JSMF-30T, Korea).

B/NdopedTiO2 wassynthesizedbyasimilarmethodwhere appropriateamountsofboricacid(H3BO3)(solution-C)andurea (solution-D)weredissolvedseparatelyinAnh.ethanol(5ml)and rapidly added to the mixture of solution-A and solution-B. A schematicflow chartof thepreparationof dopedTiO2 filmsby sol–geldipcoatingisshowninFig.1.

(3)

Fig.1.SchematicflowchartofthepreparationofdopedTiO2thinfilmonglasssubstratebysol–geldip-coatingprocess.

2.3. Filmcharacterization

Thesurfacemorphologyand thethicknessofthefilmswere investigated by scanning electron microscopy (Carl-Zeiss EVO 40 usingLaB6 filament).TheRamanspectrafromtheannealed sampleswererecordedwithaHoriva(Jobin–YvonMicroRaman) spectrometer.XRDpatternswererecordedbyRigaku(MiniFlesx) usingCuK␣radiation(=1.5406 ˚A).TheScherrer equationwas appliedtotheanatase(101)diffractionpeaktocalculatethe aver-agecrystallinesizes.XPSinaSPECSPHOIBOS100hemispherical electrostaticenergyanalyzerwasusedforthecheckingofatomic percentage of the dopant and others species of thefilms. The absorptionspectraofthebandwidthofthedopedandbare (un-doped)-TiO2filmsrangingfrom300to800nmwereinvestigated byUV–visspectroscopy(ThermoScientific:Evolution160). 2.4. Photo-catalyticstudies

Photo-chemicaldegradationwascarriedout inanopen visi-blelightchamberasshowninFig.2.Anouterwaterpumpwas usedtocirculateconstanttemperaturewaterthroughthesystem continuouslytokeepthetemperatureconstantduringthe degra-dationstudy.Thatchamberconsistedoftwomagneticstirrers,two coolingfansanda200Wtungstenlamp.Degradationwascarried outundervisiblelight.50ml1×10−5MMBsolutionwastaken andtwocatalystfilmswereusedfordegradationstudy.The sur-faceareaofeachfilmwas6cm2.Changeintheconcentrationof MBsolutionduringphoto-catalyticdegradationatdifferenttime intervalswasmonitoredbyUV–visspectroscopy(Simadju1800). Theabsorptionspectrawererecordedandrateofdecolorizationof

MBwasobservedintermsofchangeintheintensityatmaxofthe dye.Thedecolorizationefficiency(%)hasbeencalculatedas: effi-ciency(%)=((A0−At)/A0)×100,whereA0isthelightabsorbanceof MBbeforethetreatmentandAtisthatofaftertreatmentattimet. Beforetakingthesamplesundervisiblelightirradiation,the solu-tionofMBwastreatedwithcoatedfilmsfor30mininthedarkto getadsorptionanddesorptionequilibrium.

2.5. Computationaldetails

Wehaveperformedthefirstprinciplesplane-wavecalculations [58] basedonDFT [59,60]using theprojector-augmented-wave (PAW)potentials[61,62]implementedinViennaab-initio simu-lationpackage(VASP)program[61–65].Theexchange-correlation potential was expressed in terms of the generalized gradient approximation(GGA)(Perdew–Wang91type)[66].Aplane-wave cut-offenergyof500eVwasusedinallcalculationstoachievethe desiredaccuracy.Thevariable-cellstructuraloptimizationwas per-formedfordopedmodelsinsuchawaythattheexternalpressure waslessthan1.0Kbarandmaximumforcemagnituderemained oneachatomwassetatmostto0.05eV/Å.Weused2×2×2cell forwhichthepureanatasecellcontains48ionsintotal.7× 7×7 Monkhorst–Pack(MP)[67]meshwasusedfork-pointsamplingin theBrillouinzone.ThepartialoccupancyaroundtheFermilevel wastreatedbyGaussiansmearingwithasmearingparameterof 0.05eV.Spinpolarizationwasincludedandthetotalenergywas minimizedupto10−5eVaccuracyforallcalculations.Duringthe optimizations no symmetry constraintswere imposed in order toavoidentrapmentinlocalminimumconfigurationsfordoped models.

(4)

Fig.2. Experimentalsetupforphoto-catalyticreactions.

3. Resultsanddiscussion 3.1. Morphologyandstructure

Inordertoinvestigatethemorphologyoftheobtained sam-ples,acomparisonbetweentheSEMimagesofthe500◦Cfor2h annealedsamplesweremade;bare-TiO2 anddifferentco-doped TiO2 filmsisillustratedinFig.3(a)–(d).Topandbottomimages ofthosefiguresshowedlowandhighmagnificationoftheimages, respectively.Fig.3(e)showsatypicalcrosssectionviewtakenfrom sample‘b’.AsestimatedfromtheFig.3(e),thethicknessofthe filmswasapproximately4␮m.Significantcrackingwasobserved onthesurfaceofallfilms.Thefilmsmorphologyarecomparableto thoseofFe3+andW6+dopedTiO

2filmspreparedonceramicand Tisubstrate,respectivelybyYaoetal.[68].

Fig.4showstheRamanspectraofthestandardTiO2(anatase) andthesampleswithdifferentB/Nratios.Comparisonwiththe RamanspectrumofpureanataseTiO2(curved),whichshowsband at143,196,396,515,and638cm−1,demonstratesthatthesurface layerismainlyconstitutedbyanatase.Conversely,Raman spec-trumofthesampleswithN andBdopingshowastrongsharp bandat140.7cm−1 (Eg),threemid-intensity bandsat393(B1g), 513.5(A1gandB1g)and634.8cm−1(Eg),andaveryweakbandat ∼200cm−1(Eg).ThosebandshavebeenascribedforanataseTiO2 [69–71].TheintensitiesofvariousTiO2featureshavebeenclearly decreasedwithB/NdopingwithrespecttothatofbareTiO2[69]. SincechangeintheparticlesizeswithrespecttoB/Ncontentisnot sosignificantforoursamples(havebeenexplainedinXRDpart) comparetothoseshowninRef.[69],thereisnotveryclearpicture ofintensitychangesofdifferentanatasefeatureswithindifferent

Fig.3. SEMimagesoftheB/Nco-dopedandbare-TiO2filmsobtainedonglasssubstratesandannealedat500◦Cfor2hwhereatomicratioofeachdopingisgivenatthe

(5)

0 100 200 300 400 500 600 700 800 900 B/N: 0.27 (a) B/N: 3.83 (b) B/N: 20.89 (c) Bare TiO2 (d) E g R a m a n In te n s it y (a .u .) 634.8 E g 513.5 A 1g B 1g 393 B 1g Raman shift (cm-1) 140.7 E g

Fig.4.RamanspectraofdifferentTiO2thinfilms.Themodesofsymmetryofthe

anataseareindicated.

B/Ndopingfilms.ItisusefultounderlinethattheRamanpeaksof theB/NdopedTiO2arebroaderthanthoseofthepureanatase.In particular,particleshavingsmalldimensionandlowcrystallinity arecharacterizedbyRamanpeakbroadening.Theshifts(5cm−1) intheRamanbandscomparetothereferences[69]mightbedue totheNdopinganddifferenceinparticlesizephononconfinement andoxygendeficiency.

XRDpatternsofdopedand bare-TiO2 thin filmsannealedat 500◦C for 2h are shown in Fig. 5. It is identified that all the diffraction peaks can beindexed tothe anatase phase of TiO2 (101),(004),(200),(105),(211),(204),(116)and(215)planes [JCPDS:00-002-0406] and noother phase can be detected.No B-and N-derived peaksdue tootheroxides andnitrides have alsobeendetectedinallthepatterns,indicatingthatBandNas dopantin TiO2 exhibitnotendencytosegregateand/or precip-itate indifferent phases duringthe syntheticprocess [72].The Band N in thematrix are assumed to beeither interstitial or systematicallysubstituteTiorOwithoutchangingthehostTiO2 matrix.ItcanbefoundthattheXRDpeakpositionsofdoped sam-plesareingoodagreementwiththosereferenceanatasephaseof TiO2[48,JCPDS:00-002-0406].

Fig.5. XRDpatternsofthethinfilmsofco-dopedTiO2:(a)B/N;0.27,(b)B/N;3.83,

(c)B/N;20.89and(d)bare-TiO2. 600 550 500 450 400 350 300 250 200 150 100 50 0 N 1s Si 2s Si 2p Ar Ti 3 p Ti 3 s O 1 s Ti 2 s Ti 2 p B 1s C 1s B/N: 20.89 (c) Bare-TiO2 (d) Intensity (a.u)

Binding Energy (eV)

Fig.6. TypicalXPSsurveyscansofbare-TiO2andB/N:20.89dopedTiO2films.

Thecrystalsizesofallthesamplesareestimatedusingthe Scher-rerequation:

B(2)= K Lcos

whereListhefullwidthathalfmaxima(FWHM)ofthe diffrac-tionpeakofanatase,K=0.89istheshapefactor,isthediffraction angleandistheX-raywavelengthcorrespondingtotheCuK␣ irradiation.Consideringpeakof(101)planesinaccount,the aver-agecrystallinesizesofthesample‘a’,‘b’,‘c’and‘d’are13.43,11.67, 12.99and13.43nm,respectively.Itsuggestedthatthechangein particlesizewithrespecttoB/Ncontentisnotsignificant.In addi-tion,thereisnochangeinthedspacingvalue;3.5 ˚A,whichimplies that B/N modificationin co-doping samplesdo not change the averageunitcelldimension.Foroursamplestheaveragelattice parametersareasfollows:a=3.78 ˚A,c=9.44 ˚Aandunitcell vol-ume=134.52 ˚A3.

3.2. XPSstudy

XPSstudiesusingmono-chromatedAlK␣X-raysourcewere performedtochecktheatomicpercentageofdifferentdoping ele-mentswithintheannealedfilmsandbondingenvironmentamong Ti,Oanddopant.Atomicpercentagesofdifferentelementswere calculatedfromtheXPSnarrowscanpeakintensityconsidering therelativesensitivityfactorofeachelement.Theatomicratiosof borontonitrogen(B/N)fordifferentsamplesareasfollows;0.27(a), 3.83(b)and20.89(c).Fig.6showsthetypicalXPSspectrumofthe B/N:20.89co-dopedTiO2film.Thespectrumfrombare-TiO2 sam-pleisalsoshowninthatfigureforcomparison.XPSpeaksshowed thatthedopedsamplescontainedTi,O,C,SielementswithBand Nasdopant.Thepresenceofcarboncouldbeascribedtothe resid-ualcarbonfromtheprecursor’ssolution.Fig.7(i)showstheB1s XPSspectrumforthesample‘c’whichcontainshighestatomic per-centageofB.Itshowssinglepeakcenteredatbindingenergy(BE) of192.1eV.ReferringtothestandardBEofB1sinB2O3(193.1eV, B Obond)[73]andTiB2(187.5eV,B Tibond)[74],itisspeculated thatboronatommightprobablybeincorporatedintoTiO2matrix andformTi O BorTi B OorO Ti Bbond[52,75].Hencepeak at192.1eVhavebeenassignedtoTi O BorTi B OorO Ti B bond.Fig.7(ii)showstheN1sXPSspectrumforthesample‘a’which containshighestatomicpercentageofN.Consideringsignificant asymmetry,N1speakhasbeendeconvolutedwithintwopeaksat

(6)

196 195 194 193 192 191 190 189 192.1 B/N : 20.89 (c)

(i)

B1s Intensity (a.u.)

Binding Energy (eV)

405 404 403 402 401 400 399 398 397 396 395 B/N: 0.27 (a)

(ii )

400.0 398.5 N1s Intensity (a.u.)

Binding Energy (eV)

Fig.7.XPSnarrowscanofB1sandN1sofdoped-TiO2thinfilmswithB/N:20.89

and0.27,respectively.

398.5and400.0eV.Thepeakat398.5eVmaybebecauseofanionic NincorporatedinTiO2inO Ti Nlinkages[22,76],whichmight beresponsibleforvisiblelightphoto-catalysis.Thehigher bind-ingenergypeakat400.0eVareattributedtooxidizednitrogenin theformofTi O NorTi N Olinkages[22,76].Theabsenceofa peakatornear396eVfortheN1scorelevelimpliedthattheTiN phaseorchemisorbednitrogenisnotformedinthenanomaterials [77].

3.3. UV–visabsorptionspectra

Fig.8comparestheUV–visabsorptionspectraofthinfilmsof bare-andB/Nco-dopedTiO2 withdifferentatomicratios.After B/Nco-dopingtotheTiO2,theabsorptionsofcatalystsincreased significantlyintherangeofwavelengthsfrom400to800nm.This clearred-shiftinUV–visspectrarevealsthevisiblelight absorp-tionwithB/Nco-dopedTiO2[52,78–81].Thered-shiftwithinthe absorptionedgesfollowsanincreasingorderas(a)>(b)>(c)(d). ItimpliesthatasatomicpercentageofNishigherinB/Nco-doping case,theredshiftintheabsorptionedgeishigherwhichisingood agreementwiththeresultinreference[52].Morevertheredshift observedintheco-dopingcasesaresignificantlyhighercompare tothatofbare-TiO2case.

300 350 400 450 500 550 600 650 700 750 800 A b sor b anc e ( a .u .) (nm) B/N:0.27 (a) B/N:3.83 (b) B/N:20.89 (c) Bare TiO 2 (d)

Fig.8. UV–visabsorptionspectraofco-dopedandbare-TiO2thinfilms.

3.4. Evaluationofphoto-catalyticactivity

Thephoto-catalyticactivityofbare-andB/Nco-dopedTiO2has beenexaminedbyphoto-catalyticdegradationofMB.Fig.9shows thepercentageofdegradationefficiencyforthesamefilmsin(i) cyclenumber1(1◦ cycle),(ii)cyclenumber2(2◦cycle)and(iii) cyclenumber3(3◦cycle).Dataclearlyshowsthatthedegradation efficiencyincreasescontinuouslyduringtheprocessofdegradation forallcycles.Howevertherateofdegradationisclearlydiffered frombare-toco-dopedTiO2films.ThedopedTiO2filmswithB/N atomicratios:0.27,3.83and20.89showedhigherdegradation per-formance,upto70%,whereasbare-TiO2filmsshowedthatof30%. Thephoto-catalyticperformancewithintheco-dopedfilmswere increasedwithNcontentsanddecreasedwithBcontents.However allco-dopedfilmsshowedsignificantlybetteractivityundervisible rangelightcomparetobare-TiO2films.For1◦cycle,degradation performanceforco-dopedfilmsandbare-TiO2filmsare51–63% and28%,respectively.

One of the main problems in the useof TiO2-based photo-catalystsisthedeactivation;mostlyattributedtoblockageofthe activesitesonthesurface,lossofcoatingmaterialfromthesurface duetoerosionoretc[82,83].Toevaluatethepossibilityofcatalyst recoveryand re-use,successivephoto-catalytic MBdegradation wasperformedforallofthedopedandbare-films.Aftereachcycle, filmswereannealedfor1hat500◦Candthenre-used.Fig.9(ii) showsthatsuccessiveutilizationfor2◦cycleinducedevenbetter performanceforallthefilms(a),(b),(c)and(d).For2◦and3◦cycles theefficiencyincreasedto62–69%forco-dopedfilmswhereasthat increasedto32–34%forbare-films.Theincreasingofefficiencyfor 2◦and3◦cyclesmightbe(i)duetothesurfacechemistrychanging ateachtimeheattreatmentaftereachdegradationstudyand/or(ii) thenitrogenconcentrationwithinthestructuremightbeincreased fortheMBsolutionadsorptiononthefilm.Itisstillingreatdebate ofthesynergyeffectsonphotoactivitiesandtheimportanceofthe relativeratiosonphotoactivities[17,50].Furtherworkisongoing tounderstandthisbehavior.

3.5. Theoreticalresults

WehavealsoperformedDFTcalculationsforbulkanatase,single dopedB-toO-andN-toO-andco-dopedBN-orNB-toTiO-cases whereatitaniumatomwasreplacedwithBorNandanoxygen atomwasreplacedbyNorB,respectively.Wehaveinvestigated varioussingledopedcases(e.g.BandNsubstitutiononTisiteand

(7)

0 40 80 120 160 200 240 0 10 20 30 40 50 60 70

(i)

B/N : 0.27 (a) B/N : 3.83 (b) B/N : 20.89 (c) Bare TiO2 (d) % of ef feciency

Irradiation time (min)

0 40 80 120 160 200 240 0 10 20 30 40 50 60 70

(ii)

B/N : 0.27 B/N : 3.83 (a) (b) B/N : 20.89 (c) Bare TiO2 (d) % of ef ficiency

Irradiation time (min)

0 40 80 120 160 200 240 0 10 20 30 40 50 60 70

(iii)

B/N : 0.27 (a) B/N : 3.83 (b) B/N : 20.89 (c) Bare-TiO2 (d) % of Ef ficiency

Irradiation time (min)

Fig.9.Percentageofdegradationefficiencyoffilms(i)incyclenumber1(1◦cycle),(ii)incyclenumber2(2cycle)and(iii)incyclenumber3(3cycle).

onOsite,andinterstitialofBandN)andco-dopedcases(e.g. sub-stitutionofBandNondifferentsites,andfordifferentseparations betweenBandN).Wearepresentingthemostrelevantcasesfor theexperimentalsituations.Thelatticeparametersofbulkanatase werefoundtobe3.81 ˚Aand9.72 ˚A(aandc),andc/aratiowas2.55 whichareclosetoourexperimentalvalues(a=3.78 ˚A,c=9.44 ˚A andc/a=2.50).Contrarytotheearlierreportclaiminglarge vol-umeexpansion,whichhassignificanteffectontheelectronicband structures,upondoping[84],thevolumechangeislessthan1.5% forallofthedopedstructuresinourcalculations.

Fig.10displaysthestructuralmodelsandthetotal(DOS)and partialdensityofstates(PDOS)ofpureTiO2,singledopedB-or N-toO-site andinterstitialN.Thebandgapofanataseis2.04eV, lowerthan experimentalvalue; 3.2eV [85] butconsistent with theprevioustheoreticalstudies[39,86]underestimationofband gapisawell-knowndeficiencyofDFTcalculations.Acorrection canbemadeusinghybridfunctional, self-interactioncorrection or‘DFT+U’methods,butinthisstudyourprimarypurposeisto understandthechangesinducedbythedopantsontheelectronic structuresofbulkanatase,nottheexactvalueofthebandgap.PDOS analysisshowsthatthetopmostvalencebandsareformedmainly fromO2pstateswhiletheconductionbandsminimumareformed fromTi3dstates.ForthecaseofBsubstitutingOatom(Fig.10(b)), thehybridizationofB2p,Ti3dandO2porbitalsgivesrisetogap statesappearingat0.27eVbelowtheconductionbandforB-doped O-model.Inthisstructure,Batommakesastrongbondingwithone oftheneighborOatomswithbondlengthas1.36 ˚A.B Tibond dis-tanceis2.11 ˚AwhichisevenlargerthanTi Obonddistanceofpure anatase(1.95 ˚A).Thesystematicinvestigationofnon-metaldoping

ofspeciesofB,C,NandFforsubstitutionalandinterstitialcases hasbeencarriedbyValentinandPacchioni[57].Thegapstatesare expectedforsubstitutionalnon-metaldopingandthepositionsof thesestatesaremainlydependonthenucleareffectivechargeof thedopant.Forlighterelements,the2pstatesinthegapappear higherinthegapthatisclosetotheconductionbandminimum (CBM).OurresultsforBsubstitutiontoOcaseareingood agree-mentwiththisobservation.However,thestates inthegapalso containTi3dstates.ThetypicalpositionofTi3+statesisjustbelow theCBM.Thissituationcanalsobeaddressedtolow electroneg-ativityofBatomcomparedtoOandlesschargetransferfromTi toB.We canconcludethatsubstitutionof BtoOsite produces statesinthegap,whichprovidestheabsorptionofvisiblelight,as wellasTi3+ionswhichactlikeelectron–holerecombination cen-tersandthereforediminishthephotocatalyticactivity.Moreover, ahighfrequencyelectronparamagneticresonance(HF-EPR) mea-surementsonBdopedanatase[51]observedsomespindensity onB,TiandOatomswhichmightbeexplainedastheformation ofsubstitutionofBtoOsite.ThevalenceelectronsfromBmight betransferredtolatticeTiions(Ti4+)producingTi3+ionsanditis well-knownthatthepresenceofTi3+ionsproducemidgapstates [85].

ForthecaseofNsubstitutingOatom(Fig.10(c)),N2pdefect statesarelocatedatthetopofthevalancebandmaximum.The positionofthesestatesmightberelatedwiththeeffectivenuclear chargeofNatom[57],thatistheN2pstatesappearlowcompared tothatofB2pintheforbiddenregionduetohigheffectivenuclear chargeofNatomcomparedtoBatom.TheN2pstatesarelocalized atthedefectsiteandthepositionofN2pstates.Alongwiththis,

(8)

Fig.10.Relaxedstructuresandpartialdensityofstates(PDOS)of(a)pureanatase,(b)B-dopedO-,(c)N-dopedO-and(d)Ninterstitialmodels.Energiesareshiftedsuch thatFermilevelsarematchedwithzeroofenergy.Thebondlengthsbetweendopedatomsandfirstneighborsareindicated.Solidlines,grayshaded,greenshadedandblue shadedareasrepresentthetotalDOS,PDOSofTi3d,O2pandN2pstates,respectively.(Forinterpretationofthereferencestocolorinthisfigurelegend,thereaderisreferred tothewebversionofthearticle.)

theEPRmeasurementsalsoindicatethelocalizationofunpaired electrononNdopant[37].Thevisiblelightabsorptionmightbe enhancedbythesubstitutionofNatomtoOsiteduelocalizedstates inthegapregion.Duetothesedefectstates,bandgapisreduced to1.66eVand1.87eVfordownandupspinstates,respectively. Nitrogenatomhasfiveelectronsinthevalanceshellthereforethe structureisparamagneticandanacceptorstateappearsjustabove theFermilevel.

FortheinterstitialNmodel(Fig.10(d)),therewillbeastrong N Obondingwithabondlengthof1.34 ˚A.Sincethe electronega-tivityofOishigher,NtendstodonateelectronstoOandN O Ti configurationisformedatthedefectregion.Theseexcesselectrons behaveinthesamemannerofB-toO-model(Fig.10(b)) result-ingtheformationofmidgapstates[37].However,inthiscase,in

additiontotheun-occupiedstateformedattheedgeofconduction band,extramidgapstatesappearbelowtheFermilevel.

Inordertounderstandtheeffectofco-dopinginanatasewe sub-stitutedBandNatomsforvariouspositionsofTiandOsites.Fig.11 displaystherelaxedstructuresandPDOSforBN-andNB-doping toTiO-positionsaswellasthebondlengthstonearestatomsof dopedspeciesisindicated.ForBN-dopedtoTiO-model,Batom transfersitselectronstoOatomsandreachesclosed-shell configu-rationwhichpreventsBNbonding.TheinteractionofNatomwith itssurroundingatomsproduces midgapbandswhichbehaveas acceptorstatesandalocalizednitrogenstateappearsatthetop ofthevalenceband.Thus,N Ti Otypeofhybridizationproduces midgapstates.PDOSanalysisindicatesthatthereisnoboron con-tributiontoDOSaroundFermilevelbutbandgapofthiscaseis

Fig.11.Co-dopingofanatase:(a)BatomreplacedwithTiandNatomreplacedwithOand(b)NatomreplacedwithTi,andBatomreplacedwithO.Solidlines,grayshaded, greenshadedandblueshadedareasrepresentthetotalDOS,PDOSofTi3d,O2pandN2pstates,respectively.(Forinterpretationofthereferencestocolorinthisfigurelegend, thereaderisreferredtothewebversionofthearticle.)

(9)

-4.7 -4.0 -3.0 -2.0 -1.0 0.0 0 1 2 3 4 5 6 7 Ti-Rich O-Rich N doped O B doped O N Interstitial BN doped TiO NB doped TiO Fo rma tio n En erg y (e V) O

Fig.12.Formationenergyasafunctionofchemicalpotentialofoxygenforthe dopedstructures.

foundtobe1.76eVforthespinupstatesand1.2eVforspindown states.Comparedtosingle-dopedmodels,thisisarelativelylarger narrowinginthebandgap.Thus,co-dopingofanatasewithB/Ncan beexpectedtoimprovephoto-degradationwithrespectto single-dopedcasesviabandgapnarrowing.

Incontrastwiththepreviousco-dopingcase,fortheNB-doped TiO-model,thereisabondingbetweenBandNatomswith bond-lengthof1.617 ˚A.SimilartotheB-toO-case,theFermilevelis alsopinnedforthismodeltothebottomoftheconductionband causingaconductorlikebandstructure,whichobviouslydoesnot contributeinthephoto-catalyticactivityofTiO2.

In summary, band gap narrowing leads to the red shift of the absorbance spectra to the visible light region. Meanwhile, the appearance of midgap states could be responsible for the enhancementofthephoto-catalyticactivityeitherbyimproving theabsorbance oravoiding the recombinationof electron–hole pairs[87].

XPS results of the doped films suggested the formation of N Ti OconfigurationupontheexaminationoftheN1sandTi2p spectra(Section3.2).AsshowninFig.10(c)and(d),N Ti O con-figurationcanbeformedinbothN-toO-andNinterstitialcases. Therefore,in ordertounderstandtheenergetically morestable structures,we havecompared theformation energies ofdoped modelsusingthefollowingformalism:

Eform=E



TiO2+B N



−E(TiO2)−kB−lN+mO+nTi whereE(TiO2+B/N)and E(TiO2)arethetotalenergies ofdoped structureand pureanatase,respectively and’sarethe chemi-calpotentialsofcorrespondingspecies.ChemicalpotentialsofN andBarecalculatedfromgaseousphaseofN2and␣-boronphase, respectively.Oissetasthechemicalpotentialofthegasstateof O2forthecaseofOrichenvironment.Ontheotherhand,Tiisset frommetallicTiphaseforthecaseofOpoor(Tirich)environment. FurthermoreweimposedtheconstraintasTi+2O=TiO2 in

ordertoensuretheequilibriumofbulkanatasephase.Integersm andnarethenumbersofOandTivacancies,respectivelywhilek andlarethenumbersofdopedBandNatoms(ifany),respectively. Fig.12displaystheformationenergyofthedifferentdopedmodels asafunctionofthechemicalpotentialofoxygenwithrespecttothe valueofgasphase(O).Variationofoxygenchemicalpotential indicatestherelativeabundanceofoxygeninthesynthesismedium withintwolimitingcases;O2-richandO2-poorenvironments.Two limitsinthefigurerepresenttheenvironments;O=0eVforthe

O2-richandO=−4.7eVfortheO2-poororTi-rich.Asdepictedin Fig.12,N-dopedO-caseisenergeticallythemostfavorabledoping modelintheOpoorenvironment,whileBN-dopedTiO-isthestable oneintheOrichenvironment.Thereisacrossoverbetweenthese twomodelsatO=−2.3eV.HoweverNinterstitialcasemight bestabilizedinOrichenvironmentwithinthesingledoped mod-els.ThismightbethereasonfortheformationofN O Tior/and N Ti Obondinginthecaseofourexperiment.

4. Conclusions

Anexperimentalandtheoreticalstudyhasbeenperformedto realizethesynergisticeffectofnonmetaldopinginTiO2for photo-catalytic degradation.Co-doped TiO2 thinfilmswithboronand nitrogenhavebeensuccessfullysynthesizedbysimplesol–geldip coatingmethod.TheB/Nco-dopedTiO2filmsdemonstratedupto 40%higherphoto-catalyticactivitiesthanbare-TiO2 filmsunder visiblelightirradiation.Theabsorptionedgesforthedopedfilms werefoundtobeshiftedtowardthevisibleregion,whilethe over-allabsorptionremarkablyincreasedfordopedfilms.Thefilmwith theB/Natomicratioof0.27displayedthehighestdegradationrate amongalldopedfilms.Thedopedfilmsretainedtheirsuperior cat-alyticactivityforextended periods.Computationalstudieswere conducted onseveralatomic models describing various doping schemes.TheresultsshowedthatdopingwithBand/orNinduced (a)bandgapnarrowing (redshiftof theabsorbance spectrato thevisiblelightregion)and(b)formationofmidgapstates espe-ciallyincaseofNinterstitialmodel.Theseresultsalsosupported theobservedsynergisticeffectsofB/Ndopingforhigher photo-degradationactivity.Thesecomputationalfindingssupportedour experimentaldatabyindicatingthepossibleroutesthat canbe responsiblefortheimprovementofthephoto-catalyticactivityin TiO2 duetoBand Ndoping.Itis revealedthatB/NdopedTiO2 filmscouldbeapotentialcandidateforscalingupforindustrial applications.

Acknowledgments

WeacknowledgethesupportsfromtheDepartmentof Chem-istryofShahjalalUniversityofScienceandTechnology,Bangladesh andTÜB˙ITAK, TheScientificandTechnologicalResearchCouncil ofTurkey(Grantno:TBAG110T394).Computingresourcesused inthisworkwereprovidedbytheNationalCenterforHigh Per-formance Computing of Turkey (UYBHM) under grant number 10362008.OGacknowledgesthesupportofTheTurkishAcademy ofSciences,TÜBA.PartialfundingforM.N.Uddinisprovidedbythe TurkishUndersecretariatforDefenseIndustries.

References

[1]O.Carp,C.L.Huisman,A.Reller,A.Reller,ProgressinSolidStateChemistry32 (2004)33–177.

[2]B.Tryba,A.W.Morawski,M.Inagaki,AppliedCatalysisB:Environmental46 (2003)203–208.

[3]T.Watanabe,K.Hashimoto,A.Fujishima,in:D.F.Ollis,H.A.Ekabi(Eds.), Pho-tocatalyticPurificationandTreatmentofWaterandAir,Elsevier,Amsterdam, 1993.

[4]X.Qin,L.Jing,G.Tian,Y.Qu,Y.Feng,JournalofHazardousMaterials172(2009) 1168–1174.

[5]D.A.H.Hanaor,C.C.Sorrell,JournalofMaterialsScience46(2011)855–874. [6]M.Mrowetz,W.Balcerski,A.J.Colussi,M.R.Hoffmann,JournalofPhysical

ChemistryB108(45)(2004)17269–17273.

[7]X.Z.Li,F.B.Li,C.L.Yang,W.K.Ge,JournalofPhotochemistryandPhotobiology A:Chemistry141(2001)209–217.

[8]C.H.Kwon,J.H.Kim,I.S.Jung,H.Shin,K.H.Yoon,CeramicsInternational29 (2003)851–856.

[9]J.Yu,X.Zhao,Q.Zhao,JournalofMaterialsScienceLetters19(19)(2000) 1015–1017.

[10] R.Asahi,T.Morikawa,T.Ohwaki,K.Aoki,Y.Taga,Science293(5528)(2001) 269–271.

(10)

(2003)5483–5486.

[12]X.Chen,S.S.Mao,ChemicalReviews107(2007)2891–2959.

[13]W. Choi, A. Termin, M.R. Hoffmann, Angewandte Chemie 106 (1994) 1148–1149.

[14]C. Wang,D.W.Bahnemann,J.K. Dohrmann,Chemical Communications16 (2000)1539–1540.

[15] R.Asahi,T.Morikawa,T.Ohwaki,K.Aoki,Y.Taga,Science293(2001)269–271. [16]S.U.M.Khan,M.Al-Shahry,W.B.Ingler,Science297(5590)(2002)2243–2245. [17] S.In,A.Orlov,R.Berg,F.Garcia,S.P.Jimenez,M.S.Tikhov,D.S.Wright,R.M. Lambert,JournaloftheAmericanChemicalSociety129(2007)13790–13791. [18] K.Yang,Y.Dai,B.Huang,S.J.Han,TheJournalofPhysicalChemistryB110(2006)

24011–24014.

[19] J.C.Yu,W.Ho,J.Yu,H.Yip,P.K.Wong,J.Zhao,EnvironmentalScienceand Technology39(4)(2005)1175–1179.

[20] M.Sathish,B.Viswanathan,R.P.Viswanath,C.S.Gopinath,Chemistryof Mate-rials17(2005)6349–6353.

[21] L.Lin,W.Lin,J.L.Xie,Y.X.Zhu,B.Y.Zhao,Y.C.Xie,AppliedCatalysisB75(2007) 52–58.

[22] K. Yang, Y. Dai, B. Huang, Journal of Physical Chemistry C 111 (2007) 12086–12090.

[23](a)M.Maitri,K.S.Thushara,B.Saha,P.Chakraborty,C.M.Janet,R.P.Viswanath, C.M.Nair,K.V.G.K.Murty,C.S.Gopinath,ChemistryofMaterials21(2009) 2973–2979;

(b) M. Maitri, K. Sivaranjani,D.S. Bhange, B. Saha, P. Chakraborty, A.K. Viswanath,C.S.Gopinath,ChemistryofMaterials22(2010)565–578; (c)M.Maitri,C.S.Gopinath,ChemistryofMaterials21(2009)351–359. [24]H.Liu,L.Gao,JournaloftheAmericanCeramicSociety87(2004)1582–1584. [25]J.Yu,M.Zhou,B.Cheng,X.Zhao,JournalofMolecularCatalysisA:Chemical246

(2006)176–184.

[26]J.Xu,J.Li,W.Dai,Y.Cao,H.Li,K.Fan,AppliedCatalysisB79(2008)72–80. [27] M.Satish,B.Viswanathan,R.P.Viswanath,C.S.Gopinath,JournalofNanoscience

andNanotechnology9(2009)423–432.

[28](a)P.Xu,T.Xu,J.Lu,S.Gao,N.S.Hosmane,B.Huang,Y.Dai,Y.Wang,Energy& EnvironmentalScience3(2010)1128–1134;

(b)K.Yang,Y.Dai,B.Huang,JournalofPhysicalChemistryC111(2007) 18985–18994.

[29]E.Mete,D.Uner,O.Gulseren,S.Ellialtioglu,PhysicalReviewB79(2009)125418 (1–15).

[30] E.Mete,O.Gulseren,S.Ellialtioglu,PhysicalReviewB80(2009)035422(1–9). [31]M.Fittipaldi,D.Gatteschi,P.Fornasiero,CatalysisToday,inpress

[32]Y.Nakano,T.Morikawa,T.Ohwaki,Y.Taga,AppliedPhysicsLetters87(2005) 052111–052114.

[33] C.K.Xu,S.U.M.Khan,Solid-StateLetters10(2007)B56–B59.

[34] H. Wang, J.P. Lewis, Journal of Physics: Condensed Matter 18 (2006) 421.

[35]Y.F.Lee,K.H.Chang,C.C.Hu,K.M.Lin,JournalofMaterialsChemistry20(2010) 5682–5688.

[36] O.Diwald,T.L.Thompson,T.Zubkov,E.G.Goralski,S.D.Walck,J.T.Yates,Journal ofPhysicalChemistryB108(2004)6004–6008.

[37]C.D.Valentin,G.Pacchioni,A.Selloni,S.Livraghi,E.Giamello,JournalofPhysical ChemistryB109(2005)11414–11419.

[38] C.D.Valentin,G.Pacchioni,A.Selloni,PhysicalReviewB70(2004)085116(1–4). [39]C.D. Valentin,G. Pacchioni, A.Selloni, Chemistry of Materials17 (2005)

6656–6665.

[40]Y.Liu,X.Chen,J.Li,C.Burda,Chemosphere61(2005)11–18.

[41]Z.Lin,A.Orlov,R.Lambert,M.C.Payne,JournalofPhysicalChemistryB109 (2005)20948–20952.

[42]S.Livraghi,M.C.Paganini,E.Giamello,A.Selloni,C.D.Valentin,G.Pacchioni, JournaloftheAmericanChemicalSociety128(2006)15666–15671. [43]J.Y.Lee,J.Park,J.H.Cho,AppliedPhysicsLetters87(2005)011904(1–3). [44]W.K.Ho,J.C.Yu,S.C.Lee,JournalofSolidStateChemistry179(2006)1171–1176. [45]K.M.Reddy,B.Baruwati,M.Jayalakshmi,M.M.Rao,S.V.Manorama,Journalof

SolidStateChemistry178(2005)3352–3358.

[46]W.Zhao,W.H.Ma,C.C.Chen,J.C.Zhao,Z.G.Shuai,JournaloftheAmerican ChemicalSociety126(2004)4782–4783.

Research45(2006)4110–4116.

[48]V.Gombac,L.D.Rogatis,A.Gasparotto,G.Vicario,T.Montini,D.Barreca,G. Balducci,P.Fornasiero,E.Tondello,M.Graziani,ChemicalPhysics339(2007) 111–123.

[49]M.Batzill,E.H.Morales,U.Diebold,PhysicalReviewLetters96(2006)026103 (1–4).

[50] G.Liu,Y.Zhao,C.Sun,F.Li,G.Q.Lu,H.M.Cheng,AngewandteChemie Interna-tionalEdition47(2008)4516–4520.

[51] A.M.Czoska,S.Livraghi,M.C.Paganini,E.Giamello,C.DiValentin,G.Pacchioni, PhysicalChemistryChemicalPhysics13(2011)136–143.

[52] M.Xing,Y.Wu,J.Zhang,F.Chen,Nanoscale2(2010)1233–1239.

[53]X.Zhou,F.Peng,H.Wang,H.Yu,J.Yang,JournalofSolidStateChemistry184 (2011)134–140.

[54]Y.G.Yang,Z.L.Ping,L.Shen,Y.J.Hua,ChineseJournalofStructuralChemistry 27(11)(2008)1353–1359.

[55]C.Baiocchi,M.C.Brussino,E.Pramauro,A.B.Prevot,L.Palmisano,G.Marci, JournalofMassSpectrometry214(2002)247–256.

[56]I.M.Arabatzis,T.Stergiopoulos,M.C.Bernard,D.Labou,S.G.Neophytides,P. Falaras,AppliedCatalysisB:Environmental42(2003)187–201.

[57] C.D.Valentin,G.Pacchioni,CatalysisToday,inpress

[58]M.C.Payne,M.P.Teter,D.C.Allen,T.A.Arias,J.D.Joannopoulos,Reviewsof ModernPhysics64(1992)1045–1097.

[59]W.Kohn,L.J.Sham,PhysicalReview140(1965)A1133–A1138. [60]P.Hohenberg,W.Kohn,PhysicalReviewA136(1964)B864–B871. [61]P.E.Blöchl,PhysicalReviewB50(1994)17953–17979.

[62]G.Kresse,D.Joubert,PhysicalReviewB59(1999)1758–1775. [63]G.Kresse,J.Hafner,PhysicalReviewB48(1993)13115–13118. [64]G.Kresse,J.Furthmüller,ComputationMaterialsScience6(1996)15–50. [65]G.Kresse,J.Furthmüller,PhysicalReviewB54(1996)11169–11186. [66]J.P.Perdew,J.A.Chevary,S.H.Vosko,K.A.Jackson,M.R.Pederson,D.J.Singh,C.

Fiolhais,PhysicalReviewB:CondensedMatter46(1992)6671–6678. [67]H.J.Monkhorst,J.D.Pack,PhysicalReviewB13(1976)5188–5192. [68]M.Yao,J.Chen,C.Zhao,Y.Chen,ThinSolidFilms517(2009)5994–5999. [69]K. Sivaranjani, C.S. Gopinath, Journal of Materials Chemistry 21 (2011)

2639–2647.

[70]D.Bersani,P.P.Lottici,X.Z.Ding,AppliedPhysicsLetters72(1998)73–75. [71]M.J.Uddin,F.Cesano,F.Bonino,S.Bordiga,G.Spoto,D.Scarano,A.Zecchina,

JournalofPhotochemistryandPhotobiologyA:Chemistry189(2007)286–294. [72] Y.H.Peng,G.F.Huang,W.Q.Huang,AdvancedPowderTechnology23(2012)

8–12.

[73]J.A. Schreifels,P.C. Maybury, W.E.Swartz, Journalof Catalysis 65(1980) 195–206.

[74] G.Mavel,J.Escard,P.Costa,J.Castaing,SurfaceScience35(1973)109–116. [75] J.Xu,Y.Ao,M.Chen,D.Fu,JournalofAlloysandCompounds484(2009)

73–79.

[76]T.C.Jagadale,S.P.Takale,R.S.Sonawane,H.M.Joshi,S.I.Patil,B.B.Kale,S.B.Ogale, JournalofPhysicalChemistryC112(2008)14595–14602.

[77] C.D.Valentin,E.Finazzi,G.Pacchioni,A.Selloni,S.Livraghi,M.C.Paganini,E. Giamello,ChemicalPhysics339(2007)44–56.

[78]J.Yang,H.Bai,X.Tan,J.Lian,AppliedSurfaceScience253(2006)1988–1994. [79] J.Yang,H.Bai,Q.Jiang,J.Lian,ThinSolidFilms516(2008)1736–1742. [80] C.H.Wei,X.H.Tang,J.R.Liang,S.Y.Tan,JournalofEnvironmentalSciences19

(2007)90–96.

[81]L.Mi,P.Xu,P.N.Wang,AppliedSurfaceScience255(2008)2574–2580. [82]J.Arana,E.T.Rendon,J.M.D.Rodriguez,J.A.H.Melian,O.G.Diaz,J.P.Pena,Applied

CatalysisB:Environmental30(2001)1–10.

[83]L.Cao,Z.Gao,S.L.Suib,T.N.Obee,S.O.Hay,J.D.Freihaut,JournalofCatalysis 196(2000)253–261.

[84]K.Yang,Y.Dai,B.Huang,PhysicalReviewB76(2007)195201(1–6). [85]J. Pascual, J. Camassel, H. Mathieu, Physical Review Letters 39 (1977)

1490–1493.

[86]H.Weng,J.Dong,T.Fukumura,M.Kawasaki,Y.Kawazoe,PhysicalReviewB73 (2006)121201(R)(1–4).

[87]E.Finazzi,C.D.Valentin,G.Pacchioni,JournalofPhysicalChemistryC113(2009) 220–228.

Şekil

Fig. 1. Schematic flow chart of the preparation of doped TiO 2 thin film on glass substrate by sol–gel dip-coating process.
Fig. 4 shows the Raman spectra of the standard TiO 2 (anatase) and the samples with different B/N ratios
Fig. 4. Raman spectra of different TiO 2 thin films. The modes of symmetry of the anatase are indicated.
Fig. 7. XPS narrow scan of B1s and N1s of doped-TiO 2 thin films with B/N: 20.89 and 0.27, respectively.
+4

Referanslar

Benzer Belgeler

arvense, the results of previous studies on antioxidant activities other Melampyrum species were similar to those of the current study results 3, 27.. barbatum extract may

Bu çalışmada,kuzey ve güney Kıbrıs‟tayer alan Osmanlı dönemi Atatürk Meydanı, Büyük Medrese, Küçük Medrese, Laleli Cami, Selimiye Camii, Silahtar, Tahtakale, Elye

In this study, we assess the ganglion cell complex (GCC) thickness using optical coherence tomography (OCT) in patients with acute and chronic CSCR.. The medical records of 16 acute

Relationship of serum uric Acid level and angiographic severity of coronary artery disease in male patients with acute coronary syndrome.. Lloyd-Jones DM, Larson MG, Beiser A,

normalized rms.. Transient analysis is performed with SPICE and BUSTLE with a square wave input. The voltage waveform on the load can be seen in Fig. It is surprising

Several documents presented in this paper evidence the practice of making cash loans to Ottoman timariots during military campaigns from the early sixteenth to the late

We demonstrated through low frequency SCRC measurements that a fabricated collapsed CMUT cell maximum receive sensitivity can be very accurately characterized by our linear small

Using this fact, in this paper, we showed how to synthesize the closest (in minimum mean-square error sense) mutual intensity distribution to a desired