• Sonuç bulunamadı

ON WEIGHTED OSTROWSKI TYPE INEQUALITIES FOR FUNCTIONS OF TWO VARIABLES WITH BOUNDED VARIATION

N/A
N/A
Protected

Academic year: 2021

Share "ON WEIGHTED OSTROWSKI TYPE INEQUALITIES FOR FUNCTIONS OF TWO VARIABLES WITH BOUNDED VARIATION"

Copied!
19
0
0

Yükleniyor.... (view fulltext now)

Tam metin

(1)

ON WEIGHTED OSTROWSKI TYPE INEQUALITIES FOR FUNCTIONS OF TWO VARIABLES WITH BOUNDED VARIATION

HUSEYIN BUDAK∗, MEHMET ZEKI SARIKAYA

Department of Mathematics, Faculty of Science and Arts, D¨uzce University, D¨uzce-Turkey

Abstract. In this paper, we obtain new weighted Ostrowski type inequalities for functions of two independent variables with bounded variation. Applications for qubature formulae are also given.

Keywords. Bounded variation; Ostrowski type inequality; Riemann-Stieltjes integral. 2010 Mathematics Subject Classification. 26D15, 26B30, 26D10, 41A55.

1. Introduction

Let f : [a, b] → R be a differentiable mapping on (a, b) whose derivative f0: (a, b) → R is bounded on (a, b), i.e., k f0k:= sup

t∈(a,b)

| f0(t)| < ∞. From [19], we have the inequality

f(x) − 1 b− a b Z a f(t)dt ≤ " 1 4+ x−a+b2 2 (b − a)2 # (b − a) f0 ∞, ∀x ∈ [a, b]. (1.1)

The constant 14 is the best possible. This inequality is well known in the literature as the Os-trowski inequality.

In [15], Dragomir proved following Ostrowski type inequalities related functions of bounded variation.

Corresponding author.

E-mail addresses: hsyn.budak@gmail.com (H. Budak), sarikayamz@gmail.com (M.Z. Sarikaya). Received December 2, 2016; Accepted March 10, 2017.

c

2017 Mathematical Research Press

(2)

Theorem 1.1. Let f : [a, b] → R be a mapping of bounded variation on [a, b] . Then b Z a f(t)dt − (b − a) f (x) ≤ 1 2(b − a) + x−a+ b 2  b _ a ( f )

holds for all x∈ [a, b] . The constant 12 is the best possible.

In [22], Tseng et al. gave the following weighted Ostrowski type inequalities for functions of bounded variation.

Theorem 1.2. Let us have 0 ≤ α ≤ 1, let w : [a, b] → [0, ∞) continuous and positive on (a, b) and h: [a, b] → R be differentiable such that h0(t) = w(t) on [a, b] . Let a1= h−1 1 −α

2 h(a) + α

2h(b) ,

b1= h−1 α2h(a) + 1 −α

2 h(b) . If f : [a, b] → R be mapping of bounded variation on [a,b],

then for all x∈ [a1, b1] , we have the inequality

b Z a w(t) f (t)dt −  (1 − α) f (x) + α f(a) + f (b) 2 Zb a w(t)dt ≤ K b _ a ( f ) , (1.2) where K:=                1−α 2 b R a w(t)dt + h(x) − h(a)+h(b) 2 , if0 ≤ α ≤ 1 2, max  1−α 2 b R a w(t)dt + h(x) − h(a)+h(b) 2 , α 2 b R a w(t)dt  , if 12 < α <23, α 2 b R a w(t)dt, if 23 ≤ α ≤ 1 and b W a

( f ) denotes the total variation of f on interval [a, b] . In (1.2), the constant 1−α2 for 0 ≤ α ≤12 and the constant α

2 for 2

3 ≤ α ≤ 1 are the best possible.

2. Preliminaries

In 1910, Fr´echet [17] has given the following characterization for the double Riemann-Stieltjes integral. Assume that f (x, y) and g(x, y) are defined over the rectangle Q = [a, b] × [c, d]; let R be the divided into rectangular subdivisions, or cells, by the net of straight lines x= xi, y = yi,

a= x0< x1< ... < xn= b, and c = y0< y1< ... < ym= d;

let ξi, ηjbe any numbers satisfying ξi∈ [xi−1, xi] , ηj∈yj−1, yj , (i = 1, 2, ..., n; j = 1, 2, ..., m);

(3)

sum S = ∑n i=1 m ∑ j=1 f ξi, ηj 

∆11g(xi, yj) tends to a finite limit as the norm of the subdivisions

approaches zero, the integral of f with respect to g is said to exist. We call this limit the restricted integral, and designate it by the symbol

b Z a d Z c f(x, y)dydxg(x, y). (2.1)

If S is replaced by the sum S∗= ∑n

i=1 m ∑ j=1 f ξi j, ηi j 

∆11g(xi, yj), where ξi j, ηi j are numbers

satis-fying ξi j∈ [xi−1, xi] , ηi j ∈yj−1, yj , we call the limit, when it exist, the unrestricted integral,

and designate it by the symbol

(∗) b Z a d Z c f(x, y)dydxg(x, y). (2.2)

Clearly, the existence of (2.2) implies both the existence of (2.1) and its equality (2.2). On the other hand, Clarkson [13] has shown that the existence of (2.1) does not imply the existence of (2.2).

In [12], Clarkson and Adams gave the following definitions of bounded variation for func-tions of two variables.

The function f (x, y) is assumed to be defined in rectangle R(a ≤ x ≤ b, c ≤ y ≤ d). By the term net we shall, unless otherwise specified mean a set of parallels to the axes:

x = xi(i = 0, 1, 2, ..., m), a = x0< x1< ... < xm= b;

y = yj( j = 0, 1, 2, ..., n), c = y0< y1< ... < yn= d.

Each of the smaller rectangles into which R is devided by a net will be called a cell. We employ the notation

∆11f(xi, yj) = f (xi+1, yj+1) − f (xi+1, yj) − f (xi, yj+1) + f (xi, yj)

∆ f (xi, yj) = f (xi+1, yj+1) − f (xi, yj)

The total variation function, φ (x) [ψ(y)] , is defined as the total variation of f (x, y) [ f (x, y)] considered as a function of y [x] alone in interval (c, d) [(a, b)],or as +∞ if f (x, y) [ f (x, y)] is of unbounded variation.

(4)

Definition 2.1. (Vitali-Lebesque-Fr´echet-de la Vall´ee Poussin). The function f (x, y) is said tobe of bounded variation if the sum

m−1 , n−1

i=0 , j=0 ∆11f(xi, yj)

is bounded for all nets.

Definition 2.2. (Fr´echet). The function f (x, y) is said tobe of bounded variation if the sum

m−1 , n−1

i=0 , j=0 εiεj ∆11f(xi, yj)

is bounded for all nets and all possible choices of εi= ±1 and εj= ±1.

Definition 2.3. (Hardy-Krause). The function f (x, y) is said tobe of bounded variation if it satisfies the condition of Definition 2.1 and if in addition f (x, y) is of bounded variation in y (i.e. φ (x) is finite) for at least one x and f (x, y) is of bounded variation in y (i.e. ψ(y) is finite) for at least one y.

Definition 2.4. (Arzel`a). Let (xi, yi) (i = 0, 1, 2, ..., m) be any set of points satisfiying the

condi-tions

a = x0< x1< ... < xm= b;

c = y0< y1< ... < ym= d.

Then f (x, y) is said tobe of bounded variation if the sum∑m

i=1

|∆ f (xi, yi)| is bounded for all such

sets of points.

Therefore, one can define the consept of total variation of a function of variables, as follows: Let f be of bounded variation on Q = [a, b] × [c, d], and let ∑ (P) denote the sum

n

i=1 m

j=1 ∆11f(xi, yj)

corresponding to the partition P of Q. The number

_ Q ( f ) := d _ c b _ a ( f ) := sup

(P) : P ∈ P(Q) , is called the total variation of f on Q.

(5)

Lemma 2.5. (Integrating by parts) If f ∈ RS(g) on Q, then g ∈ RS( f ) on Q, and we have d Z c b Z a f(t, s)dtdsg(t, s) + d Z c b Z a g(t, s)dtdsf(t, s)

= f (b, d)g(b, d) − f (b, c)g(b, c) − f (a, d)g(a, d) + f (a, c)g(a, c).

(2.3)

Lemma 2.6. Assume that Ω ∈ RS(g) on Q and g is of bounded variation on Q. Then d Z c b Z a Ω(x, y)dxdyg(x, y) ≤ sup (x,y)∈Q |Ω(x, y)|_ Q (g) . (2.4)

In [18], Jawarneh and Noorani obtained the following Ostrowski type inequality for functions of two variables with bounded variation.

Theorem 2.7. Let f : Q →→ R be mapping of bounded variation on Q. Then for all (x, y) ∈ Q, we have inequality (b − a) (d − c) f (x, y) − d Z c b Z a f(t, s)dtds ≤ 1 2(b − a) + x−a+ b 2   1 2(d − c) + y−c+ d 2  _ Q ( f ) , (2.5) whereW Q

( f ) denotes the total (double) variation of f on Q.

In [6], Budak and Sarikaya proved the following generalization of the inequality (2.5).

Theorem 2.8. Let f : Q → R be mapping of bounded variation on Q. Then for all (x, y) ∈ Q, we have inequality |(b − a) (d − c) [(1 − λ ) (1 − η) f (x, y) +(1 − λ ) η 2 [ f (a, y) + f (b, y)] + λ (1 − η ) 2 [ f (x, c) + f (x, d)] +λ η 4 [ f (a, c) + f (a, d) + f (b, c) + f (b, d)]  − b Z a d Z c f(t, s)dsdt ≤ max  λ b− a 2 ,  x−(2 − λ ) a + λ b 2  , (2 − λ ) b + λ a 2 − x  × max  ηd− c 2 ,  y−(2 − η) c + ηd 2  , (2 − η) d + ηc 2 − y  b _ a d _ c ( f ) (2.6)

(6)

for any λ , η ∈ [0, 1] and a + λb−a2 ≤ x ≤ b − λb−a2 , c+ ηd−c2 ≤ y ≤ d − ηd−c2 , where b W a d W c ( f ) denotes he total variation of f on Q.

For more information and recent developments on inequalities for mappings of bounded vari-ation, we refer authors to [1]-[11], [14]-[16], [18], [20]-[25] and the references therein. The aim of this paper is to establish new weighted Ostrowski type inequalities for functions of two inde-pendent variables with bounded variation.

3. Main results

Let us have 0 ≤ α, β ≤ 1 and let w1: [a, b] → [0, ∞) continuous and positive on (a, b) and

h1: [a, b] → R be differentiable such that h01(t) = w1(t) on [a, b] . Similarly, let w2: [c, d] → [0, ∞)

continuous and positive on (c, d) and h2: [c, d] → R be differentiable such that h02(t) = w2(t)

on [c, d] . Let a1 = h−11 1 −α2 h1(a) +α2h1(b) , b1 = h−11 α2h1(a) + 1 −α2 h1(b) , c1=

h−12 1 −β2h2(c) +β2h2(d)and d1= h−12  β 2h2(c) +  1 −β2h2(d).

Theorem 3.1. If f : [a, b] × [c, d] → R is a mapping of bounded variation on [a, b] × [c, d] , then we have the following inequality for all(x, y) ∈ [a1, b1] × [c1, d1] ,

  b Z a w1(t)dt     d Z c w2(t)dt  [(1 − α) (1 − β ) f (x, y) + (1 − α) β f(x, c) + f (x, d) 2 + α (1 − β ) f(a, y) + f (b, y) 2  +αβ f(a, c) + f (a, d) + f (b, c) + f (b, d) 4 − b Z a d Z c w1(t)w2(s) f (t, s)dsdt ≤ KL b _ a d _ c ( f ) , (3.1) where K=                1−α 2 b R a w1(t)dt + h1(x) − h1(a)+h1(b) 2 , if0 ≤ α ≤ 1 2, max  1−α 2 b R a w1(t)dt + h1(x) − h1(a)+h1(b) 2 , α 2 b R a w1(t)dt  , if 12 < α <23, α 2 b R a w1(t)dt, if 23 ≤ α ≤ 1,

(7)

and L=                1−β 2 d R c w2(t)dt + h2(y) − h2(c)+h2(d) 2 , if0 ≤ β ≤ 1 2, max  1−β 2 d R c w2(t)dt + h2(y) − h2(c)+h2(d) 2 , β 2 d R c w2(t)dt  , if 12 < β < 23, β 2 d R c w2(t)dt, if 23 ≤ β ≤ 1, and b W a d W c

( f ) denotes the total variation of f on interval [a, b] × [c, d] .

In (3.1), the constant (1−α)(1−β )4 for α, β ∈0,12 and the constant α β4 for α, β ∈23, 1 are the best possible.

Proof. For (x, y) ∈ [a1, b1] × [c1, d1] , we define the following mappings q, p by

q(t) =    h1(t) − 1 −α 2 h1(a) + α 2h1(b) , t ∈ [a, x), h1(t) −α 2h1(a) + 1 − α 2 h1(b) , t ∈ [x, b] , p(s) =    h2(s) − h 1 −β2  h2(c) +β2h2(d) i , s ∈ [c, y), h2(s) −hβ 2h2(c) +  1 −β2  h2(d)i, s ∈ [y, d] .

Using the q(t) and p(s) kernels, we have

b Z a d Z c q(t)p(s)dsdtf(t, s) = x Z a y Z c  h1(t) − h 1 −α 2  h1(a) + α 2h1(b) i h2(s) −  1 −β 2  h2(c) + β 2h2(d)  dsdtf(t, s) + x Z a d Z y  h1(t) − h 1 −α 2  h1(a) +α 2h1(b) i h2(s) −  β 2h2(c) +  1 −β 2  h2(d)  dsdtf(t, s) + b Z x y Z c  h1(t) −hα 2h1(a) +  1 −α 2  h1(b)i  h2(s) −  1 −β 2  h2(c) +β 2h2(d)  dsdtf(t, s) + b Z x d Z y  h1(t) −hα 2h1(a) +  1 −α 2  h1(b)i  h2(s) −  β 2h2(c) +  1 −β 2  h2(d)  dsdtf(t, s) = I1+ I2+ I3+ I4.

(8)

By integrating by parts, we get I1= x Z a y Z c  h1(t) − h 1 −α 2  h1(a) + α 2h1(b) i ×  h2(s) −  1 −β 2  h2(c) + β 2h2(d)  dsdtf(t, s) =hh1(x) −1 −α 2  h1(a) −α 2h1(b) i ×  h2(y) −  1 −β 2  h2(c) −β 2h2(d)  f(x, y) +hh1(x) −1 −α 2  h1(a) −α 2h1(b) i βh2(d) − h2(c) 2  f(x, c) +  αh1(b) − h1(a) 2   h2(y) −  1 −β 2  h2(c) −β 2h2(d)  f(a, y) +  αh1(b) − h1(a) 2   βh2(d) − h2(c) 2  f(a, c) − x Z a y Z c w1(t)w2(s) f (t, s)dsdt. (3.2)

Using a similar method, we have

I2= x Z a d Z y  h1(t) − h 1 −α 2  h1(a) + α 2h1(b) i ×  h2(s) −  β 2h2(c) +  1 −β 2  h2(d)  dsdtf(t, s) =hh1(x) −  1 −α 2  h1(a) − α 2h1(b) i βh2(d) − h2(c) 2  f(x, d) −hh1(x) −  1 −α 2  h1(a) − α 2h1(b) i h2(y) − β 2h2(c) −  1 −β 2  h2(d)  f(x, y) +  αh1(b) − h1(a) 2   βh2(d) − h2(c) 2  f(a, d) −  αh1(b) − h1(a) 2   h2(y) −β 2h2(c) −  1 −β 2  h2(d)  f(a, y) − x Z a d Z y w1(t)w2(s) f (t, s)dsdt, (3.3)

(9)

I3= b Z x y Z c  h1(t) −hα 2h1(a) +  1 −α 2  h1(b)i ×  h2(s) −  1 −β 2  h2(c) +β 2h2(d)  dsdtf(t, s) =  αh1(b) − h1(a) 2   h2(y) −  1 −β 2  h2(c) −β 2h2(d)  f(b, y) +  αh1(b) − h1(a) 2   βh2(d) − h2(c) 2  f(b, c) −hh1(x) −α 2h1(a) −  1 −α 2  h1(b)i  h2(y) −  1 −β 2  h2(c) −β 2h2(d)  f(x, y) −hh1(x) − α 2h1(a) −  1 −α 2  h1(b) i βh2(d) − h2(c) 2  f(x, c) − b Z x y Z c w1(t)w2(s) f (t, s)dsdt, (3.4) and I4= b Z x d Z y  h1(t) − hα 2h1(a) +  1 −α 2  h1(b) i ×  h2(s) −  β 2h2(c) +  1 −β 2  h2(d)  dsdtf(t, s) =  αh1(b) − h1(a) 2   βh2(d) − h2(c) 2  f(b, d) −  αh1(b) − h1(a) 2   h2(y) − β 2h2(c) −  1 −β 2  h2(d)  f(b, y) −hh1(x) −α 2h1(a) −  1 −α 2  h1(b)i  βh2(d) − h2(c) 2  f(x, d) +hh1(x) −α 2h1(a) −  1 −α 2  h1(b)i  h2(y) −β 2h2(c) −  1 −β 2  h2(d)  f(x, y) − b Z x d Z y w1(t)w2(s) f (t, s)dsdt. (3.5)

(10)

Adding (3.2)-(3.5), we have b Z a d Z c q(t)p(s)dsdtf(t, s) =   b Z a w(t)dt     d Z c g(t)dt    (1 − α) (1 − β ) f (x, y) + (1 − α) β f(x, c) + f (x, d) 2 +α (1 − β ) f(a, y) + f (b, y) 2 + αβ f(a, c) + f (a, d) + f (b, c) + f (b, d) 4  − b Z a d Z c w1(t)w2(s) f (t, s)dsdt.

On the other hand, using Lemma 2.2, we have b Z a d Z c q(t)p(s)dsdtf(t, s) ≤ sup t∈[a,b] |q(t)| sup s∈[c,d] |p(s)| b _ a d _ c ( f ) = max{h1(x) − [(1 − α 2)h1(a) + α 2h1(b)], [ α 2h1(a) + (1 − α 2)h1(b)] − h1(x), α 2[h1(b) − h1(a)]} × max{h2(y) − [(1 −β 2)h2(c) + β 2h2(d)], [ β 2h2(c) + (1 − β 2)h2(d)] − h2(y), β 2[h2(d) − h2(c)]} b _ a d _ c ( f ) = max 1 − α 2 [h1(b) − h1(a)] + h1(x) −h1(a) + h1(b) 2 ,α 2[h1(b) − h1(a)]  × max 1 − β 2 [h2(d) − h2(c)] + h2(y) − h2(c) + h2(d) 2 ,β 2 [h2(d) − h2(c)]  b _ a d _ c ( f ) = max    1 − α 2 b Z a w1(t)dt + h1(x) −h1(a) + h1(b) 2 ,α 2 b Z a w1(t)dt    × max    1 − β 2 d Z c w2(t)dt + h2(y) − h2(c) + h2(d) 2 ,β 2 d Z c w2(t)dt    b _ a d _ c ( f ) = KL b _ a d _ c ( f ) .

(11)

This completes the proof of inequality (3.1). Assume (α, β ) ∈0,12 × 0,12 . Suppose (3.1) holds with a constant A = A1.A2, A1, A2> 0, that is,

  b Z a w1(t)dt     d Z c w2(t)dt  [(1 − α) (1 − β ) f (x, y) + (1 − α) β f(x, c) + f (x, d) 2 + α (1 − β ) f(a, y) + f (b, y) 2  +αβ f(a, c) + f (a, d) + f (b, c) + f (b, d) 4 − b Z a d Z c w1(t)w2(s) f (t, s)dsdt ≤  A1 b Z a w1(t)dt + h1(x) − h1(a) + h1(b) 2   ×  A2 d Z c w2(t)dt + h2(y) − h2(c) + h2(d) 2   b _ a d _ c ( f ) . (3.6) If we choose f : Q → R with f(t, s) =    1, if (t, s) =h1h1(a)+h1(b) 2  , h2 h 2(c)+h2(d) 2  , 0, if (t, s) ∈ [a, b] × [c, d] \nh1h1(a)+h1(b) 2  , h2 h 2(c)+h2(d) 2 o ,

then f is of bounded variation on Q. For (x, y) =h1h1(a)+h1(b)

2  , h2 h 2(c)+h2(d) 2  , we have β f(x, c) + f (x, d) 2 = 0, f(a, y) + f (b, y) 2 = 0, f(a, c) + f (a, d) + f (b, c) + f (b, d) 4 = 0 b Z a d Z c w1(t)w2f(t, s)dsdt = 0, and _ Q ( f ) = 4.

Putting this equalities in (3.6), we get   b Z a w1(t)dt     d Z c w2(t)dt  (1 − α) (1 − β ) ≤ 4   b Z a w1(t)dt     d Z c w2(t)dt  A1A2.

It follows that A ≥(1−α)(1−β )4 which implies (1−α)(1−β )4 is the best possible.

The sharpness of inequality (3.1) for α, β ∈23, 1 can be easily proved by choosing the function f f(t, s) =    1, if (t, s) = (b, d) , 0, if (t, s) ∈ [a, b] × [c, d] \ {(b, d)} . This completes the proof.

(12)

Remark 3.2. If we choose w(t) ≡ g(s) ≡ 1 (h1(t) = t and h2(s) = s), and α = β = 0, then the inequality (3.1) reduces the inequality (2.5).

Remark 3.3. If we choose w(t) ≡ g(s) ≡ 1 (h1(t) = t and h2(s) = s), α = β =13, x =a+b2 and

y= c+d2 in inequality (3.1), then we have the Simpson’s inequality

f(b, d) + f (b, c) + f (a, d) + f (a, c) 36 +f a, c+d 2  + f a+b 2 , c + f b, c+d 2  + f a+b 2 , d  9 +4 9f  a + b 2 , c+ d 2  − 1 (b − a) (d − c) b Z a d Z c f(t, s)dsdt ≤ 1 9 b _ a d _ c ( f ),

which is proved by Jawarneh and Noorani in [18].

Remark 3.4. If we choose w1(t) ≡ w2(s) ≡ 1 (h1(t) = t and h2(s) = s), α = 1, β = 0, x = a+b2

and y = c+d2 in inequality (3.1), then we have

f a,c+d2  + f b,c+d2  2 − 1 (b − a) (d − c) b Z a d Z c f(t, s)dsdt ≤ 1 4 _ Q ( f ),

which is given by Budak and Sarikaya in [10]. The constant 14 is the best possible.

Remark 3.5. If we choose w1(t) ≡ w2(s) ≡ 1 (h1(t) = t and h2(s) = s), α = 0, β = 1, x = a+b2

and y = c+d2 in inequality (3.1), then we have

f a+b2 , c + f a+b2 , d 2 − 1 (b − a) (d − c) b Z a d Z c f(t, s)dsdt ≤ 1 4 _ Q ( f ),

(13)

Remark 3.6. If we choose w1(t) ≡ w2(s) ≡ 1 (h1(t) = t and h2(s) = s), α = β = 12, x = a+b2

and y = c+d2 in the inequality (3.1), then we have

1 4  f (a, c) + f (a, d) + f (b, c) + f (b, d) 4 + 1 2  f  a,c+ d 2  + f  b,c+ d 2  + f a + b 2 , c  + f a + b 2 , d  + f a + b 2 , c+ d 2  − 1 (b − a) (d − c) b Z a d Z c f(t, s)dsdt ≤ 1 16 _ Q ( f ), (3.7)

which is given by Budak and Sarikaya in [6]. The constant 161 is the best possible.

Corollary 3.7. (Weighted Ostrowski Inequality) Under the assumption Theorem 3.1, if we choose α = β = 0, for all (x, y) ∈ [a, b] × [c, d], then we have the following weighted Ostrowski inequality   b Z a w1(t)dt     d Z c w2(t)dt  f(x, y) − b Z a d Z c f(t, s)dsdt ≤   1 2 b Z a w1(t)dt + h1(x) −h1(a) + h1(b) 2     1 2 d Z c w2(t)dt + h2(y) −h2(c) + h2(d) 2   b _ a d _ c ( f ).

Corollary 3.8. (Weighted Trapezoid Inequality) Under the assumption Theorem 3.1, if we choose α = β = 1, then we have the following weighted trapezoid inequality;

f(b, d) + f (b, c) + f (a, d) + f (a, c) 4   b Z a w1(t)dt     d Z c w2(t)dt  − b Z a d Z c f(t, s)dsdt ≤ 1 4   b Z a w1(t)dt     d Z c w2(t)dt   b _ a d _ c ( f ).

(14)

Corollary 3.9. (Weighted Simpson’s Inequality) Under assumption Theorem 3.1, if we choose α = β = 13, x = h−11 h 1(a)+h1(b) 2  and y= h−12 h2(c)+h2(d) 2 

, then we have the weighted Simp-son’s inequality   b Z a w1(t)dt     d Z c w2(t)dt    f (b, d) + f (b, c) + f (a, d) + f (a, c) 36 + f a, c+d 2  + f a+b 2 , c + f b, c+d 2  + f a+b 2 , d  9 + 4 9f  a + b 2 , c+ d 2  − b Z a d Z c f(t, s)dsdt ≤1 9   b Z a w1(t)dt     d Z c w2(t)dt   b _ a d _ c ( f ).

4. Applications for qubature formulae

Now, we apply the results presented previous section to qubature formulae.

Let us consider the arbitrary division In: a = x0< x1< ... < xn= b, Jm: c = y0< y1< ... <

ym= d, l1i := xi+1− xi, and l2j:= yj+1− yj, υ (l1) := max l1i i= 0, ..., n − 1 , υ (l2) := max n l2j j= 0, ..., m − 1 o , υ (W1) := max W1i i= 0, ..., n − 1 , W1i:= xi+1 Z xi w1(u)du = h1(xi+1) − h1(xi), υ (W2) := max n W2j j= 0, ..., m − 1 o , W2j:= yj+1 Z yj w2(u)du = h2(yj+1) − h2(yj).

Let us have α, β , w1, h1, w2, and h2defined as in Theorem 3.1. Let ai1= h−11 ((1 −α2)h1(xi) + α 2h1(xi+1)), b i 1= h −1 1 α2h1(xi) + 1 − α 2 h1(xi+1) , c j 1= h −1 2  1 −β2  h2(yj+1) +β2h2(yj+1)  and d1j= h−122h2(yj) +  1 −β2h2(yj+1)  , ξi∈ai1, bi1 , (i = 0, ..., n − 1) and ηj∈ h c1j, d1ji ( j = 0, ..., m − 1).

(15)

Define the sum A( f , w1, h1, w2, h2, In, Jm) = n−1

i=0 m−1

j=0 (1 − α) (1 − β ) f ξi, ηj  + (1 − α) β f(ξi, yj) + f (ξi, yj+1) 2 + α (1 − β ) f(xi, ηj) + f (xi+1, ηj) 2 +αβ f(xi, yj) + f (xi, yj+1) + f (xi+1, yj) + f (xi+1, yj+1) 4  W1iW2j.

Theorem 4.1. Let f defined as in Theorem 3.1 and let

b Z a d Z c w1(t)w2(s) f (t, s)dsdt = A( f , w1, h1, w2, h2, In, Jm) + R( f , w1, h1, w2, h2, In, Jm).

The remainder term R( f , w1, h1, w2, h2, In, Jm) satisfies

|R( f , w1, h1, w2, h2, In, Jm)| ≤ n−1

i=0 m−1

j=0 KiLj xi+1 _ xi yj+1 _ yj ( f ) ≤ M1N1 b _ a d _ c ( f ) ≤ M2N2 b _ a d _ c ( f ) ≤ M3N3 b _ a d _ c ( f ), (4.1) where Ki=          1−α 2 W i 1+ h1(ξi) − h1(xi)+h1(xi+1) 2 , if0 ≤ α ≤ 1 2, maxn1−α2 W1i+ h1(ξi) − h1(xi)+h1(xi+1) 2 , α 2W i 1 o , if 12 < α <23 α 2W i 1, if 2 3 ≤ α ≤ 1, (i = 0, ..., n − 1) , M1=            max i=0,...,n−1 n 1−α 2 W1i+ h1(ξi) − h1(xi)+h1(xi+1) 2 o , if0 ≤ α ≤12, max i=0,...,n−1 n max n 1−α 2 υ (W1) + h1(ξi) − h1(xi)+h1(xi+1) 2 , α 2υ (W1) oo , if 12< α < 23, α 2υ (W1), if 2 3≤ α ≤ 1, M2=            1−α 2 υ (W1) +i=0,...,n−1max h1(ξi) − h1(xi)+h1(xi+1) 2 , if0 ≤ α ≤ 1 2, max i=0,...,n−1 n maxn1−α2 υ (W1)dt + h1(ξi) − h1(xi)+h1(xi+1) 2 , α 2υ (W1) oo , if 12< α < 23, α 2υ (W1), if 2 3≤ α ≤ 1, M3=    (1 − α) υ(W1) if 0 ≤ α ≤23, α 2υ (W1), if 2 3≤ α ≤ 1,

(16)

and similarly Li=          1−β 2 W j 2 + h2(ηj) − h2(yj)+h2(yj+1) 2 , if0 ≤ β ≤ 1 2, max n 1−β 2 W j 2+ h2(ηj) − h2(yj)+h2(yj+1) 2 , β 2W j 2 o , if 12< β < 23, β 2W j 2, if 23≤ β ≤ 1. ( j = 0, ..., m − 1) , N1=            max j=0,...,m−1 n 1−β 2 W j 2+ h2(ηj) − h2(yj)+h2(yj+1) 2 o , if0 ≤ β ≤12, max j=0,...,m−1 n max n 1−β 2 υ (W2) + h2(ηj) − h2(yj)+h2(yj+1) 2 , β 2υ (W2) oo , if 12 < β < 23, β 2υ (W2), if 2 3 ≤ β ≤ 1, N2=            1−β 2 υ (W2) +j=0,...,m−1max n h2(ηj) − h2(yj)+h2(yj+1) 2 o , if0 ≤ β ≤12, max j=0,...,m−1 n maxn1−β2 υ (W2) + h2(ηj) − h2(yj)+h2(yj+1) 2 , β 2υ (W2) oo , if 12 < β < 23, β 2υ (W2), if 2 3 ≤ β ≤ 1, N3=    (1 − β ) υ(W2), if 0 ≤ β ≤ 23, β 2υ (W2), if 2 3≤ β ≤ 1.

Proof. Applying Theorem 3.1 to the bidimentional interval [xi, xi+1] ×yj, yj+1 , we have

(1 − α) (1 − β ) f ξi, ηj  + (1 − α) β f(ξi, yj) + f (ξi, yj+1) 2 + α (1 − β ) f(xi, ηj) + f (xi+1, ηj) 2 +αβ f(xi, yj) + f (xi, yj+1) + f (xi+1, yj) + f (xi+1, yj+1) 4  W1iW2j − xi+1 Z xi yj+1 Z yj w1(t)w2(s) f (t, s)dsdt ≤ KiLj xi+1 _ xi yj+1 _ yj ( f ) (4.2)

for any ξi∈ai1, bi1 , (i = 0, ..., n − 1) and ηj∈

h

c1j, d1ji( j = 0, ..., m − 1) . Summing inequality (4.2) over i from 0 to n − 1 and j from 0 to m − 1 and using the generalized triangle inequality,

(17)

we get |R( f , w1, h1, w2, h2, In, Jm)| ≤ n−1

i=0 m−1

j=0 KiLj xi+1 _ xi yj+1 _ yj ( f ) ≤  max i=0,...,n−1Ki   max j=0,...,m−1Lj n−1

i=0 m−1

j=0 xi+1 _ xi yj+1 _ yj ( f ) = M1N1 b _ a d _ c ( f ) ≤ M2N2 b _ a d _ c ( f ).

This completes the proof of the first three inequalities in (4.1). In inequality (4.3), we observe that h1(ξi) − h1(xi)+h1(xi+1) 2 ≤ 1−α 2 W1i. Hence, we have max i=0,...,n−1 h1(ξi) − h1(xi) + h1(xi+1) 2 ≤ 1 − α 2 υ (W1). Similarly, we obtain max j=0,...,m−1 h2(ηj) − h2(yj) + h2(yj+1) 2 ≤1 − β 2 υ (W2). These show that M2≤ M3and N2≤ N3. This completes the proof.

Remark 4.2. If we choose α = β = 0, w1(t) ≡ 1, h1(t) = t on [a, b] and w2(s) ≡ 1, h2(s) = s

on [c, d] in Theorem 4.1, then inequalities (4.1) reduce to the inequality (4.2) in [5].

Remark 4.3. If we choose α = β = 13, w(t) ≡ 1, h1(t) = t on [a, b] and g(s) ≡ 1, h2(s) = s on

[c, d] , ξi= xix2i+1 (i = 0, ..., n − 1) and ηj=

yj+yj+1

2 ( j = 0, ..., m − 1) in Theorem 4.1, then we

have the Simpson’s sum

AS( f , In, Jm) = 4 9 n−1

i=0 m−1

j=0 f xi+ xi+1 2 , yj+ yj+1 2  l1il2j +1 9 n−1

i=0 m−1

j=0  f xi+ xi+1 2 , yj  + f xi+ xi+1 2 , yj+1  l1il2j +1 9 n−1

i=0 m−1

j=0  f  xi, yj+ yj+1 2  + f  xi+1, yj+ yj+1 2  l1il2j + 1 36 n−1

i=0 m−1

j=0  f (xi, yj) + f (xi, yj+1) + f (xi+1, yj) + f (xi+1, yj+1) l1il j 2 with b Z a d Z c f(t, s)dsdt = AS( f , In, Jm) + RS( f , In, Jm)

(18)

and the remainder term RS( f , In, Jm) satisfies |RS( f , In, Jm)| ≤ 1 9υ (l1)υ(l2) b _ a d _ c ( f ),

which was given by Budak and Sarikaya in [10].

REFERENCES

[1] M.W. Alomari, A Generalization of weighted companion of Ostrowski integral Inequality for mappings of bounded variation, RGMIA Research Report Collection, 14 (2011), Article 87.

[2] M.W. Alomari, M.A. Latif, Weighted companion for the Ostrowski and the generalized trapezoid Inequalities for mappings of bounded variation, RGMIA Research Report Collection, 14 (2011), Article 92.

[3] M.W. Alomari, A companion of Dragomirs generalization of the Ostrowski inequality and applications to numerical integration, Ukrainian Math. J. 64 (2012), 491-510.

[4] N.S. Barnett, S.S. Dragomir, I. Gomm, A companion for the Ostrowski and the generalized trapezoid in-equalities, Math. Comput. Model. 50 (2009), 179-187.

[5] H. Budak, M.Z. Sarikaya, On Ostrowski type inequalities for functions of two variables with bounded varia-tion, RGMIA Research Report Collection 17 (2014), Article 153.

[6] H. Budak, M.Z. Sarikaya, On generalization Ostrowski type inequalities for functions of two variables with bounded variation, Palestine J. Math. 5 (2016), 86-97.

[7] H. Budak, M.Z. Sarikaya, On generalization of Dragomir’s inequalities, RGMIA Research Report Collection 17 (2014), Article 155.

[8] H. Budak, M.Z. Sarikaya, On generalization trapezoid inequality for functions of two variables with bounded variation and applications, Int. J. Nonlinear Anal. Appl. 7 (2016), 77-85.

[9] H. Budak, M.Z. Sarikaya, A companion of Ostrowski type inequalities for functions of two variables with bounded variation, J. Adv. Math. Stud. 8 (2015), 170-184.

[10] H. Budak, M.Z. Sarikaya, A companion of generalization of Ostrowski type inequalities for functions of two variables with bounded variation, RGMIA Research Report Collection, 18 (2015), Article 44.

[11] P. Cerone, S. S. Dragomir, C. E. M. Pearce, A generalized trapezoid inequality for functions of bounded variation, Turkey J. Math. 24 (2000), 147-163.

[12] J.A. Clarkson, C.R. Adams, On definitions of bounded variation for functions of two variables, Bull. Amer. Math. Soc. 35 (1933), 824-854.

[13] J.A. Clarkson, On double Riemann-Stieltjes integrals, Bull. Amer. Math. Soc. 39 (1933), 929-936.

[14] S.S. Dragomir, The Ostrowski integral inequality for mappings of bounded variation, Bull. Austral. Math. Soc. 60 (1999), 495-508.

[15] S.S. Dragomir, On the Ostrowski’s integral inequality for mappings with bounded variation and applications, Math. Inequal. Appl. 4 (2001), 59-66.

[16] S.S. Dragomir, A companion of Ostrowski’s inequality for functions of bounded variation and applications, Int. J. Nonlinear Anal. Appl. 5 (2014) 89-97.

(19)

[17] M. Fr´echet, Extension au cas des int´egrals multiples d’une d´efinition de l’int´egrale due ´a Stieltjes, Nouvelles Annales de Math ematiques 10 (1910), 241-256.

[18] Y. Jawarneh, M.S.M Noorani, Inequalities of Ostrowski and Simpson type for mappings of two variables with bounded variation and applications, J. Math. Anal. 3 (2011), 81-94

[19] A.M. Ostrowski, ¨Uber die absolutabweichung einer differentiebaren funktion von ihrem integralmitelwert, Comment. Math. Helv. 10 (1938), 226-227.

[20] K.L. Tseng, G.S. Yang, S.S. Dragomir, Generalizations of weighted trapezoidal inequality for mappings of bounded variation and their applications, Math. Comput. Model. 40 (2004), 77-84.

[21] K.L. Tseng, Improvements of some inequalites of Ostrowski type and their applications, Taiwanese J. Math. 12 (2008), 2427-2441.

[22] K.L. Tseng, S.R. Hwang, S.S. Dragomir, Generalizations of weighted Ostrowski type inequalities for map-pings of bounded variation and applications, Comput. Math. Appl. 55 (2008), 1785-1793.

[23] K.L. Tseng, S.R. Hwang, G.S. Yang, Y.M. Chou, Improvements of the Ostrowski integral inequality for mappings of bounded variation I, Appl. Math. Comput. 217 (2010), 2348-2355.

[24] K.L. Tseng, S.R. Hwang, G.S. Yang, Y.M. Chou, Weighted Ostrowski integral inequality for mappings of bounded variation, Taiwanese J. Math. 15 (2011), 573-585.

[25] K.L. Tseng, Improvements of the Ostrowski integral inequality for mappings of bounded variation II, Appl. Math. Comput. 218 (2012), 5841-5847.

Referanslar

Benzer Belgeler

Bulgular gözlemleri de içerecek şekilde görüş- melerdeki alıntılardan örnekler verile- rek yorumlanmış ve öne çıkan beş ana tema başlığı (boşanmalar için

 Düzce ili Çiftlik Köyü’nde kalp ve damar hastalıkları için risk faktörleri olan sağlıksız beslenme, yetersiz fizik aktivite, tütün ve alkol kullanımı sıklığı ve

These results show that acute administration of rapamycin, especially in 5 mg/kg dose of rapamycin prolongs the latency of maternal aggression, and decreased the number of attacks,

[Ammâ odaların biri] yani anda hıfzı şart olunan oda [kargir ve diğeri] yani müstevda‘ın hilâf-ı şart olarak hıfz ittiği oda [ahşap olmak] ya biri

ECoG recordings from the experiments were analyzed using the PowerLab Chart v.7.2.1 software package (ADInstruments Pty Ltd, Castle Hill, NSW, Australia).

RBSÖ açısından benlik saygısı, anne-baba ilgisi ve babayla ilişki hasta grubunda kontrol grubuna göre daha düşük iken, eleştiriye duyarlılık, depresif

In this study, AISI D2 cold work tool steel was used as the workpiece, along with CVD- and PVD-coated tungsten carbide cutting tools The main purpose of this study investigated

The Effects of Densification and Heat Post-Treatment on Hardness and Morphological Properties of Wood Materials Mehmet Budakçı,a,* Hüseyin Pelit,a Abdullah Sönmez,b and Mustafa