• Sonuç bulunamadı

View of Bruguiera igymnorhiza (Mangrove leaf powder) for removal of Pb (II): Characterization, Kinetics, Isotherms and Thermodynamic Studies

N/A
N/A
Protected

Academic year: 2021

Share "View of Bruguiera igymnorhiza (Mangrove leaf powder) for removal of Pb (II): Characterization, Kinetics, Isotherms and Thermodynamic Studies"

Copied!
16
0
0

Yükleniyor.... (view fulltext now)

Tam metin

(1)

2193

Bruguiera gymnorhiza (Mangrove leaf powder) for removal of Pb (II): Characterization,

Kinetics, Isotherms and Thermodynamic Studies

M. Krishna Prasada, K. Jyothi b

a

Department of Chemical Engineering, GMR Institute of Technology, Rajam, Andhra Pradesh.

b

Department of Microbiology, Andhra University, Visakhapatnam, Andhra Pradesh. Corresponding Author: jyothikaparapu@gmail.com

Article History: Received: 11 January 2021; Revised: 12 February 2021; Accepted: 27 March 2021; Published online: 4 June 2021

Abstract: In this study green plant material Bruguiera gymnorhiza (Mangrove leaf powder) was used for the biosorption of

lead (II) ions by Atomic absorption spectrometry. In a batch process, Bruguiera gymnorhiza was exposed to several aspects, pH (2-6) and temperature (25-55°C) in the presence of different lead concentrations (25-125 mg/L) for 2h. This paper studies the Equilibrium isotherms, kinetic and thermodynamic parameters calculations. The highest occupied lead concentration was found at pH 5 which was 97.6% at an initial concentration is 25 mg/L. The maximum lead accumulation was obtained at 25◦C as 10.044 mg/g in 125 mg/L at pH 5.0, and the minimum was at 55◦C as 1.821 mg/g at a dosage of 10 g/L and initial concentration of 25 mg/L. Lead adsorption increased up to 75 mg/L but did not change significantly in the 75–100mg/L range. Equilibrium data fit well to the Freundlich isotherm. The kinetic data follows the pseudo-first-order model. Finally, the adsorbent was characterized by FT-IR and XRD. The biomass of Bruguiera gymnorhiza is an optimistic and cost-effective, biosorbent for lead (II) removal from aqueous environment and adsorption capacity it‟s good, easy of sampling analysis, as well as availability

Keywords: Biosorption; Bruguiera gymnorhiza; kinetics; Isotherms; Thermodynamics.

1. Introduction

In irecent iyears iLead ihas ibeen iintroduced iinto inatural iwater ifrom ia ivariety iof isources isuch ias

istorage ibatteries, ilead ismelting, ielectro iplating iand ifinishing, iprinting, iphotographic imaterials, ipigment

iand idye iindustries, iexplosive imanufacturing, itetraethyl ilead imanufacturing, iceramic iand iglass iindustries,

ietc. i(Majumdar iet ial., i2010; iYurtsever iand iSengil, i2008; iGercel iand iGercel, i2007). iThe ipermissible

ilimit iof ilead iin idrinking iwater iis i0.05 img/l ias iper iUnited iStates ienvironmental iprotection iagency.

iExcess iLead iin idrinking iwater ican ialso icause ia ivariety iof iadverse ihealth ieffects. iIn iindividuals iof iall

iages, ilead ican icause ianaemia, ikidney imalfunction, iimpaired ifunction iof iperipheral inervous isystem, ihigh

iblood ipressure, ireproduction iabnormality, idevelopmental idefects, iabnormal ivitamin iD imetabolism,

icoliclike iabnormal ipains, idementia, imadness iand, iin isome isituations, ideath i(Ferreira iet ial., i2011; iHurd

iet ial., i2008, iKazi iet ial., i2008; iOkoro iand iEjike, i2007, iAfridi iet ial., i2006). iDue ito itoxic ieffects iof

ilead iand iother itoxic imetal iions, ithe iremoval iof ithem ifrom iwater iand iwastewater iis iimportant iin iterms

iof iprotection iof ipublic ihealth iand ienvironment i(Unlu iand iErsoz, i2006). iThere iare iseveral itechniques

ifor iremoval iof ilead isuch ias iprecipitation, ievaporation, ireverse iosmosis, ielectroplating, iion-exchange,

imembrane iseparation, ietc. ifrom ithe iaqueous isolution. iWhen iheavy imetals iare ipresent iin ilow

iconcentrations ialmost iall iof ithese imethods iwere ifound ito ibe ieither iprohibitively icostly ior iunacceptably

iinefficient i(Sulaymon iet ial., i2013).The imost icommon itechnique iis iadsorption iand iit iis ia iwellestablished

iand ipowerful itechnique ifor itreating iboth idomestic iand iindustrial ieffluents i( iOzcan iet ial., i2009 iand i iSulaymon iet ial., i2012). i

Bioadsorbents ihave iemerged ias ione iof ithe ipotential ialternatives ifor iremoval iof iheavy imetals iand

imetalloids. iPlants, ialgae, ifungi iare isome iof ithe ibiomass iderived iadsorbents iwhich iare icapable iof

iremoving iheavy imetals iand imetalloids ifrom iaqueous isolution iby iadsorption i(Mohan iet ial, i2007).

iCinnamomum icamphora ileave‟s ipowder iwas iinvestigated ias ia ibiosorbent ifor ithe iremoval iof iCu i(II) iand

iPb i(II) iions ifrom iaqueous isolutions i(Chen iet ial., i2010). iFurthermore, iit iwas ireported ithat iMoringa

ioleifera ileaves iextract iis ia igood isorbent ifor iPb i(II) ifrom iaqueous isolution i(Reddy iet ial., i2010). iA

ibatch iadsorption istudy iof iCd i(II) iions ifrom iaqueous isolution iby iHevea ibrasiliensis i(HB) ileaf ipowder

ihas ialso ibeen ireported i(Hanafiah iet ial., i2006). iSharma iand iBhattacharyya, i(2005) ihave istudied ithe

iadsorption iof iCd i(II) iusing ineem ileaf ipowder. iIn iaddition, ithe ileaves iof ithe iolive itree i(Olea ieuropaea)

iwere iproposed ias ia inovel iadsorbent ifor ithe iremoval iof iCd i(II) ifrom isolutions i(Hamdaoui, i2009).

iRecently, iextensive istudies ion iCd i(II) iadsorption itaking ipowdered ileaves iof ia ivariety iof itrees ihave

(2)

Research Article

2194

Several ibiomaterials ihad ibeen iexploited ifor ithe iremoval iof iPb i(II) ifrom iaqueous isolution, isuch ias

iusing ifungal ibiomass iof iAspergillus iniger i(Jianlong iet ial., i2001), ibiomass iof imarine ialgae i(Jalali iet ial.,

i2002), ibacterial idead iStreptomyces irimosus ibiomass i(Selatnia iet ial., i2004), iactivated icarbon iprepared

ifrom ibiomass iplant imaterial iof iEuphorbia irigida i(Gercel iand iGercel iet ial., i2007), iChrysophyllum

ialbidum iSeed iShell i i(Amuda iet ial., i2007), iwheat iStems ibiomass i(Tan iand ixiao i2008), ibiomass iof

ihazelnut iand ialmond ishell i(Pehlivan iet ial., i2009), ibiomass iof iPhaseolus ivulgaris i(Ozcan iet ial., i2009),

iMucor irouxii ibiomass i(Majumdar iet ial., i2010), ibiomass iof iBrevundimonas ivesicularis i(Resmi iet ial.,

i2010), ifilamentous ifungal ibiomass-loaded iTiO2 inanoparticles i(Bakircioglu iet ial., i2010), i ipine icone

iactivated icarbon i(Milan iet ial., i2011), i ia inonliving imoss ibiomass i(Bamidele iet ial., i2012), iFicus iHispida

ileaves ipowder i(Namdeti iand iPulipati i2013) iand i ibiomass iof iMaize istover i(Guyo iet ial., i2015).

Andaman iand iNicobar iarchipelago iis ione iof ithe imega-biodiversity ihotspots iof iIndia. iThe iarchipelago

ilocated iin ithe iBay iof iBengal, ilying ibetween i6450 i–13450 iN iand i92120 i–93570 iE iin ithe iIndo

iBurmese imicroplate ijunction. iThe iislands iare ispread iover ia idistance iof i1,120 ikm iwith ia icoast iline iof

i1,962 ikm. iThe iclose iproximity iof ithese igroups iof iislands ito ithe iequator iand ithe iirregular iand ideeply

iindented icoast iline, icreeks, ibays iand iestuaries ifacilitate ithe irich iand idiverse imangrove iforests. iRozaini

iet ial. i(2010) iidentified ithat imangrove ibark ihas ia ipotent iadsorbent ifor iNi(II) iand iCu(II) iions ifrom

iaqueous isolutions. iThe icurrent istudy iwas iaimed ito idetermine ithe icapability iof imangrove ileaves ifrom

iAndaman iand iNicobar iislands ias ia ipotent iadsorbent ito iremove ithe iLead i(II) ifrom iaqueous isolutions. The iaim iof ithis iwork iis iremoval iof iPb i(II) ion iBruguiera igymnorhiza, ithere ihas ibeen ino ireported

iwork ion ilead iions ifrom iaqueous isolution. iIn ithis istudy, ithe ibiosorption ibehavior iof iPb i(II) ifrom

iaqueous isolution iusing iBruguiera igymnorhiza iwas istudied iunder ivarious iconditions, isuch ias icontact

itime, isolution ipH, itemperature iand idifferent iconcentrations, iwith ithe iaim iof idetermining ithe imechanism

ifor ithe iremoval iof iPb i(II) ifrom iaqueous isolution iby ibiomass iof iBruguiera igymnorhiza. iIn iaddition,

iequilibrium iand ikinetic istudies iwere icarried iout. iLangmuir iand iFreundlich iisotherm imodels iwere iapplied

ito ifit ithe iexperimental idata. iFTIR, iSEM, iand iXRD iwere ialso iused ito iilluminate ithe ibiosorption

iprocess.

2.Materials iand imethods 2.1Preparation iof ibiosorbent iBruguiera igymnorhiza

The iMangrove ileaves i(Bruguiera igymnorhiza) iunder istudy iwere icollected ifrom ifrom imangrove iplants

ilocated iin ithe iMinnie iBay iarea, iPort iBlair, iAndaman iand iNicobar iislands, iIndia. iThe icollected

iMangrove ileaves iwere iwashed iwith ideionized iwater iseveral itimes ito iremove idirt ion ithe isurface iof ithe

ileaves. i iThe iwashed ileaves iwere idried iin isunlight ifor i15 idays iand iwere ipowdered iusing idomestic

imixer. iThe ipowdered ibiomass iwas isieved ithrough i200 imesh isieves iand ibiomass ipowder iwas ipreserved

iin ia ihumidity icontrol ioven ito imaintain ia istandard ihumidity ithroughout ifor iequilibrium istudies iduring

ithe ientire iperiod iof istudy. i 2.2.Preparation iof istock isolution

All ithe ichemicals iused iwere iof ianalytical ireagent igrade. iStock iPb i(II) isolution i(1000 img/L) iwas

iprepared iby idissolving irequired iamount iof iPb(NO3)2 iin idouble idistilled iwater. iAll ithe iexperimental

isolutions iwere iprepared iby idiluting ithe istock isolution. iThe itest isolutions iof ithe ipH iwere iadjusted iby

ireagent igrade i0.05N iof iHcl iand i0.05N iof iH2SO4. i 2.3.Equilibrium iStudies

The iexperiments iwere icarried iout iin i250 iml iErlenmeyer iconical iflasks, iat ia iconstant iagitation ispeed

i(200 irpm) iwith i50ml isolution iwith ivarious i imetal iconcentrations i(19.21, i36.12, i68.056, i73.85 iand

i109.44mg/L) iand irequired iamount iof iadsorbent i(5, iand i10, ig/L) iusing iorbital ishaker. iInitially ithe ieffect

iof icontact itime i(0-120 imin) ion ithe isorption icapacity iof iBruguiera igymnorhiza iwas ievaluated. i

2.4.Analytical iprocedure

An iatomic iabsorption ispectrophotometer i(Perkin iElmer iAA400) iwith ian iair iacetylene iflame iwas

idetermining ithe iconcentrations iof iun-adsorbed iPb i(II) iions iin ithe isample isupernatant iliquid. iCo iand iC*

iwere idetermined iand itabulated ifor isubsequent ianalysis iof ithe iexperimental idata. iThe imetal iuptake i(Cs)

iwas icalculated iusing ithe igeneral idefinition:

C

s

=V(C

o

−C

*

)

(3)

2195

i i i i i i i i i i i i i i i i i i i i i i i i i i i(1)

WhereCs iis ithe imetal iuptake img/g ibiomass, iV iis ithe ivolume iof imetal icontaining isolution iin icontact

iwith ithe ibiosorbent iin iL, iCo iand iC *

iare ithe iinitial iand iequilibrium i(residual) iconcentration iof imetal iin

ithe isolution img/L, irespectively, iand iM iis ithe iamount iof iadded ibiosorbent iin ig. iMetal i% iof iremoval

iby iBruguiera igymnorhiza iwas idetermined iby iequation i2 ias ifollows:

R(%) =C

o

C

*

100

i i i i i i i i i i i i i i i i i i(2)

C

o

Where iR iis ithe ipercentage iof iPb i(II) iadsorbed iby ibiomass, iCo iis ithe iinitial iconcentration iof imetal

iions iin img/L iand iC* iis ithe iconcentration iof imetal iions iat itime it iin img/L. 2.5.Biomass icharacterization

2.5.1.FTIR istudies i

The ipowdered ibiomass, iprior iand iafter iadsorption iwas iair idried, iand idemoisturized iat i60 i_C iin

ihumidity icontrol ioven. iThe ipowder iwas ianalysed iby iFourier itransform iinfra ired ispectrophotometer.

iFTIR istudies iwere iconducted iby iPotassium iBromide i(KBr) ipellet imethod i(Jasco i5300) iin ithe iwave

inumber irange iof i400.00–4000.00 icm_1. 2.5.2.Scanning ielectron imicroscopy i

The idried ibio imass ipowders iand ithe icorresponding imetal iion iloaded ipowders iwere icoated iwith i ultra-thin ifilm iof igold iby ian iion isputter i(JFC-1100), iexposed iunder ielectron imicroscope i(JEOL, iJX8100) iat

iworking iheight iof i15 imm iwith ivoltage iranging ibetween i10 iand i25 ikV. 3.Results iand idiscussion

The iexperimental idata ion ibiosorption iwere iobtained ibatch iwise ito istudy ithe ieffect iof ivarious

iparameters ion ithe iremoval iof ilead iions ifrom ithe iaqueous isolutions iprepared iin ithe ilaboratory iby iusing

iBruguiera igymnorhiza i(mangrove ileaf ipowder). i iEffect iof icontact itime

Experiments iwere iconducted ito iestimate ithe itime irequired ito ireach ithe isorption iequilibrium iby itaking

ian iinitial icharge iof i50 iml iof iaqueous isolution icontaining iPb i(II) iions iand ithe irequired iquantities iof

ibiomass. iThe imixture iwas ishaken iin ian iorbital ishaker, ithe isamples iwere idrawn iat iregular itime

iintervals iand ithe imetal iconcentration iwas iestimated iusing iAAS. iThe idata iof iconcentration iof imetal iion

iCt, iin isolution iwith itime iare ishown ifor idifferent iquantities iof ibiomass iin iFig i.1.

Figure i1: iVariation iof iPb i(II) iconcentration iin isolution iwith itime iat ivarious iquantities iof ibiomass iat

i25°C, i50 img/L iand ipH i5.

The ieffect iof icontact itime iwas istudied ion i% iadsorption iof iPb i(II) iover ia itime iperiod iof i1-120

imin, iusing i0.25 ig iof iBruguiera igymnorhiza ibiomass ipowder i(diameter iof iparticle; idp i= i0.074mm),

iinitial iPb i(II) iconcentration iis i50 0.324 img iL-1 iat ipH i5 iand itemperature i25 C. iPercentage iadsorption 0 10 20 30 40 50 60 70 80 0 50 100 150

Time,mi

n

0.25 g 0.5 g

(4)

Research Article

2196

iincreased ifrom i35.3 ito i71.24% iduring ia icontact itime iperiod ifrom i1 imin ito i120 imin. iThe irapid iinitial

isorption iwas ilikely idue ito iextra-cellular ipolymeric isites i(ionizable) ibinding iand ithe islower isorption

iresulted ifrom iintracellular ibinding i(Areco iand iAfonso, i2010, iMaria iand iMaria idos, i2010, isarada iet ial.,

i2013) ion iadsorbent. iSimilar istudies iwas iperformed iwith i10 ig/L iof ibiomass iconcentrations iin iaqueous

isolutions iand ithe iresults iindicated ithat ithe i2h iis ithe ioptimum itime iof icontact ifor ithe irange iof

iconcentrations iused. iEffect iof ipH iThe ipH ieffect iof isolution ion ithe iadsorption iof iPb i(II) iions ionto

iBruguiera igymnorhiza iwas istudied

iby ichanging ithe isolution ipH ivalues iwith iin ithe ipH irange iof i2.0–6.0 iand ithe iresults iare ishown iin iFig.

Figure i2: iEffect iof ipH ion ithe ilead iremoval ipercentage iat ivarious iinitial iPb i(II) iconcentrations i

Figure i3: iMetal iuptake iat ivarious ipH isolutions.

The iuptake iof ibiomass iwas ifound ito iincrease iwith ithe iincrease iin ipH ias ishown iin ifig.3. iIt iwas

ifound ito ihave ia ihigh icontent iof icarboxyl igroups ithat irender iit isusceptible ito ipH ichanges. iSimilar

iobservations iwere ireported iearlier iby iseveral iinvestigators i(Wang iand iChen, i2009; iYi-Chao iand

iShuiPing i2011). i iFig.2 ishows ithat ian iincrease iin iinitial ipH ifrom i2.0 ito i5.0 iresulted iincreased i%

ibiosorption iof iPb i(II) ifrom i84.3% ito i97.6% iat ian iinitial imetal iconcentration iof i19.21 img/L. iA idrastic

ifall iin i% ibiosorption i ias ilow ias i95.44% iwas iobserved iat ipH ivalue iof i6.0, iIt imay ibe ibecause iof ithe

itendency iof i iprecipitation iof ilead ias iPb(OH)2 i(Yi-Chao iand iShui-Ping i2011). iConsequently, ia ipH ivalue

iof i5.0 iwas iused ias ithe ioptimum iof ipH ithroughout ithe iexperimental iconditions ito iavoid ithe iformation

iof imetal ihydroxides. iSimilarly, ifor iall iother iconcentrated isolutions, isimilar itrend iwas iobserved. iAs ithe

ipH iincreased ithe iligands isuch ias icarboxylate igroups iin iBruguiera igymnorhiza. iwould ibe iexposed, 0 20 40 60 80 100 120 0 1 2 3

pH

4 5 6 7 mg/L 19.21 36.12 mg/L 68.056 mg/L 73.85 mg/L 0 2 4 6 8 10 12 0 1 2 3

pH

4 5 6 7 19.21 mg/L 36.12 mg/L 68.065 mg/L 73.85 mg/L 109.44 mg/L

(5)

2197

iincreasing ithe inegative icharge idensity ion ithe ibiomass isurface, iincreasing ithe iattraction iof imetallic iions

iwith ipositive icharge iand iallowing ithe ibiosorption ionto ithe icell isurface i(Namdeti iand iPulipati, i2014).

iEffect iof itemperature

All ithe iexperiments iwith iPb i(II) iwere iconducted iin ithe itemperature irange iof i25-55 C, ithe i%

iremoval iof ilead iby iBruguiera igymnorhiza ibiomass idecreases ifrom i97.6 ito i94.1% iwith iincrease iin

itemperature iin ithe irange i25-55 C iat iinitial iconcentration iof i19.21 img/L i(Fig.4). iThe isimilar itrend iwas

iobserved iat iall iinitial iPb i(II) iconcentrations. iIn imost iof ithe ichemical ireactions ithe itemperature iis

iexpected ito iactivate ithe iprocess iincreasing ithe iheat ior imass itransport iprocesses. iSorption icapacity iof

ithe ibiomass ihas idecreased iwith iincrease iin itemperature, irise iin itemperature ihas ia itendency ito idesorb

ithe iadsorbed imetal iions ifrom ithe isurface ito ithe isolution. iThe isame itrend iwas iobserved ifor iother iinitial

imetal iconcentrations iand iwas isupported iby ithe iearlier ireport i(Aksu, i2001). i

Figure i4: iVariation iof i% iremoval iof iPb i(II) iwith ivarious itemperatures iat idifferent iinitial

iconcentration iof iPb i(II) iat ibiomass i10 ig/L iand ipH i5. 4.Effect iof imetal iion iconcentration

The ieffect iof iinitial iPb i(II) iconcentration ion ithe imetal iuptake iwas ishown iin iFig.5. iThe iadsorption

icapacity i(qe) iof ithe ibiomass iincreased ifrom i2.879 ito i10.536 img ig-1 iwith iincreasing iPb i(II)

iconcentration ifrom i48.31 img iL-1 ito i186.71 img iL-1 iat isorbent idose iof i10g iL-1 iwith ithe itemperature

iof i25 C iand ipH i5. iAn iincrease iin ithe iinitial iion iconcentration iprovides ia ilarger idriving iforce ito

iovercome iall imass itransfer iresistances ibetween ithe isolid iand ithe iaqueous iphase, iwhich iresults iin ihigher

imetal iion iadsorption. iSimilar iobservations ialso iwere imade iby iearlier iinvestigators i(Mohammad iet ial,

i2011) iin itheir istudies ion ithe iadsorption iof iLead.

y = - 0.066 x + 98.992 R² = 0.9954 y = - 0.1054x + 97.918 R² = 0.9993 y = - 0.1255x + 97.059 R² = 0.9972 82 84 86 88 90 92 94 96 98 100 0 20 40 60 80 100 120

Initial ilead i(II) iconcentration, img/L

(6)

Research Article

2198

pH 3 pH 4 pH 5 pH 6

Fig. i5. iVariation iof i% iremoval iof iPb i(II) iwith ivarious iInitial iconcentrations iat itemperature iof

i25 C, ipH i5 iand ibiomass i10 ig iL-1. 5. Effect iof iadsorbent idosage

Biosorbent idosage idetermines ithe ipotential iof ibiosorbent ithrough ithe inumber iof ibinding isites

iavailable ito iremove imetal iions iat ia ispecified iinitial imetal iion iconcentration. iThe ieffect iof iamount iof

ibiomass iwas istudied ion ithe ibiosorption iof iPb i(II) iusing iBruguiera igymnorhiza. iThe i% iremoval iof iPb

i(II) ion iBruguiera igymnorhiza iranged ifrom i54.98 ito i80.02 i(Fig.4) iat ia ipH ivalue iof i5 iat i24.8 img/L

iand ithe iuptaking icapacity i ideclined ifrom i12.39 ito i1.93 img ig-1 iwhen iincreasing ithe ibiomass idosage

ifrom i5 ig iL-1 ito i20 ig iL-1. iThe isimilar itrend iwas iobserved ifor iall iinitial imetal iion iconcentrations.

iThis idecrease icould ibe idue ito ithe iconcentration igradient ibetween ithe isorbent iand ithe isorbate; ian

iincrease iin ibiomass icaused ia idecrease iin ithe iamount iof imetal isorbed ionto ia iunit iweight iof ithe ialgae.

iMoreover, ithe iincrease iin ipercentage ibiosorption iof imetals iby iincreasing ithe ibiomass idosage iis idue ito

ian iincrease iin ithe inumber iof iactive isites iand isurface iarea iavailable ifor ibiosorption. iSimilar itrends ihave

ibeen ireported iin ithe iliterature i(Taqvi iet ial, i2006; iGupta iand iRastogi, i2008; iYi-Chao iand iShui-Ping

i2011). iFrom iFig.6 iwe ican iconclude ithat ipercentage iadsorption iincreased iwith idecrease iin ibiomass

idosage. 60 65 70 75 80 85 0 50 100 150 200

(7)

2199

Fig. i6. iEffect iof iBiomass iwieght i(a) iVariation iof i% iPb i(II) isorption i(b) imetal iuptake iwith ibiomass

iweight iat itemp i25 C, ipH i5 iand iat ivarious iinitial imetal iconcentrations. 6.Equilibrium iisotherms

iLangmuir iIsotherm

The iequation iproposed iby iLangmuir iis iuniversally iapplicable ito ichemisorption iwith isome ilimitations

iinvolving iphysical iadsorption i(Dąbrowski, i2001). iThis iequation iis iapplicable ito ithe iphysical ior ichemical

iadsorption ion isolid isurface iwith ione itype iof iadsorption iactive icenter. i i iLinear iform iof ithe iLangmuir

iequation iis igiven iby

C

*

1

C

*

=

+

i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i

C

s

C

m

b

C

m i i i i i i i i i i i (3)

Where i„Cm’(mg/g) iis ithe imaximum iamount iof ithe imetal iion iper iunit iweight iof iadsorbent ito iform ia

icomplete imonolayer ion ithe isurface. i„Cs‟ iis iequilibrium iadsorption icapacity i(mg/g), i„C*‟ iis ithe

iequilibrium iconcentration iof ithe iadsorbate iin isolution i(mg/L), iand ib iis ia iconstant iwhich iaccounts ifor

ithe iaffinity iof ithe ibinding isites i(L/mg). iCm irepresents ithe ilimiting iadsorption icapacity iwhen ithe isurface

iis ifully icovered iwith imetal iions iand ihelps iin ithe ievaluation iof iadsorption iperformance, iparticularly iin

(8)

Research Article

2200

isimple itwo iparameter iequation i(Langmuir, i1918). iFrom ithe iplots ibetween i(C*/Cs) iand iC *

the islope

i(1/Cm) iand ithe iintercept i(1/ iCmb) ican ibe icalculated.

The iLangmuir iconstant iused ito idetermine ithe isuitability iof ithe iadsorbent ito iadsorbate iby iusing

idimensionless ifactor iRL i(Hall iseparation ifactor) icalculated iby: i

1 R

L

=

1+bC

i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i (4)

0 i<RL i<1 i i iindicates ifavorable ifor iadsorption, iRL> i1indicates iun-favorable ifor iadsorption iRL i= i1

iindicates ilinear iadsorption, iRL i= i0 iindicates iirreversible iadsorption.

Figure i7: iLangmuir iplot iof iBruguiera igymnorhiza iat ivarious itemperatures iat ipH i5

The ilinearized iLangmuir iadsorption iisotherms iof iPb i(II) ionto iBruguiera igymnorhiza iwere iobtained iat

idifferent itemperatures. iAdsorption iconstants iand icorrelation icoefficients iare ishown iin iTable.1

iC*/CsvsC*plot iyielded ia istraight iline iwith iR2 i(0.970) iindicating ithe isorption idata icould ibe irepresented

iby ithe iLangmuir imodel i(Fig. i7). iThe ihigher iadsorption icapacity, iqm(»1) iindicated ithe istrong

ielectrostatic iforce iof iattraction iand ib iis ia iconstant iwhich iaccounts ifor ithe iaffinity iof ithe ibinding isites

i(L/mg) iMoreover, ithe ib ivalues iare i1.030928, i1.02145, i1.029866L/mg iindicating ithat ibiosorption icapacity

iof iBruguiera igymnorhiza ibiomass ifor iPb i(II) iis ihigher. iThe iadsorption iof iPb i(II) ion ipowder isurface iis

ithus ia ihighly ifavourable iprocess. iFurther, iit iis iobserved ithat ithe isorption iof ilead iis imore ifavourable iat

ihigher iPb i(II) iinitial iconcentration i(109.44 img/L) ithan ifor ithe ilower iones i(19.21 img/L).

i i i i iTable i.1. iLangmuir iand iFreundlich iisotherm imodel iparameters ifor iPb i(II) ionto iBruguiera igymnorhiza

Langmuir iconstants Freundlich iconstants

Temp.( K) Cm(mg ig -1) b i(L immol -1) R2 KF nf R2 298 13.333 0.295276 1 0.970 0.32961 1.79211 5 0.9 97 318 12.658 0.311024 0.979 5 0.46451 1.78253 1 0.9 96 328 12.3456 0.318898 0.971 7 0.53579 1.79211 5 0.9 98 7.Freundlich iIsotherm

An iadsorption iisotherm iwas iproposed iby iBoedecker i(Dąbrowski, i2001) iwhich iwas ilater imodified iby

iFreundlich i(Freundlich, i1926). iThe iFreundlich iadsorption iequation ican ibe iwritten ias: y = 0.0755x + 0.2542 R² = 0.9707 y = 0.0794x + 0.4505 R² = 0.9793 y = 0.0819x + 0.5763 R² = 0.9712 0 0.5 1 1.5 2 2.5 0 5

c* i

10 15 20 K 298 318 K 328 K

(9)

2201 1

C

=

K C

*n f i i i i i i i i i i i i i i i i i i i i i i i i(6) i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i

Where i„Cs‟ iis iequilibrium iadsorption icapacity i(mg/g), i„C*‟ iis ithe iequilibrium iconcentration iof ithe

iadsorbate iin isolution, i„Kf‟ iand inf iare iconstants irelated ito ithe iadsorption iprocess isuch ias iadsorption

icapacity iand iintensity irespectively. iThis iempirical imodel ihas ishown ibest ifit ifor inon-ideal isorption ion

iheterogeneous isurfaces ias iwell ias imultilayer isorption. iThe iFreundlich iisotherm iis ialso imore iwidely iused

ibut iprovides ino iinformation ion ithe imonolayer iadsorption icapacity, iin icontrast ito ithe iLangmuir imodel.

iFreundlich iisotherm ihas ibeen iderived iby iassuming ian iexponentially idecaying isorption isite ienergy

idistribution. iThe icoefficient iof idetermination ifor ithis icase iis i0.997 iand ithe ivalues iof inf iand iKf i(table

i1) iare ifound ito ibe i1.79 i(g/L) iand i0.329 i{(mg/g)(mg/L)n}at i25 C. iFreundlich iconstant inf ibetween i1 iand

i10 iindicates ia itrend imore ifavorable i(Fig.8) ifor ibiosorption iby imacro ialgae iBruguiera igymnorhiza. iThis

iis ialso isuggestive ithat ithe imetal iion iunder istudy icould iwell ibe iseparated ifrom iits iaqueous isolution

iwith ihigh iadsorption icapacity.

The ivalues iof ihigh icorrelation icoefficients iindicated ithat ithe iPb(II) isorption idata iwas ivery iwell

irepresented iby iFreundlich imodel. iThe iFreundlich iconstant inf iwas igreater ithan i1, iat iall itemperatures ias

iwell ias iinitial imetal iconcentrations irepresenting ithat iadsorption iintensity iof ithe isorbate ion ithe isorbent

isurface iwas ihigh, ireflecting ithe ifavorable isorption ieven iat ihigh imetal iconcentration.

i i i i i i i i i i i i i i i i i i i iFigure i8: iFreundlich iplot iof iBruguiera igymnorhiza iat ivarious itemperatures iat

ipH i5.

s f i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i

(5) i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i

Taking ilogarithm ion iboth isides,

i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i

1

In

Cs = lnK f

+ InC

*

n

f i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i y = 0.5583x + 0.482 R² = 0.997 y = 0.5618x + 0.333 R² = 0.9965 0 0.5 1 1.5 -0.5 0

log ic

0.5 * 1 1.5 298 K 318 K

(10)

Research Article

2202

8.Adsorption iKinetic iModels

The ikinetic idata ihelps iin itracing ithe irate idetermining istep iof itransport imechanism iand iis irequired

ifor iselecting ioptimum ioperating iconditions ifor ifull-scale ibatch ior icontinuous iprocess. i iIn ithe ipresent

istudy iPseudo ifirst iorder iand iPseudo isecond iorder ikinetic imodels ihave ibeen iattempting ito ifit ithe

ipresent ibiosorption idata i(Table. i2).

9 Pseudo-first-order/Lagergren ikinetic imodel

The iPseudo-first-order ior iLagergren ikinetic irate iequation ifor ithe iadsorption iof iliquid-solid isystem iwas

iderived ibased ion isolid iadsorption icapacity. iIt iis ione iof ithe imost iwidely iused iadsorption irate iequations

ifor ithe iadsorption iof ia isolute ifrom ia iliquid isolution i(Taqvi iet ial, i2006; iSuddhodan iand iMishra, i2006).

i

The ipseudo ifirst iorder ikinetic iequation ican ibe iexpressed ias:

dcdt = k

1

(

C

S

−C

t

)

i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i

i i i i i i i i i i i i i i i i i i i i i(7) i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i

Where i„Cs‟ iis ithe iamount iof isolute iadsorbed iat iequilibrium iper iunit imass iof iadsorbent i(mg/g), i„Ct‟ iis ithe iamount iof isolute iadsorbed iat iany igiven itime i„t‟ iand i„k1‟ iis ithe irate iconstant. iBy iusing ithe

iboundary iconditions iand isimplifying, ithe iequation i7 iyields.

ln(Cs −Ct) = lnCs −k

1

t

i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i

i i i i i i i i i i i i i i i i i i i i(8) i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i

„k1‟ ican ibe icomputed ifrom ithe islope iof ithe ilinear iplot ibetween iln(Cs-Ct) ivs. i„t‟ ifor idifferent

iadsorption iparameters isuch ias ipH, itemperature. iThe ipseudo ifirst iorder irate iconstant ik1could ibe iobtained

ifrom ithe islope iof ithe iplot ibetween ilog i(Cs i–Ct) iand itime it‟. iFig. i9 ishows ithat ithe iLagergren

ipseudofirst iorder ikinetic iplot idoes inot ifit iwell ifor ithe iadsorption iof i i iPb i(II) ionto iBruguiera igymnorhiza, ias iit idoes inot ifollow ia istraight iline.

Figure i.9: iPseudo ifirst iorder ikinetic iplot ifor ibiosorption iof iPb i(II) iat i25°C, i50 img/L iand ipH i5. 10.Pseudo- isecond- iorder ikinetic imodel

In iview iof ithe iabove ithe ifitness iof ithe isorption idata iwas itested iusing ipseudo- isecond- iorder ireaction

imodel i.The ipseudo-second-order ireaction imodel icould ibe iexpressed iby ithe irate iexpression ias i(Ho iand

iMckay, i1999; i2000).

dcdt

= k

2

(C

s −Ct)2

i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i y = - 0.0095x + 1.0169 R² = 0.9352 y = - 0.015 + 0.8392 x R² = 0.9854 -1 -0.5 0 0.5 1 1.5 0 20 40 60 80 100 120 140

Time,min

0.25 g 0.5 g

(11)

2203

i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i(9) i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i

On iintegration ifor iboundary iconditions iwhen it=0 ito it>0 iand iqt=0 ito iqt>0 iand ifurther isimplifications,

iequation i9 ibecomes,

t

= 1 + 1 t

Ct

k

2

C

s

2 C

s i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i(10) i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i

The iplot i(Fig.8) iof it/qt iversus it iof iEq. i(10) igave ia ilinear irelationship ifrom iwhich ithe iqe iand ik2

ivalues iwere idetermined. i

Figure. i10: iPseudo isecond iorder ikinetic ifor ibiosorption iof iPb i(II) iat i25°C, i50 img/L iand ipH i5.

W i(g/L) Ce(exp) i(mg/g) K1(g/mg-min) R i2

5 3.66 -0.009 0.939

10 4.57 -0.015 0.986

i i i i i i i i i i i i i i i i i iTable i.2: i iKinetic iparameters ifor iPb i(II) ibiosorption ion iBruguiera igymnorhiza

The irate iconstants iand ithe icorrelation icoefficients ifor iPseudo-First-order ikinetic imodel iwere icalculated

iand isummarized iin iTable. i2. iThese ivalues ishowed ithat ithe ipseudo-first iorder ikinetic iplot ifits iwell ithe

iadsorption idata. iThe ivalue iof icorrelation icoefficient iR2 ifor ithe ipseudo-first-order iadsorption imodel iis

irelatively ihigh i(>0.9909), iand ithe iadsorption icapacities icalculated iby ithe imodel iare ialso iclose ito ithose

idetermined iby iexperiments. iHowever, ithe ivalues iof iR2 ifor ithe ipseudo-second-order iare inot isatisfactory.

iTherefore, iit ihas ibeen iconcluded ithat ithe ipseudo-first-order iadsorption imodel iis imore isuitable ito

idescribe ithe iadsorption ikinetics iof ilead iover ithis iBruguiera igymnorhiza ibiomass. 11.Thermodynamic iparameters

Gibbs iFree iEnergy iΔG iis ithe iThermodynamic icriterion iat iconstant iP iand iT ifor ideciding iwhether ithe

ichemical iprocess idoes iproceed ior inot. iThe ispontaneity iof ithe ireaction ican ialso ibe ijudged iby ithe isign

iand imagnitude iof iΔG0. iA inegative isign ifor iΔG0 iis ian iindicative iof ithe ispontaneity iof iany ichemical

iprocess. iTo idesign iany ichemical iprocess isystem ione ishould ihave ithe iknowledge iof ithe ichanges ithat

iare iexpected ito ioccur iduring ia ichemical ireaction. i

0 5 10 15 20 0 50

Time,min

100 150 0.25 g 0.5 g

(12)

Research Article

2204

In iview iof ithe iabove, ianalysis ihas ibeen icarried iout ion ithe ivalues iof ithermodynamic iparameters ion

ithe ibiosorption iof iPb i(II) iby iBruguiera igymnorhiza. iThe ithermodynamic iparameters isuch ias ichanges iin

istandard ifree ienergy ichange iΔG , iEnthalpy iΔH , iEntropy iΔS ifor iany igiven iadsorption iprocess icould

ibe idetermined ifrom ithe iEquations:

G

0

=−

RTInK

c i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i

i i i i i i i i i i i i i i i i i i i i i i i i i i i i i(11) i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i

Where iΔG iis ithe ifree ienergy ichange, iexpressed ias iJ/mol. iKc iis ithe iapparent iequilibrium iconstant

ifor ithe iprocess. iKc ican ibe iderived ifrom:

C

S

K

C

=C

* i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i (12) i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i

log

C

*S

=−

2.303 HRT

0

+

RS

0 i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i

C

i i i i i i i i i i(13) i i i i i i i i i i i i i i i i i i i i i i i i i

C

S

C

* Can ibe idefined ias iadsorption iaffinity.Cs iis ithe iconcentration iof imetal iion i(mg) iin isolid

iadsorbent.C* iis iequilibrium imetal iConcentration img/L i.The ienthalpy ichanges i(ΔH ) iand ientropy ichanges

i(ΔS ) ifor ithe iadsorption iprocess ifor iall ithe iinitial imetal iconcentrations iin ithe iaqueous isolutions iwere

iobtained ifrom ithe iplots iof ilog CS* drawn iagainst i1/T i(Fig.11). iThe icalculated ithermodynamic

idata iare

C

Fig.11. iVant iHoff iplot ifor iadsorption iof iPb i(II) ionto iBruguiera igymnorhiza iat ivarious itemperatures

ifor ibiomass i10 ig/Land iat ipH i5.

i compiled i in i Table i .4. y = - 250 x + 11.859 R² = 0.9998 11 11.02 11.04 11.06 11.08 11.1 11.12 0.003 0.00305 0.0031 0.00315 0.0032 0.00325 0.0033 0.00335 0.0034

1

/T

(13)

2205

A iLarge inegative ivalue ifor iΔG iindicates ithe ispontaneity iof ibiosorption iprocess iat ia igiven

itemperature. iThe ifree ienergy ivalues iincreased ipositively iwith iincrease iin itemperature ifor ithe iadsorption iof

iPb i(II), ishows ithat ithe ispontaneity iof ithe ibiosorption iprocess ireduces iwith iincrease iin itemperature. iThe

inegative iΔH ivalues iindicated ithe iexothermic inature iof ithe iadsorption. iThe inegative ivalues iof

iΔS suggested ia idecrease i(Ahmet iet ial., i2008) iin ithe irandomness iat isolid/solution iinterface iduring ithe

iadsorption iof iPb i(II) iions ionto iBruguiera igymnorhiza i i i i i i i iTable. i4: iThermodynamic iparameters ifor

iPb i(II) ibiosorption ion iBruguiera igymnorhiza

Temp. i(0K)

12.Characterization iof iBiomass 12.1.Fourier iTransform iInfrared iSpectroscopy i(FTIR)

The iFTIR idifferences iof ispectra iin ipure iBruguiera igymnorhiza ibiomass iadsorbent iwere icompared ito

ithe ispectra iobtained iin iPb(II) iloaded iBruguiera igymnorhiza ito idetermine iwhether ithe iobserved

idifferences iare idue ito iinteraction iof ithe imetal iions iwith ifunctional igroups i(Fig. i12 iand i13). iThe

iabsorption ipeaks iwere itabulated iin itable i4 ifor ipure ibiomass iand iPb2+ iloaded ialgal ibiomass. i i i i i i i i i i i i i i i i i i i i Figu re i12: iFTIR iSpectrum iof iBruguiera igymnorhiza ibefore itreatment

H ( KJ/mol ) S J/mol ( 0 K) G ( KJ/mol ) 298 2078.5 98.5209 - 27.2807 318 2078.5 98.5209 - 29.2511 328 2078.5 98.5207 - 30.2364

(14)

Research Article

2206

Figure i13: iFTIR iSpectrum iof iBruguiera igymnorhiza iafter itreatment iwith iPb i(II)

The ibroad ibands iat i3607.22 iand i3392.13 icm-1 iwere idue ito i–OH iand i–NH2 istretching ivibrations idue

ito ilignins i(Lalhruaitluanga iet ial., i2010) iand i–OH istretching ivibrations irespectively iinvolved iin ithe

ibiosorption iby ishifting ithe iband ito i3351.93 iand i3340.37 icm-1. iThe ibands iat i3051.31 icm-1 iindicate ithe

ipresence iof iCH2 istretching ivibrations iof iaromatic iaryl irings iand ishifted ito i3021.30 icm-1. iThe iband iat

i2376.67 icm-1 ican ibe iattributed ito i–C≡N iin ithe ipolyacrylonitrile i(Sarada iet ial., i2014) iand iis iinvolved

iintensely iby ishifting ito i2366.27 icm-1. iThe iband ipeak iat i1705.14 icm-1 iis iassigned ito iCarbonyl

ifunctional igroup iof, iafter iadsorption iof iPb2+ ithe iband islightly ishifted ito i1716.30 icm-1. iFurther ithe

isharp ipeak iat i1376.07 icm-1 irepresenting ithe ipresence iof i–CH2 ibending ivibrations iin ithe ibiomass iand iis

ialso ishifted ito i1316.48 icm-1 iindicating ithe iinvolvement iin ibiosorption iprocess. i

The ipresence iof isiliceous ifrom idiatomaceous iearth, iin imangrove iplant iwaste iand icomposite imaterial,

ican ijustify ifor ithe iabsorbance ipeak iat i757.44 icm−1 i(Si–C) iand iN icontaining ibioligands iis ishifted ito ithe

i746.93 icm−1. i iThe ibands ipresent ibelow i800cm−1 iare ifinger iprint izone iof iphosphate iand isulphur

ifunctional igroups iand iN icontaining ibioligands. iThe isignificant ichanges iin ithe iwave inumbers iof ithe

ispecific ipeaks isuggested ithat i–OH iand i–NH2, ibounded i–CH2, iamide iN-H ibending ivibrations iand iC=O

iof icarboxylic iacid igroups icould ibe ipredominantly iinvolved iin ithe ibiosorption iof iPb+2 ionto iBruguiera igymnorhiza. iSimilar iresults iwere ireported ifor ithe ibiosorption iof idifferent iheavy imetals ion ivarious iplant

ispecies i(Sibel iet ial, i2009; iSuleman iet ial, i2009; iLalhruaitluanga iet ial, i2010; iMunagapati i iet ial, i2010;

iSarada iet ial, i2014) 13 conclusion

Experimental idata iwere iobtained ifor iremoval iof iPb i(II) iions iusing iBruguiera igymnorhiza ias

ibiosorbent. iBased ion ithe ianalysis ithe ifollowing iconclusions iwere imade.

The ibiosorption iperformances iare istrongly iaffected iby iparameters isuch ias iinitial iconcentration, ipH,

iand itemperature.The ipercentage ibiosorption iPb i(II) iions iof iincreases iwith iincreasing icontact itime.The

iequilibrium iuptake iwas iincreased iand ipercentage ibiosorption iwas idecreased iwith iincreasing ithe iinitial

iconcentration. iThe iplot iof ipH iversus ipercentage ibiosorption ishows ithe isignificant ibiosorption itakes

iplace iat i5.The ipercentage ibiosorption iPb i(II) iof iincreases iwith iincrease iin ithe ibiosorbent idosage.The

ipercentage ibiosorption iPb i(II) iof idecreases iwith iincrease iin ithe itemperature.The iremoval idata iof ilead

iions ifollows ithe iFreundlich imodel iwith ithe ibest ifit.The ikinetics iof ithe ibiosorption iof ilead iions ion

iBruguiera igymnorhiza ican ibe ibetter idescribed iwith iFirst-order ikinetics. iIntra-particle idiffusion imight

ialso ihave ia isignificant irole iin ithe ibiosorption iprocess islowing idown ithe iapproach itowards

iequilibrium.The ithermodynamic iparameters isuch ias ifree ienergy ichange, ienthalpy ichange iand ientropy

ichanges iwere icalculated iand ithe ibiosorption iprocess iwas iexothermic. References

1. Ademoroti, iC. iM. iA., i(1996). iEnvironmental ichemistry iand itoxicology. iPollution iby iheavy imetals. iFoludex ipress, i171- i172 i

(15)

2207

2. Afridi iH. iI., iKazi iT. iG., iKazi iG. iH., iJamali iM. iK., iShar iG. iQ., i2006. iEssential itrace iand itoxic ielement idistribution iin ithe iscalp ihair iof iPakistani imyocardial iinfarction ipatients iand icontrols. iBiol. iTrace iElem. iRes. i113, i19-34.

3. Ahmet, iS., iDurali, iM., iMustafa, iT., iMustafa, iS., i“Biosorption iof iCd i(II) iand iCr i(III) ifrom iaqueous isolution iby imoss i(Hylocomiumsplendens) ibiomass: iEquilibrium, ikinetic iand ithermodynamic istudies,” iChem. iEngg. iJ, ivol. i144, ipp. i1–9, i2008

4. Ahmet, iS., iMustafa, iT., i“Biosorption iof iPb(II) iand iCd(II) ifrom iaqueous isolution iusing igreen ialga i(Ulva ilactuca) ibiomass,” iJ. iHazard. iMater, ivol. i i152, ipp. i302–308, i2008.

5. Aksu, iZ.,” iEquilibrium iand ikinetic imodeling iof icadmium i(II) ibiosorption iby iC. iVulgaris iin ia ibatch isystem: ieffect iof itemperature,” iSepn.Purifi. iTechno, ivol. i21, ipp. i285–294, i2001.

6. Amuda iOS, iOjo iOI, iEdewor iTI i(2007). iBiosorption iof iLead ifrom iIndustrial iWastewater iUsing iChrysophyllum ialbidum iSeed iShell. iBioremed. iJ. i11 i(4): i183- i194

7. Areco, iM.M., iAfonso, iM.D.S., i“Copper, izinc, icadmium iand ilead ibiosorption iby iGymnogongrustorulosus: ithermodynamics iand ikinetics istudies,” iColloid.Surf. iB: iBioint, iVol. i81, ipp. i620–628, i2010.

8. Bakircioglu iY, iBakircioglu iD, iAkman iS i(2010) iBiosorption iof ilead iby ifilamentous ifunal ibiomass-loaded iTiO2 inanoparticles. iJ iHazard iMater i178(1–3):1015–1020

9. Bamidele iI. iOlu-Owolabi i i, iPaul iN. iDiagboya i, iWilliam iC. iEbaddan. i iMechanism iof iPb2+ iremoval ifrom iaqueous isolution iusing ia inonliving imoss ibiomass. iChemical iEngineering iJournal i195-196 i(2012) i270–275

10. Chen iH, iDai iGL, iZhao iJ, iZhong iAG, iWu iJY, iYan iH i(2010). iRemoval iof icopper i(II) iions iby ia ibiosorbent-Cinnamomum icamphora ileaves ipowder. iJ. iHazard. iMater. i177: i228-236.

11. Dąbrowski, iA., iAdsorption-from itheory ito ipractice, iAdv. iin icolloid. iInter. iSci.vol. i93, i i i i i ipp135-224, i2001.

12. Freundlich, iH., i“Colloid iand icapillary ichemistry,” iMethuen, iLondon, i1926. i

13. Gercel iO., iGercel iF., i2007, iAdsorption iof ilead i(II) iions ifrom iaqueous isolution iby iactivated icarbon iprepared ifrom ibiomass iplant imaterial iof iEuphorbia irigida, iJ. iChem. iEng. i132, i289-297 14. Gupta, iV.K., iRastogi, iA., i“Biosorption iof ilead i(II) ifrom iaqueous isolutions iby inon-living ialgal ibiomass iOedogoniumsp. iand iNostoc isp. iA icomparative istudy,” iColloids iand iSurfaces iB: iBiointerfaces, ivol. i64, ipp. i170–178, i2008.

15. Guyo, iU., iMhonyera, iJ., iMoyo, iM. iPb(II) iadsorption ifrom iaqueous isolutions iby iraw iand itreated ibiomass iof imaize istover i– ia icomparative istudy. iProcess iSaf. iEnviron. iProt. i2015;93:192–200.

16. Hanafiah iMAKM, iShafiei iS, iHarun iMK, iYahya iM. i2006 iKinetic iand ithermodynamic istudy iof iCd2+ iadsorption ionto irubber itree i(hevea ibrasiliensis) ileaf ipowder. iMater. iSci. iForum i517, i217-221.

17. Jalali iR1, iGhafourian iH, iAsef iY, iDavarpanah iSJ, iSepehr iS. iRemoval iand irecovery iof ilead iusing inonliving ibiomass iof imarine ialgae. iJ iHazard iMater. i2002 iJun i10;92(3):253-62

18. Jianlong, iW., iXinmin, iZ., iDecai, iD., iand iDing, iZ., i2001. iBiosorption iof ilead(II) ifrom iaqueous isolution iby ifungal ibiomass iof iAspergillus iniger. iJ. iBiotechnol. i87, i273-277.

19. Kazi iT. iG., iJalbani iN., iKazi iN., iJamali iM. iK., iArain iM. iB., iAfridi iH. iI., iKandhro iA., iPirzado iZ., i2008. iEvaluation iof itoxic imetals iin iblood iand iurine isamples iof ichronic irenal ifailure ipatients, ibefore iand iafter idialysis. iRenal iFailure. i30, i737-745.

20. Langmuir, iI., i“The iadsorption iof igases ion iplane isurfaces iof iglass, imica iand iplatinum,” iJ. iAm. iChem. iSoc, ivol. i40, ipp. i1361-1403, i1918.

21. Majumdar, iS.S., iS.K. iDas, iR. iChakravarty, iT. iSaha, iT.S. iBandyopadhyay iand iA.K. iGuha: iA istudy ion iPb iadsorption iby iMucor irouxii ibiomass. iDesalination, i251, i96-102 i(2010).

22. iMaria iMar iAreco., iand iMaria idos iSantos iAfonso., iColloids iand iSurfaces iB: iBiointerfaces. iVol i81, ipp i620–628, i2010

23. Milan iMomcilovic i, iMilovan iPurenovic, iAleksandar iBojic, iAleksandra iZarubica, iMarjan iRandelovic. iRemoval iof ilead(II) iions ifrom iaqueous isolutions iby iadsorption ionto ipine icone iactivated icarbon. iDesalination i276 i(2011) i53–59

(16)

Research Article

2208

24. Mohan, iM., iPittman iJr., iC., iU., i(2007), iArsenic iremoval ifrom iwater/wastewater iusing iadsorbents-A icritical ireview, iJournal iof iHazardous iMaterials i142, i1–53. i i

25. Mohammad iM.M.R.,Parisa iR., iAtefeh iA., iAli iR.K., iKinetics iand iequilibrium istudies ion ibiosorption iof icadmium, ilead, iand inickel iions ifrom iaqueous isolutions iby iintact iand ichemically imodified ibrown ialgae, iJ. iHazard. iMater, ivol. i i185, ipp. i401–407, i2011. i

26. Munagapati iV.S., iYarramuthi iV., iNadavala iS.K., iAlla iS.R., iAbburi iK., i“Biosorption iof iCu(II), iCd(II) iand iPb(II) iby iAcacia ileucocephala ibark ipowder: iKinetics, iequilibrium iand ithermodynamics,” iChem. iEngg. iJ,vol. i157, ipp. i357–36, i2010.

27. Namdeti, iR., iPulipati, iK., i“Lead iremoval ifrom iaqueous isolution iusing iFicusHispida ileaves ipowder,” iDesalination iand iWater iTreatment, ivol. i52, ipp.339–349, i2014.

28. Okoro, iI. iA, iEjike, iE. iN.(2007). iSorption imodels iof iPb i(II) iremoval ifrom iaqueous isolution iusing icommon iedible ifruit iwastes. iEur. iJ. iSci. iRes., i17 i(2), i270-276.

29. Ozcan iA.S., iTunali iS., iAkar iT., iOzcan iA. i2009. iBiosorption iof ilead(II) iions ionto iwaste ibiomass iof iPhaseolus ivulgaris iL.: iestimation iof ithe iequilibrium, ikinetic iand ithermodynamic iparameters. iDesalination, i244: i188-198

30. Pandey iPK, iVerma iY, iChoubey iS, iPandey iM, iChandrasekhar iK. i2008 iBiosorptive iremoval iof icadmium ifrom icontaminated igroundwater iand iindustrial ieffluents. iBioresour. iTechnol i99, i4420- i4427.

31. Pehlivan iE, iCetin iS, iYanık iBH i(2009) iEquilibrium istudies ifor ithe isorption iof izinc iand icopper ifrom iaqueous isolutions iusing isugar ibeet ipulp iand ifly iash. iJ iHazard iMater i135(1–3):193–199 32. Resmi, iG i, iThampi, iS. iG. iand iChandrakaran, iS. i(2010). iBrevundimonas ivesicularis:A iNovel

iBio-sorbent ifor iRemoval iof iLead ifrom iWastewater. iInt. iJ. iEnviron. iRes., i4(2):281-288. 33. Sarada, iB., iPrasad, iM., iKumar, iK.K., iMurthy, iC.,“Potential iUse iOf iLeaf iBiomass, iAraucaria

iheterophylla iFor iRemoval iOf iPb+2,” iInternational iJournal iof iPhytoremediation, ivol. i15, ipp. i756–773, i2013. i

34. Selatnia, iA., iBoukazoula, iA., iKechid, iN., iBakhti, iM.Z., iChergui, iA., iand iKerchich, iY., i2004. iBiosorption iof ilead(II) ifrom iaqueous isolution iby ia ibacterial idead iStreptomyces irimosus ibiomass. iBiochem. iEng. iJ. i19, i127-135.

35. Sibel iT.A., iAsli iG., iBurcu iA., i“Zerrin iK., iTamer iA., iInvestigation iof ithe ibiosorption icharecterestics iof ilead i(II) iions ionto iSymphoricarpusalbus: iBatch iand idynamic iflow istudies,”J. iHazard. iMater. i165, i126-133. i(2009).

36. Suddhodan iP., iMishra iV., i“Inorganic iparticulates iin iremoval iof iheavy imetal itoxic iions-Part iX: iRapid iand iefficient iremoval iof iHg(II) iions ifrom iaqueous isolutions iby ihydrous iferric iand ihydrous itungsten ioxides,” iJ. iColloid. iInterfSci, ivol. i296, ipp. i383-388, i2006.

37. Suleman, iQ., iAnwar, iR.S., iMuhammad, iU., i“Biosorption iof ilead ifrom iaqueous isolution iby iFicus ireligiosa ileaves: iBatch iand icolumn istudy,” iJ. iHazard. iMater, ivol. i166, ipp. i998–1005, i2009.

38. iSulaymon iAH, i iMohammed iAA, iand i iAl-Musawi iTJ. iCompetitive ibiosorption iof ilead, icadmium, icopper, iand iarsenic iions iusing ialgae. iEnviron iSci iPollut iRes iInt. i2013 iMay; i20(5): i3011–3023.

39. Sulaymon iAH, iEbrahim iSH, iRidha iMJ i(2012) iEquilibrium, ikinetic, iand ithermodynamic ibiosorption iof iPb(II), iCr(III), iand iCd(II) iions iby idead ianaerobic ibiomass ifrom isynthetic iwastewater. iEnviron iSci iPollut iRes. idoi:10.1007/s11356-012-0854-8

40. Tan, iG.Q., iXiao, iD., i2009. iAdsorption iof icadmium iion ifrom iaqueous isolution iby iground iwheat istems. iJ. iHazard. iMater. i164: i1359–1363.

41. Taqvi, iS.I.H., iBhanger, iM.I., iShah, iS.W., i“Exploitation iof ibeach isand ias ia ilow icost iadsorbent i i ifor ithe iremoval iof iPb(II) iions ifrom iaqueous isolutions. iSepn,” iSci. iTechnol.Vol. i41, ipp i531-547, i2006.

42. Wang, iJ., iChen, iC., i“Biosorbents ifor iheavy imetals iremoval iand itheir ifuture.” iBiotechnology iAdvances, ivol. i27, ipp. i195–226, i(2009).

43. Yi-Chao, iL., iShui-Ping, iC., i“The ibiosorption iof iheavy imetals ifrom iaqueous isolution iby iSpirogyra iand iCladophora ifilamentous imacroalgae,” iBioresour. iTechnol.vol. i102, ipp. i5297– 5304, i2011.

Referanslar

Benzer Belgeler

Bulvarın ..mukabil tarafında Kül- Sokak,istikameti deniz ve imbat istikame- plan Şükrü Kaya bulvarı üzerinde inşa edil- türpark vardır.. Köşebaşı olan arsanın

Modern et kıyma makinaları en büyük boylara kadar, patates yıkama, soyma,, doğrama makinaları, sebze doğrama, püre yapma makinaları, ka- fe, kök, dane, öğütme

* Mütenevvi eklerin, diş açılmasına lüzum olmadan, muhtelif kuturdaki borular için tedarik edilebilen hususi boru aksamile (somunla sıktırma veya şariyet esasına dayanan

Mimar bu vasfının delilini başkaları için değil, fakat kendisi ve mesleği için hayatın bütün tebeddüllerine karşı göstermelidir.. Taslak olarak bu meslek sevgisinin

En küçük evde bile mimar (faideli ile güzel) muvazenesini aramak mecburiyetindedir. Sarahat plâna kabili inşa bir sadelik bahşeder. Prefabrikasyon meselesine gelince; kitle halin-

Binada kalorifer, sıcak su, telefon vesaire tesi- sat yapılmış, cephede mağaza katı Kütahya ve Marmara mermerlerile kaplanmış, pencere ve balkon. şambranları keza beyaz

Microscopic Study ( Leaf Powder) PN: Mentha piperita (Mint, Peppermint, Nane) DN: Folia Menthae (Mint leaf).. Fam:

Under optimal conditions, the removal of 42.6% Metanil yellow (MY) and 90% Victoria blue B (VBB) from aqueous solution was performed using a 10-mg hBN nanostructure.. Furthermore,