• Sonuç bulunamadı

A versatile plug microvalve for microfluidic applications

N/A
N/A
Protected

Academic year: 2021

Share "A versatile plug microvalve for microfluidic applications"

Copied!
7
0
0

Yükleniyor.... (view fulltext now)

Tam metin

(1)

ContentslistsavailableatScienceDirect

Sensors

and

Actuators

A:

Physical

jo u r n al h om ep a g e :w w w . e l s e v i e r . c o m / l o c a t e / s n a

A

versatile

plug

microvalve

for

microfluidic

applications

M.

Tahsin

Guler

a

,

Pinar

Beyazkilic

b

,

Caglar

Elbuken

b,∗

aDepartmentofPhysics,KirikkaleUniversity,71450,Kirikkale,Turkey

bUNAM—NationalNanotechnologyResearchCenter,InstituteofMaterialsScienceandNanotechnology,BilkentUniversity,06800,Ankara,Turkey

a

r

t

i

c

l

e

i

n

f

o

Articlehistory: Received5May2017

Receivedinrevisedform28July2017 Accepted1September2017 Availableonline5September2017 Keywords: Valve Microvalve Portablemicrofluidics ColorimetricTNTassay

a

b

s

t

r

a

c

t

Mostoftheavailablemicrovalvesincludecomplicatedfabricationstepsandmultiplematerials.We presentamicrovalvewhichisinspiredfrommacroplugvalves.Theplugmicrovalveisfabricatedby boringaholethrougharigidcylindricalrodandinsertingitthroughamicrofluidicchip.Itsimply func-tionsbyrotatingtherodwhichalignsormisalignsthevalveportwiththemicrochannel.Therodismade upofarigidmaterialforapplyingthevalvetoanelasticpolydimethylsiloxane(PDMS)microchannel. Thevalvecanalsobeusedforarigidchannelbyinsertingtherodintoanelastictubing.Therefore,the presentedmicrovalvecanbeusedforbothelastomericandthermoplasticchannels.Theplugmicrovalve canbeappliedtoaprefabricatedmicrochannelanddoesnotrequiremodificationofthemolddesign. Wehaveverifiedtherepeatabilityandrobustnessofthevalvebyrepetitiveoperationcyclesusinga servomotor.Theplugmicrovalveisadaptabletonumerousmicrofluidicapplications.Wehaveshown threemodesofoperationforthemicrovalveincludingfluidflowcontrolacrossmultipleintersecting channels.Integratingthemicrovalvetosomecommonlyusedmicrofluidicdesigns,wedemonstrated theversatilityandthepracticalityofthemicrovalveforcontrollingflowfocusing,microdropletsorting andrapidchemicalagentdetection.Thislow-costmicrovalvesignificantlyminimizestheprototyping timeformicrofluidicsystems.

©2017ElsevierB.V.Allrightsreserved.

1. Introduction

Fullyintegrated microfluidic devices require several compo-nentssuchaschannels,pumps,mixersandvalves.Earlyyearsof thebirthofmicrofluidicswitnessedthedevelopmentofthesebasic componentsusingdifferentmethods.Intheliterature,avariety ofmicrovalveshavebeenreportedwhichemployelectroactive polymer [1], piezoelectricmaterials [2], ferrofluids[3], electro-staticactuation[4]orphasechangematerialssuchasparaffinwax [5],hydrogel[6],orthermosensitivematerials[7].Therearealso single-useburstvalvesthatarenormally-closedandopens irre-versibly[8].Thepassivecapillaryvalvescanalsobeconsideredas single-usesincereactivationofthevalverequirescomplete dry-ingofthechip[9].Onecanrefertoreviewarticlesfornumerous othertypesofmicrovalves[10,11].Amongstthesevalves,the pneu-maticmembranevalve hadaprofound impactin thefield [12]. Thehighscaleintegrationofthesevalvesallowedexquisitecontrol offluidsintinycompartments[13].Themulti-layermicrofluidic systemuses a control layer toadjust thepressure in order to activateordeactivateeachvalve.Thesimilardoormatvalves,which relyonSU-8molds,operateinasimilarway[14].However,these

∗ Correspondingauthor.

E-mailaddress:elbuken@unam.bilkent.edu.tr(C.Elbuken).

microvalvesrequireprecisemulti-layermicrofabricationandisnot suitableforrapidfabrication.Inordertoaddressthesechallenges thesimplistictwistvalveshavebeendeveloped[15].Thesevalves donotrequireanyoff-chipcomponentsandcanbefabricated rela-tivelyeasiercomparedtopneumaticmembranevalves.Theydonot needanypressureorpowertoretaintheirstate,thustheyare appli-cableforportableapplications.However,thesetwistvalvesstillrely ondeflectionofathinPDMSmembrane,whichisachievedeither bytwistingascreworbyactuationofaspringplunger[16].Their fabricationistediousandincludeseveraladditionalstepssuchas precisealignment,verticalintegrationofascrewandcuringofa secondmaterialtoformthethreads.Itisimportanttonotethat bothpneumaticmembranevalvesandtwistvalvesarepinchvalves thatfunctionbasedondeflectionofanelasticlayerwhichrequires microfabrication.

In recent years, microfluidic community has focused more on the application of integrated lab-on-a-chip (LOC) devices withincreasingnumberofresearchersfromdiversebackgrounds. Bringinginnewopportunitiesandnewresearchdirections,the increasingdemandfor more capablesystems posessome chal-lengessuchasthe needfor expertisein allthe componentsof anintegratedLOCsystem.Itisinterestingtonotethatalthough micropumpsandmicromixersarequitestandardizedand easy-to-reachformostresearchers,microvalveisstillatrickycomponent especiallyforpeoplewithoutmicrofabricationexpertise.Thereis http://dx.doi.org/10.1016/j.sna.2017.09.001

(2)

stillnotagoldstandardmicrovalveavailableinthemarket. There-fore,thereisagapinthefieldforlow-cost,versatilemicrovalves thatcanbefabricatedandappliedbynon-experts.

In this study, we present arguably the simplest type of microvalvethatcanbeexploitedinmicrofluidicsystems.Wereport aplugmicrovalvethatisinspiredfrommacroscalequarterturn ball valves.The plug microvalve is fabricatedby boring a hole throughacylindricalrodwhichisinsertedintoa holepunched throughthemicrochannel.Thisvalveinheritsallthebenefitsof thetwist microvalve;(i) it doesnot requireanychange ofthe originalchanneldesign,(ii)itisverylow-cost,(iii)itistruly inte-gratedandoperateswithoutanyoff-chipcomponents,(iv)itonly requirespowerduringstatechange.Unlikethetwistvalve,theplug microvalvecanbefabricatedinlessthan5minwhichrequiresno skillsetotherthanpunchinganddrillingholes.Additionally,the presentedvalvecanbeintegratedtobothelastomericand thermo-plasticmicrofluidicdevicessuchaspolydimethylsiloxane(PDMS), polymethylmethacrylate(PMMA),acrylonitrilebutadienestyrene (ABS),polycarbonate(PC)andpolystyrene(PS)whichisaunique feature.Sinceitworksbycompletelyblockingthemicrochannel ratherthanpinchingthechannel,itworksforanychannelsizeor shape(rectangularorroundmicrochannel).

2. Fabricationandcharacterizationoftheplugmicrovalve TheoperationofthevalveisshowninFig.1.Asseen,thevalve iscomposedofarodwhichisinsertedtoachannel.Therod con-tainsaholethatisalignedwiththemicrochannelinitsONposition. Herein,weusedpolylacticacid(PLA)rodsowingtotheir mechan-icalproperties.PLAisacommonlyusedbiocompatible3Dprinting materialwhichis readilyavailable.It hasa Young’smodulusof 3.5GPawhichprovidestherigidityrequiredduringtheoperation ofthevalveandalsoeaseoffabricationduringholeopening. 2.1. Fabrication

Theplugmicrovalveisfabricatedinfoursimplesteps.First,we cutapieceofrodfromPLAfilamentstockandboreaholethrough theradialaxisoftherod(Fig.2a).Then,webendthetipofthe rod90◦ tothedirectionparalleltotheholeusingahotairgun setat200◦C(Fig.2b).Thisallowsease-of-handlingduringmanual operation.Then,athroughholeisopenedacrossthemicrofluidic chipintersectingthemicrochannelatthepointwhereweneedthe valve(Fig.2c).Finally,therodisinsertedintotheholeonaflat surfacesothattheholealignswiththemicrochannel(Fig.2d).

Thethroughholeoftherodisobtainedusingabenchtopmicro miller(ProxxonMF70)withtungstencarbidedrillbits(Proxxon 28321).PLArodisfixedintoaV-shapegroovealongametal

fix-ture(Fig.2a).Drillingisdonegraduallyby4–5rapidupanddown motionofthedrillbitinordernottoincreasethetemperatureof PLAandcausemelting.Inordertoachievethealignmentofthe holewiththemicrochannelinthefinaldevice,thedistancefrom thecenteroftheholetothebottomoftherodshouldmatchthe heightofthemicrochannelfromthebottomofthesubstrate.Inthis way,insertingtherodallthewayintothemicrofluidicchipona flatsurfaceensuresthealignment.Thehorizontalalignmentofthe rodwiththechannelisachievedwhenpunchingtheholethrough thedevicewhichisperformedunderstereomicroscope(Fig.2c). Samplerodswith600␮mand200␮mdiameterholesareshownin Fig.2ainset.Thedeadvolumesforthesemicrovalvesare0.48␮land 0.053␮l,respectively,whicharenegligibleformostapplications.

TherodsshowninFig.2aareusedforsoftPDMSmicrochannels. FormicrochannelsmadeoutofrigidmaterialssuchasPMMA,the rodshouldbeelastictoobtainasuccessfulsealing.Thisisachieved byinsertingthePLArodintoasiliconetubingandperformingthe holedrillingstepexplainedasabove.Aresultantvalvecanbeseen inFig.3c,forwhichweusedasiliconetubingof0.8mmIDand 2.4mmOD.(Versilicspx-50).Fig.3shows theplugmicrovalves integratedtoaPDMS(a–b)andaPMMA(c–d)microfluidicdevice. Fig.3aand3cshowtheOFFpositionofthevalveatwhichthebent sectionof therodisperpendicular tothemicrochannel.Fig.3b and 3dshow theON positionwiththe reddye solutionfilling the microchannels.PDMS channels are obtainedusing conven-tionalsoftlithographyusingSU-8moldsandsealedbybonding toablankPDMSpieceusingoxygenplasmaactivation[17].PMMA deviceswereobtainedbyCO2lasercutter(EpilogZing)andsealed

byaPMMApieceusingdoublesidedtape.Afterfabricationofthe microfluidicdevices,thelocationofthevalvesweremarkedusing amarkerpen.Then,holesarepunchedthroughthePDMSorPMMA deviceusingpunchingordrilling,respectively.Thelargerthehole throughthePLArod,themoretolerantthesystemto misalign-ments.

2.2. Leakagetest

Wetestedthesealingofthevalveusingapressurepump sys-tem(ElveFlowOB1).Weconnectedtheinletsofthemicrochannels showninFig.3toaDIwatersupplyandgraduallyincreasedthe inletpressure upto2bar.Thevalveswith200␮mand 600␮m holediameterswithstoodthemaximumpressureofourtestsetup (2bar)forboth thePDMSdeviceandthePMMAdevice.During thesetests,wehavenotobservedanyleakagearoundthevalvethus theplugmicrovalvesweresuccessfulinsealingaroundthehole. Itshouldbenotedthatsuccessfulsealingoftheplugmicrovalve depends on the geometrical parameters and also the chip/rod materialelasticity.Althoughitischallengingtodrawauniversal

(3)

Fig.2.Fabricationsteps:(a)DrillingaholethroughthePLArod,(inset)close-upimagesofrodswith600␮m(top)and200␮m(bottom)diameterholes.(b)Bendingthetip oftheholeforease-of-handlingusingahotairgunsetat200◦Cforafewseconds.(c)Punchingofthethroughholefortheplacementoftherod.Thelocationofthevalveis determinedatthisstepandshowstheversatilityoftheplugmicrovalve.(d)Insertionoftherodtotheholeonaflatsurface.

Fig.3. Imagesofplugmicrovalveswith600␮mholediameterintegratedtoPDMSandPMMAmicrochannels.Plugmicrovalveat(a)OFFand(b)ONpositionacrossPDMS channelof200␮mwidthand50␮mheight.Plugmicrovalvewiththeadditionalsiliconeoutertubing,at(c)OFFand(d)ONpositionacrossPMMAchannelof1.5mmwidth and200␮mheight.Thefluidissuppliedataninletpressureof300mbarusingapressurepump.

conclusion,fromourrepetitiveexperimentswithrodsand chan-nelsofvaryingsizes,wecanprovideadesignruleofthumbfor successfulsealing:a)Thediameterofthethroughholeacrossthe rodshouldbeatleasttwicethesizeofthechannelwidth.b)The diameteroftherodshouldbeatleasttwicethesizeofthehole diameter.

2.3. Torquetest

The plug microvalve canbe operated by hand as shown in theSupplementarymovie1. We have characterizedthetorque required for closing/opening theplug microvalve using a digi-talforcemeter.A1.7mmdiameterrodvalvewith600␮mhole diameterhaving4.4cmactuationarmwasengagedtotheforce meterfromitsfarthermostpointandpulledretainingthe valve-integrated-microfluidicchip.Theforcevaluethatthevalvestarted totwistwasnoted.Torque(gcm)iscalculatedbymultiplyingthe armlengthandtheforce.Themeanvaluesofthreesuccessive mea-surementsareshowninFig.4.

WemeasuredthetorqueforPDMSandPMMAmicrochipsof twodifferentthickness.AsseeninFig.4a,the4.8mmthickPDMS devicerequiresapproximatelytwotimesthetorquerequiredfor 2.2mmthickPDMSdevice.Itisalsoevidentthattorquethat is requiredtoactivatethevalvedecreaseswithincreasinghole diam-eter.1.7mmdiameterPLArodwith600␮mdiameterholeshown inFig.2awasusedforPDMSdevicespunchedwith1.2,1.5and

2mmdiameterpunches.WehavealsotestedPDMSmicrodevices ofvaryingelasticitybyvaryingbasepolymer/curingagentratios duringfabrication.AsseeninFig.4a,stifferPDMSdevices(ratio of5:1)requirelesstorquefortheoperationofthevalve.Itshould benotedthatthesoftestPDMSdevice(ratioof20:1)with4.8mm thicknesswastornoffataround43gcmduringthetests.Therefore, thePLAplugmicrovalvecannotbeusedforveryelastic microde-vices.Forsuchadevice,theuseofotherrodmaterialscanbea solution.ForthePMMAdevice(Fig.4b),therodshowninFig.3c wasused.TheresultsweresimilartoPDMSdevice.Increasinghole diameterdecreasedtherequiredtorquewhileincreasingdevice thicknessincreasedit.

We have alsoinvestigated the sealing performance ofthese microvalves. We have seen that the diameter of the hole punched/drilledthroughthemicrofluidicdeviceisamore impor-tantparameterthanthedevicethicknessandelasticity(studied foronlyPDMSdevices).For thePDMSdevicesshowninFig.4a, thevalvesintegratedwith1.2and1.5mmdiameterpunchedholes withstood 2bar inlet pressure. However, when 2mm diameter punch was used tomake the through hole (which resulted in approximately1.55mmdiameterholewaistdue toelasticityof PDMS),thevalvestartedtoleakatapproximately240mbar. Sim-ilarresultswereobtainedforPMMAdevices.Forthevalvesmade by2.51mmdiameterhole,leakagewasobservedabove1.2bar, whereasotherdevicessurvivedtheleakagetestupto2bar.

(4)

Fig.4.Experimentaltorquevaluesmeasuredfor1.7mmdiameterrodvalve actu-ationforvarioussizesofholespunchedthroughthedevice:(a)PDMSdevicewith varyingdevicethicknessandbase/curingagentratios,(b)PMMAdevicewithvarying devicethickness.

Fig.5. AutomatedoperationoftheplugmicrovalveusinganArduinocontrolled servomotor.Thefluidissuppliedbyapressure pumpataninletpressureof 300mbar.Themicrochannelwidthandheightare300and100␮m,respectively.

2.4. Automationandlong-termperformance

We havealso demonstratedtheautomated operationofthe microplugvalveandevaluatedits longtermperformance (sup-plementary movie2).For this purpose,we used aservo motor (PZ-15320).Inthisconfiguration,wedidnotbendthetipoftherod andinsertedthestraightrodwith600␮mholeintotheservo actua-tionarmusingacustom-madeadapterasshowninFig.5.Thevalve waspressfittotheservoarm.ThemotorwasfixedonthePDMS device(10:1mixed,4.8mmthick)forstand-aloneoperation.Itwas controlledusinganArduinomicrocontrollertomakea90◦ clock-wiserotationandthentogobacktohomeposition.Theresponse timeofthevalveismeasuredtobeapproximately200ms.We actu-atedtheservousingasquaretrainpulsewithaperiodof10s.This

Fig.6.Controloftheflowinmultiplemicrochannelswithasinglevalve.Three straightPDMS/PDMSchannelswhichintersectatajunctionwhereaplugmicrovalve isplaced.Intheshownstate,valveisONforthechannelwithyellowsolutionand OFFfortheremainingtwochannels.(Forinterpretationofthereferencestocolour inthisfigurelegend,thereaderisreferredtothewebversionofthisarticle.)

resultedinmorethan8000ON/OFFcyclesforonedayoperation. Aftertwodaysofoperation,wehavenotobservedany malfunction-inginthemicrovalveperformanceverifyingtherobustnessofthe valve.Forapplicationsdemandingfasterswitchingtimes,stronger servomotorsshouldbeemployed.

3. Modesofoperation

Mostmicrofluidicvalvescanonlybeusedatasingle configu-ration,whichissimplyforcontrollingthefluidflowalongasingle microchannel.Despiteitssimplicityplugmicrovalvecanbeused inmultipleconfigurations,whichisanotheruniquefeatureofthis versatilevalve.Inthisstudy,wedemonstratethreedifferentmodes ofoperationfortheplugmicrovalveusing10:1mixed4.8mmthick PDMSdevices.

ThebasicoperationofthemicrovalveisshowninFig.3,which istheON/OFFfluidcontrolofasinglechannel.Thismodeof opera-tionisanalogoustosinglepolesinglethrow(SPST)typeelectrical switches.Asasecondmodeofoperation,theplugmicrovalvecan beusedformultipleintersectingchannelsasshowninFig.6.In this configuration thevalve turns onone straight channel at a timewhileclosingtheothers.Fig.6showsaPDMS/PDMS microflu-idicdevicedemonstratingthisfeature.Threestraightchannelsof 300␮m-widthand100␮m-heightwerefabricated,whichintersect atasinglejunction.A1.7mmroddiametervalvewith600␮mhole isplacedattheintersection.Eachchannelisturnedonsequentially andfilledwithDIsolutionsofdifferentcolors.

Inanothernovelconfiguration,theplugmicrovalveisusedto controlplumbingforsingleinletmultipleoutletdesigns.InFig.7,a PDMS/PDMSdevicewithasingleinletandtwooutletsareshown. Themicrochannelwidthandheightare300and100␮m, respec-tively.Thechannelbifurcationisdesignedsothattheinletchannel firstopenstoawidereservoir(3mm×1mm)whichthensplitsinto twochannels.Themicrovalveisplacedatthisintersection.Asseen inFig.7,suchaconfigurationprovidesthreedifferentstates.First, thetwochannelsarekeptOFF,thentheyareturnedON sequen-tiallyallowingfluidflowwhichisindicatedbyfluidbulgingoutat thecorrespondingoutlets.Thismodeofoperationresemblesthe singlepoledoublethrow(SPDT)typeelectricalswitcheswithan OFFstateinbetween,whichisreferredassinglepolecenteroff (SPCO)configuration.

(5)

Fig.7. Theuseoftheplugmicrovalveforbifurcatingjunctions.(a)Valveclosesboth channels.(b)and(c)OneofthetwooutletchannelsisturnedON.

4. Applicationsanddiscussion

Todemonstratethepracticalityofthevalveswehavedesigned three exemplary applications: a flow focusing device, a micro-droplet sorting device and a portable TNT detection device. Hydrodynamic focusing, droplet-based systems and portable biosensors/detectorsarewidelyusedacrossseveralmicrofluidic applications.Theplugmicrovalvesprovidekeyfeaturesinallthese applicationsaspresentedinthissection.

First, we fabricated a 2D hydrodynamic flow focusing PDMS/PDMSdevicewith50␮mdepth.Weusedreddyesolution tosheathfocusyellowdyesolutionasshowninFig.8.Thewidth ofsheathflowchannelis100␮m,thewidthofthemainchannel is200␮m.Weintegratedtwoplugvalveswith600␮mhole dia-mater.Fig.8ashowsthevalvesattheirOFFposition.Forclarityof thechannels,firstthechipisfilledwithreddyesolutionwhenthe valvesareON.Then,thesystemistestedfortheotherthreestates ofthetwovalves.Thecorrespondingmicroscopeimagesforeach stateareshowninFig.8b–d.ThevalvescanbeswitchedONorOFF withoutanyneedforstoppingtheinletflows.Thisallowsrapid enablingordisablingofhydrodynamicfocusingforquickly switch-ingfromfocusedtounfocusedstate.Wehavealsotestedthepartial closureofthevalves.Sinceitischallengingtocontroltheposition ofthevalveforsuchanoperation,itisbesttousethepresented plugmicrovalvesinthebinarymode,i.e.asONorOFFvalves.

Foramicrodroplet-basedfluidicsystem,weusedthevalvein adualchannelconfigurationasshowninFig.9.Inthisway,we wereabletosortmicrodropletsataT-junctionwhichispreviously shownusingcomplicatedhydrodynamiccontroloractivesorting methods[18,19].Wedesignedadropletmicrofluidicdevicewitha

T-junctiongeneratorandaT-junctionsorter.Twochannels down-streamthesortingjunctionarecrossedtogether.Aplugmicrovalve isplacedtothisintersectionasshowninFig.9a,b.Inthis config-uration,thevalveopensonechannelwhileclosingtheotherone whichcausesthemicrodropletstobesortedrightorleftatthe sort-ingjunction(Fig.9c,d).Fortheseexperimentsweformedwater dropletsin100mPa.ssiliconeoilusinginletpressuresof210mbar foroiland200mbarforwater.Suchaconfigurationcanbeused whenmicrodropletsarerequiredtogothroughdifferent opera-tionsforapplicationssuchasbiochemicalsynthesisorsinglecell studies[20].

Finally, we exploited the microvalves in a portable colori-metricassayfor rapidtrinitrotoluene(TNT) moleculedetection, whichiscriticalforenvironmentalsafetymonitoring.Weused sil-icananoparticleswhichweresynthesizedviasol-gelmethod,as theassayreagent.Silicananoparticlesweremadefluorescentby loadinganaromaticdyecalledpyrenewhichshowssensitive fluo-rescencequenchingtowardsTNT[21].APDMSdevicewasdesigned including a serpentine test channel, a straight control channel (300␮mwidth,100␮mheight)andtworeservoirs(6mm×2mm) forqualitativeobservation(Fig.10a).Plugmicrovalveswereplaced afterthereservoirstocontroltheflowalongthecontrolandtest channels.Flowisgeneratedbyapplyingnegativepressureatthe sharedoutlet using a 0.5ml syringe. Aqueoussolutionof silica nanoparticleswasintroducedtoinlet1andTNTsolution(0.25mM) wasintroducedtoinlet2.Upontheapplicationofnegative pres-sure,thevalveswereturnedONsequentially.Intheserpentinetest channel,TNTsolutionwasmixedwithnanoparticlesusing pas-sivediffusionmixingand filled thetestreservoir whereas bare nanoparticlesfollowedthestraightchannelandfilledthecontrol reservoir.ThetestruncycleisshowninSupplementarymovie3. Then,thevalveswereturnedOFFandthedevicewasimagedunder apalm-sizeUVillumination(366nm)boxforfluorescentdetection. ThecontrolreservoirgaveabrightbluecolorunderUVexcitation, whereasthetestreservoirwaspalebluesincefluorescenceofsilica nanoparticleswasquenchedbyTNTmolecules(Fig.10b)[22].

Asacontrolexperiment,thesameprocedureisrepeatedwith nanoparticle solutionreplaced withwater at inlet2. Mixing of nanoparticleswithwaterindicatednoinfluenceofdilutionon flu-orescencesignalasshown inFig.10c.Quantitativeanalysiscan beperformedusingthecolorimetricsignalsinthereservoirs.To dothis,weconvertedthecolorimetricsignalsobtainedintheUV channelintorelativeintensityvaluesusingImageJ.54.5%ofthe fluorescenceof silicananoparticleswere foundtobequenched by 0.25mM TNT based onthe differencebetween the intensi-tiesofcontrolandtestreservoirs(SupplementaryFig.1).Onthe otherhand, 8.9%intensitydecrease wasobserved upon mixing withwater.Thissimpledevicedemonstratesthepotentialofplug microvalvetobeusedforportablemicrofluidicdetectiondevices whichhavenumerousenvironmentalandhealthcareapplications [23,24].

TheTNTdetectiondevicehighlightsanothercriticalfeatureof theplugmicrovalve.Thevalvesdonotrequireanyoff-chip com-ponents,therefore,aftertheassayisperformedthevalvescanbe turnedOFFandthedevice canbeeasilytransferredtoanother stagesuchasintoachamberfortightlycontrolledincubationor amicroscopeforimaging.TheTNTdetectionassayshowninthis workis a very promising exampledemonstrating thepotential of theplug microvalve tobe extended for various microfluidic colorimetricassayswherelowcostandportablesingleusedevices areneeded.

5. Conclusions

In this study,we present a plug microvalvefor microfluidic devices.Thevalvecanbeeasilyintegratedtomicrofluidicsystems

(6)

Fig.8.(a)PDMSflowfocusingdevicewithtwoplugmicrovalves.(b–d)Threedifferentfocusingstatesachievedbydifferingpositionsofthevalves.Thefluidsweresupplied at200mbarinletpressure.

Fig.9.(a)PDMSdropletgenerationandsortingdevicewithasingleintegratedplugmicrovalve.Thechannelwidthandheightare400␮mand200␮m,respectively.(b) Schematicdrawingdemonstratingtheoperationofthevalve.Microdropletsarebeingsortedtothe(c)rightor(d)leftattheT-junction.

withoutanyneedforadditionalmolddesign.Ittakeslessthan5min tofabricateamicrovalveandapplyittoachannel.Wehave demon-stratedthatthesevalvescanbeusedforbothelasticPDMSchannels andrigidthermoplasticchannels.Theplugmicrovalveisextremely low-costandsuitedverywellfordevicesthatrequireafewvalves onamicrofluidicdevice.Theplugmicrovalveisalsoreusableand doesnotrequireanyoff-chipcomponents.Thevalveproved suc-cessfulforpressuresupto2barandhavealongcycletime.The plugmicrovalvecannotonlybeusedforflowcontrolacrossasingle microchannel,butcanalsobeutilizedtocontrolfluidflowat multi-channeljunctions.Todemonstratetheversatilityofthevalves,we usedtheplugmicrovalvestocontrolflowfocusing,microdroplet sortingandportablechemicalagentdetectioninthreeexemplary

microfluidic systems.Thesimplicityof thesevalvesmakethem goodcandidatesforavarietyofapplications.

Acknowledgments

ThisprojectwaspartiallysupportedbyEuropeanUnionFP7 Marie CurieCareer IntegrationGrant(no. 322019).P.B.is sup-portedbyTUBITAK-BIDEBgraduatefellowship.Theauthorsalso thankMuratSerhatliogluforhishelponthefigures,ZiyaIsiksacan andResulSaritasforcriticalreadingofthemanuscript.

(7)

Fig.10.(a)Plugmicrovalve-integrateddeviceforrapidandportablequalitativeTNTdetection.FluorescentsilicananoparticleandTNTsolutionwereintroducedatthetwo inlets.MixingofTNTandnanoparticlesolutionsleadtofluorescencequenchinginthetestchannnel.(b)DevicetestedwithTNTsolutionunderUVlight(366nm)excitation. (c)ControlassayrunwithwaterinsteadofTNTsolution.

AppendixA. Supplementarydata

Supplementarydataassociatedwiththisarticlecanbefound,in theonlineversion,athttp://dx.doi.org/10.1016/j.sna.2017.09.001.

References

[1]Y.Tanaka,T.Fujikawa,Y.Kazoe,T.Kitamori,Anactivevalveincorporatedinto amicrochipusingahighstrainelectroactivepolymer,Sens.ActuatorsB: Chem.184(2013)163–169.

[2]P.Shao,Z.Rummler,W.K.Schomburg,Polymermicropiezovalvewithasmall deadvolume,J.Micromech.Microeng.14(2003)305.

[3]H.Hartshorne,C.J.Backhouse,W.E.Lee,Ferrofluid-basedmicrochippumpand valve,Sens.ActuatorsB:Chem.99(2004)592–600.

[4]S.C.Jacobson,S.V.Ermakov,J.M.Ramsey,Minimizingthenumberofvoltage sourcesandfluidreservoirsforelectrokineticvalvinginmicrofluidicdevices, Anal.Chem.71(1999)3273–3276.

[5]B.Yang,Q.Lin,Alatchablemicrovalveusingphasechangeofparaffinwax, Sens.Actuators.A:Phys.134(2007)194–200.

[6]M.R.Romero,R.D.Arrua,C.I.A.Igarzabal,E.F.Hilder,Valvebasedonnovel hydrogels:fromsynthesistoapplication,Sens.ActuatorsB:Chem.188(2013) 176–184.

[7]G.Londe,A.Chunder,A.Wesser,L.Zhai,H.Cho,Microfluidicvalvesbasedon superhydrophobicnanostructuresandswitchablethermosensitivesurfacefor lab-on-a-chip(LOC)systems,Sens.ActuatorsB:Chem.132(2008)431– 438.

[8]J.T.Santini,M.J.Cima,R.Langer,Acontrolled-releasemicrochip,Nature397 (1999)335–338.

[9]A.-B.Wang,P.-H.Fang,Y.C.Su,Y.-W.Hsieh,C.-W.Lin,Y.-T.Chen,etal.,A novellab-on-a-chipdesignbysequentialcapillary-gravitationalvalvesfor urinarycreatininedetection,Sens.ActuatorsB:Chem.222(2016)721–727.

[10]A.K.Au,H.Lai,B.R.Utela,A.Folch,MicrovalvesandmicropumpsforBioMEMS, Micromachines2(2011)179–220.

[11]K.W.Oh,C.H.Ahn,Areviewofmicrovalves,J.Micromech.Microeng.16 (2006)R13.

[12]M.A.Unger,H.-P.Chou,T.Thorsen,A.Scherer,S.R.Quake,Monolithic microfabricatedvalvesandpumpsbymultilayersoftlithography,Science288 (2000)113–116.

[13]D.W.Lee,Y.-H.Cho,Adigitaldilutionchipusinginter-wellvalvescontrolled byaternarymicrofluidicmultiplexer,Sens.ActuatorsB:Chem.155(2011) 380–387.

[14]K.Hosokawa,R.Maeda,Apneumatically-actuatedthree-waymicrovalve fabricatedwithpolydimethylsiloxaneusingthemembranetransfer technique,J.Micromech.Microeng.10(2000)415.

[15]D.B.Weibel,M.Kruithof,S.Potenta,S.K.Sia,A.Lee,G.M.Whitesides, Torque-actuatedvalvesformicrofluidics,Anal.Chem.77(2005)4726–4733.

[16]Z.Cai,J.Xiang,W.Wang,Apinch-valveforcentrifugalmicrofluidicplatforms anditsapplicationinsequentialvalvingoperationandplasmaextraction, Sens.ActuatorsB:Chem.221(2015)257–264.

[17]D.C.Duffy,J.C.McDonald,O.J.Schueller,G.M.Whitesides,Rapidprototyping ofmicrofluidicsystemsinpoly(dimethylsiloxane),Anal.Chem.70(1998) 4974–4984.

[18]T.Glawdel,C.Elbuken,C.Ren,Passivedroplettraffickingatmicrofluidic junctionsundergeometricandflowasymmetries,LabChip11(2011) 3774–3784.

[19]H.-D.Xi,H.Zheng,W.Guo,A.M.Ga ˜nán-Calvo,Y.Ai,C.-W.Tsao,etal.,Active dropletsortinginmicrofluidics:areview,LabChip17(2017)751–771.

[20]H.N.Joensson,H.AnderssonSvahn,Dropletmicrofluidics—atoolforsinglecell analysis,Angew.Chem.Int.Ed.51(2012)12176–12192.

[21]P.Beyazkilic,A.Yildirim,M.Bayindir,Nanoconfinementofpyrenein mesostructuredsilicananoparticlesfortracedetectionofTNTintheaqueous phase,Nanoscale6(2014)15203–15209.

[22]Y.Wang,A.La,Y.Ding,Y.Liu,Y.Lei,Novelsignal-amplifyingfluorescent nanofibersfornaked-eye-basedultrasensitivedetectionofburiedexplosives andexplosivevapors,Adv.Funct.Mater.22(2012)3547–3555.

[23]J.C.Jokerst,J.M.Emory,C.S.Henry,Advancesinmicrofluidicsfor environmentalanalysis,Analyst137(2012)24–34.

[24]S.Nayak,N.R.Blumenfeld,T.Laksanasopin,S.K.Sia,Point-of-carediagnostics: recentdevelopmentsinaconnectedage,Anal.Chem.89(2017)102–123.

Biographies

MustafaTahsinGulerreceivedhisB.Sc.degreeinPhysicsfromGaziUniversityand hisPh.D.degreefromKirikkaleUniversityPhysics.Since2015,hehasbeenworking asapost-doctoralfellowatBilkentUniversity,NationalNanotechnologyResearch Center–UNAM.Hisresearchinterestsincluderapidmicrofabricationandintegrated microfluidicsystems.

PinarBeyazkilicreceivedherB.Sc.degreeinChemicalEngineeringfromHacettepe University,Turkeyin2011andMScdegreeintheDepartmentofMaterials Sci-enceandNanotechnologyin2013.ShepursuesherPh.D.degreeinDepartmentof MaterialsScienceandNanotechnologyatNationalNanotechnologyResearch Cen-ter–UNAMatBilkentUniversity,Ankara,Turkey.Herresearchinterestsinclude functionalsurfaces,nanomaterialsandbiochemicalassays.

CaglarElbukenreceivedhisB.Sc.degreeinElectricalandElectronicsEngineering fromBilkentUniversity,Turkeyin2004andhisPh.D.degreeinMechanicaland MechatronicsEngineeringfromUniversityofWaterloo,Canadain2008.Heworked asapostdoctoralassociateattheWaterlooMicrofluidicsLaboratorybeforejoining toAbbottPoint-of-CareasaseniorR&Dscientist.Later,hejoinedKocUniversity asaresearchassistantprofessor.Since2012,heisworkingatBilkentUniversity, NationalNanotechnologyResearchCenterasanassistantprofessor.Hisresearch interestsincludelab-on-a-chipdevices,microdroplet-basedmicrofluidicsystems andsensingtechnologiesforportableapplications.

Referanslar

Benzer Belgeler

Each paper should have a title page (cover page) where the title of the paper, name of the student, student number and the date of submission is indicated.. The essay can be

Using the device results in mono- cuspidalisation of the mitral valve by preserving the anterior leaflet and the subvalvular apparatus.. As the anterior leaflet contributes 70% of the

The concept of the mitral web is to prevent leaflet prolapse at the annular level by using polypropylene stitches or steel wire bars incorporated to the rigid annuloplasty ring..

Keywords: Velocity profile, Reynolds shear stress, Vegetation, Turbulence intensity, Secondary current, Turbulent kinetic energy... iv

If A’ ’s support in the updated database is smaller than the minimum support threshold, remove it from consideration (It is a loser).. new set of Ccvndidates are

Örneğin, 1200 ışık yılı (bir ışık yılı yaklaşık 10 trilyon km’dir) uzaklıktaki Orion Bulutsusu gökyüzünde Ay’dan biraz büyük görünür.. Ama gerçekte 25

Case report: A rare condition of secondary synovial osteochondromatosis of the shoulder joint in a young female patient. Davis RI, Hamilton A,

1950'li yılların sonunda fotokopi makinesinin bulunması (Fotokopi makinası nedir..., 2009) ve enformasyon merkezlerinde yaygın bir şekilde kullanılmaya başlanması,