• Sonuç bulunamadı

Certain combinatoric bernoulli polynomials and convolution sums of divisor functions

N/A
N/A
Protected

Academic year: 2021

Share "Certain combinatoric bernoulli polynomials and convolution sums of divisor functions"

Copied!
11
0
0

Yükleniyor.... (view fulltext now)

Tam metin

(1)

R E S E A R C H

Open Access

Certain combinatoric Bernoulli polynomials

and convolution sums of divisor functions

Daeyeoul Kim

1

and Nazli Yildiz Ikikardes

2*

*Correspondence: nyildizikikardes@gmail.com 2Department of Elementary Mathematics Education, Necatibey Faculty of Education, Balikesir University, Balikesir, 10100, Turkey Full list of author information is available at the end of the article

Abstract

It is known that certain convolution sums can be expressed as a combination of divisor functions and Bernoulli formula. One of the main goals in this paper is to establish combinatoric convolution sums for the divisor sums

σ

ˆs(n) =



d|n(–1)

n d–1ds.

Finally, we find a formula of certain combinatoric convolution sums and Bernoulli polynomials.

MSC: 11A05; 33E99

Keywords: Bernoulli numbers; convolution sums

1 Introduction

The symbolsN and Z denote the set of natural numbers and the ring of integers, respec-tively. The Bernoulli polynomials Bk(x), which are usually defined by the exponential

gen-erating function text et– = ∞  k= Bk(x) tk k!,

play an important and quite mysterious role in mathematics and various fields like analysis, number theory and differential topology. The Bernoulli polynomials satisfy the following well-known identities: N  j= jk=Bk+(N + ) – Bk+() k+  (k≥ ) =  k+  k  j= (–)j  k+  j  BjNk+–j. (.)

The Bernoulli numbers Bk are defined to be Bk:= Bk(). For n∈ N, k ∈ Z, we define

some divisor functions

σk(n) :=  d|n dk, σk(n) :=  d|n n dodd dk, σk(n) :=  d|n (–)d–dk, ˆσk(n) :=  d|n (–)nd–dk, σk,l(n; ) :=  d|n d≡l(mod ) dk.

©2013 Kim and Yildiz Ikikardes; licensee Springer. This is an Open Access article distributed under the terms of the Creative Com-mons Attribution License (http://creativecomCom-mons.org/licenses/by/2.0), which permits unrestricted use, distribution, and repro-duction in any medium, provided the original work is properly cited.

(2)

It is well known that σk(n) = σk(n) – σk(n) and ˆσk(n) = σk(n) – σk(n) [, (.)]. The identity n–  k= σ(k)σ (n – k) =  σ(n) +   –  n  σ(n)

for the basic convolution sum first appeared in a letter from Besge to Liouville in  []. Hahn [, (.)] considered  m<n ˆσ (m) ˆσ(n – m) = ⎧ ⎨ ⎩ –ˆσ(n) + σ(n) if n is odd, –ˆσ(n) – σ(n) + σ(n) if n is even. (.)

For some of the history of the subject, and for a selection of these articles, we mention [, ] and [], and especially [, ] and []. The study of convolution sums and their ap-plications is classical, and they play an important role in number theory. In this paper, we investigate the combinatorial Bernoulli numbers and convolution sums. For k and n being positive integers, we show that the sum

k  j=  k +  j  Bjˆσk+–j(n)

can be evaluated explicitly in terms of divisor functions and a combinatorial convolution sum. We prove the following.

Theorem  Let k, n be positive integers. Then

k  j=  k +  j  Bjˆσk+–j(n) = (k + )σk+(n) –  k +    ˆσk+(n) –  k(k + )   ˆσk–(n) – (k + ) k–  s=  k s +  n– m= ˆσk–s–(m)ˆσs+(n – m).

Remark  Let n be positive integers. In Theorem , replace k by , we find easily that

n–  m= ˆσ(m) ˆσ(n – m) = σ ∗ (n) –  ˆσ(n) –  ˆσ(n), (.) and in particular, if q∈ N, p = q + , an odd prime integer, then

q  m= ˆσ(m) ˆσ(p – m) =  q(q + )(q + ) = q  m= k=  B(q + ). (.) Equations (.) and (.) are in (.) and [, Corollary .]. Using these combinatoric convolution sums, we obtain the following.

(3)

Theorem  If k is a positive integer, then  u+v+w=k+v–k–  k +  u, v, w  Bv· (l + )w= Bk+(l + ), whereuk+,v,w =(k+)!u!v!w! and l= , , , , , , , , , , , .

Thus, we can pose a general question regarding Bernoulli polynomials.

Question For all k, l∈ N, does the identity  u+v+w=k+v–k–  k +  u, v, w  Bv· (l + )w= Bk+(l + ) hold?

The problem of convolution sums of the divisor function σ(n) and the theory of

Eisenstein series has recently attracted considerable interest with the emergence of quasi-modular tools. In connection with the classical Jacobi theta and Euler functions, other aspects of the function σ(n) are explored by Simsek in []. Finally, we prove the

follow-ing.

Theorem  If a(≥ ) and k are positive integers, then (i) k–  s=  k s +  a– m= σk–s–,  m ;   σs+a– m =   (k + )  Bk+a +   – k (k + ) a– i= Bk+i +   (k+)a– k+–  –  a++   , (ii) k–  s=  k s +  a– m= σk–s–,  m ;   σs+a– m =   + k (k + ) a– i= Bk+i +   (k+)a– k+–   +  

k(a+)– k(a+)–+ ka––  k–   + a–   – (k–)(a+)– (k–)a+k––   + a–– , (iii) k–  s=  k s +  a– m= σk–s–  m   σs+a– m =   (k + )  Bk+a +   (k + ) a– i= Bk+i

(4)

+   (k+)a–  k+–   +  

k(a+)– k(a+)–+ ka––  k–   + a–   – (k–)(a+)– (k–)a+k––   .

2 Properties of convolution sums derived from divisor functions Proposition ([]) Let k, n be positive integers. Then

k  j=  k +  j  Bjσk+–j(n) = –  k +    σk+(n) – (k + )  k– n  σk–(n) + (k + ) k–  s=  k s +  n– m= σk–s–(m)σs+(n – m).

Proposition ([, ]) Let k, n be positive integers. Then

(i) k–  s=  k s +  n– m= σk–s–(m)σs+(n – m) =   σk+(n) – nσk–(n) , (ii) k–  s=  k s +  n m= σk–s–(m – )σs+(n – m + ) =  σk+(n).

Proof of Theorem Let k, n∈ N. By Proposition  and Proposition , we obtain

T := k–  s=  k s +  n– m= ˆσk–s–(m)ˆσs+(n – m) = k–  s=  k s +  n– m=  σk–s–(m) – σk–s–  m   ×  σs+(n – m) – σs+  n– m   . It is easily checked that

σk–s–  m   σs+(n – m) + σk–s–(m)σs+  n– m   = σk–s–  m   σs+  n– m   + σk–s–(m)σs+(n – m) +  σk–s–(m) – σk–s–  m   σs+(n – m) – σs+  n– m   . Thus, T = k–  s=  k s +  n– m=  σk–s–(m)σs+(n – m) + σk–s–  m   σs+  n– m   –  k–  s=  k s +  n– m=  σk–s–  m   σs+  n– m   + σk–s+(m)σs+(n – m) 

(5)

–  k–  s=  k s +  n– m=  σk–s–(m) – σk–s–  m   ×  σs+(n – m) – σs+  n– m   =  k–  s=  k s +  n– m=  σk–s–(m) – σk–s–  m   σs+(n – m) – σs+  n– m   – k–  s=  k s +  n– m=  σk–s–(m)σs+(n – m) – σk–s–  m   σs+  n– m   =  k–  s=  k s +  n– m= σk–s–(m)σs+(n – m) –  k +  k +   σk+(n) +  k– n  σk–(n) +k +  k  j=  k +  j  Bjσk+–j(n) +   k +  k +   σk+  n   +  k – n   σk–  n   +  k +  k  j=  k +  j  Bjσk+–j  n   =σk+(n) – nσk–(n) –  k +  k +   σk+(n) – σk+  n   –k   σk–(n) – σk–  n   + n  σk–(n) – σk–  n   –  k +  k  j=  k +  j  Bj  σk+–j(n) – σk+–j  n   = σk+(n) –  k +  k +   ˆσk+(n) – kˆσk–(n) –k +  k  j=  k +  j  Bjˆσk+–j(n).

This proves the theorem. 

Example  Let n be a positive integer. In Theorem , put k = , we get

n–  m= ˆσ(m) ˆσ(n – m) =  σ ∗ (n) –  ˆσ(n) –  ˆσ(n) +  ˆσ(n).

Corollary  Let k, n be positive integers. Then, we obtain (i) k  j=  k +  j  Bjˆσk+–j(n) =  k +    σk+(n) –  k +    ˆσk+(n) –  k(k + )   ˆσk–(n) – (k + ) k–  s=  k s +  n– m= ˆσk–s–(m)ˆσs+(n – m),

(6)

(ii) k  j=  k +  j  Bj  σk+–j(n) + σk+–j  n   = –σk+(n) – (k + )σk+  n   –(k + )(k – n)σk–(n)(k + )(k – n)σk–  n   + (k + ) k–  s=  k s +  n– m= σk–s–  m   σs+(n – m), (iii) k  j=  k +  j  Bjσk+–j(n) = kσk+(n) –k(k + )σk–(n) – n(k + )ˆσk–(n) – (k + ) k–  s=  k s +  n– m= σk–s–(m)ˆσs+(n – m) = –(k + )σk+(n) –(k – n)(k + )σk–(n) + n(k + )σk–  n   + (k + ) k–  s=  k s +  n– m= σk–s–(m)σs+(n – m).

Proof (i) We note that

k–  s=  k s +  n– m= σk–s–(m)σs+(n – m) = k–  s=  k s +  n– m= σk–s–(m)σs+(n – m)k–  s=  k s +  n– m= σk–s–(m – )σs+n– (m – ) .

(ii) and (iii) are applied in a similar way. 

3 Bernoulli polynomials and convolution sums Proposition ([]) Let k, n be positive integers. Then

k–  s=  k s +  n– m= k–s–σk–s–(m/)σs+(n – m) = σk+(n/) –   σk(n) – k+σk(n/) – kσk(n/)

(7)

nσk–(n) + kσk–(n/) + σk,(n; ) +k– k +  k  j=  k +  j  Bjσk+–j(n/) +  (k + ) k  j=  k +  j  Bjk+–jσk+–j(n/) +  (k + ) k  j=  k +  j  Bjσk+–j,(n; ) –  (k + )  u+v+w=k+v–  k +  u, v, w  Bvσw,(n; ).

It is well known that σk–s–,(m; ) = k–s–σk–s–(m). Using Proposition , we get

this lemma.

Lemma  Let k, n be positive integers. Then (i) k–  s=  k s +  n– m= σk–s–,  m ;   σs+(n – m) = σk+  n   +  (k + )σk+,(n; ) +(k + )σk+,  n ;   +  (k + )σk,(n; ) –  σk(n) +  σk,(n; ) –  σk,(n; ) +  σk,(n; )nσk–(n) + kσk–,(n; ) +  k – n   σk–,  n ;   + k σk–,(n; ) +k (k + ) k  j=  k +  j  Bjσk+–j  n   +  (k + ) k  j=  k +  j  Bjσk+–j,  n ;   +  (k + ) k  j=  k +  j  Bjσk+–j,(n; ) –  (k + )  u+v+w=k+v–  k +  u, v, w  Bvσw,(n; ), (ii) k–  s=  k s +  n– m= σk–s–,  m ;   σs+(n – m) =   (k + )  σk+(n) +  k+  k +   σk+  n   +  k– n   σk–(n) +  k– n   σk–  n   –  σk+  n  

(8)

–   (k + )  σk+,(n; ) –   (k + )  σk+,  n ;   –   (k + )  σk,(n; ) +  σk(n) –  σk,(n; ) +  σk,(n; ) –  σk,(n; ) +nσk–(n) – kσk–,(n; ) –  k – n   σk–,  n ;   – k σk–,(n; ) –  k (k + ) k  j=  k +  j  Bjσk+–j  n   –  (k + ) k  j=  k +  j  Bjσk+–j,  n ;   –  (k + ) k  j=  k +  j  Bjσk+–j,(n; ) +  (k + )  u+v+w=k+v–  k +  u, v, w  Bvσw,(n; ).

Remark  (i) Using Lemma , we obtain  u+v+w=k+v–  k +  u, v, w  Bvσw,(n; ) =  k +    σk+  n   – σk(n) + σk,(n; ) + σk,  n ;   –  n(k + )   σk–(n) + σk–,  n ;   + (k + )σk,(n; ) + k k  j=  k +  j  Bjσk+–j  n   + k  j=  k +  j  Bjσk+–j,  n ;   + k  j=  k +  j  Bjσk+–j,(n; ) – (k + ) k–  s=  k s +  n– m= σk–s–,  m ;   σs+(n – m) = –  k +    σk+  n   – nσk–,  n ;   + σk,  n ;   – k  j=  k +  j  Bjσk+–j(n) +k–  k  j=  k +  j  Bjσk+–j  n   + k  j=  k +  j  Bjσk+–j,  n ;   + k  j=  k +  j  Bjσk+–j,(n; ) + (k + ) k–  s=  k s +  n– m= σk–s–,  m ;   σs+(n – m).

(9)

(ii) If n is an odd integer, then  u+v+w=k+v–  k +  u, v, w  Bvσw,(n; ) = (k + ) k–  s=  k s +  n– m= σk–s–,  m ;   σs+(n – m). (.)

(iii) In (.), put k = , we get  u+v+w=v–   u, v, w  Bvσw,(n; ) =  n–  m= σ,  m ;   σ(n – m), and thus, n–  m= σ,  m ;   σ(n – m) =   σ(n) – σ(n) . In (.), replace k by , we find that  u+v+w=v–   u, v, w  Bvσw,(n; ) =  n–  m= σ,  m ;   σ(n – m) + n–  m= σ,  m ;   σ(n – m)  , and thus, n–  m= σ,  m ;   σ(n – m) + n–  m= σ,  m ;   σ(n – m) =   σ(n) – σ(n) + σ(n) .

Proof of Theorem If n = , compare both sides of (.), we obtain  u+v+w=k+v–  k +  u, v, w  Bv= . (.) If we put n =  in (.), we obtain  u+v+w=k+v–  k +  u, v, w  Bv·  + w =  u+v+w=k+v–  k +  u, v, w  Bv· w = (k + ) k–  s=  k s +   . (.)

(10)

From (.) and (.), we get  u+v+w=k+v–  k +  u, v, w  Bv· w= (k + )k. (.)

By combining (.) and (.), we obtain  u+v+w=k+v–  k +  u, v, w  Bv· w= kBk+().

Others cases follow in a similar way. This completes the proof. 

Proof of Theorem (i) If a is a positive integer, then  u+v+w=k+v–  k +  u, v, w  Bv· σw, a;  =  u+v+w=k+v–  k +  u, v, w  Bv= 

by (.). According to Remark (i), we deduce that

 = (k + ) k–  s=  k s +  a– m= σk–s–,  m ;   σs+a– mk  j=  k +  j  Bjσk+–ja +k–  k  j=  k +  j  Bjσk+–j  a   + k  j=  k +  j  Bjσk+–j,  a ;   –  k +    σk+  a   – a +   .

If a = , it is clearly evident. We suppose that a > . We check that

k  j=  k +  j  Bj· a k+–j = k  j=  k +  j  (–)jBj· a k+–j+   k +    B· a k = (k + )a  j= jk+ (k + )  –   a k = Bk+a (.) by (.).

(ii) and (iii) are applied in a similar way. 

Remark  If p is a prime integer, then  u+v+w=k+v–  k +  u, v, w  Bv· pw= (k + ) k–  s=  k s +  p– m= σk–s–,  m ;   σs+(p – m) by (.) and (.).

(11)

Competing interests

The authors declare that they have no competing interests. Authors’ contributions

All authors contributed equally and significantly in writing this article. All authors read and approved the final manuscript. Author details

1National Institute for Mathematical Sciences, Yuseong-daero 1689-gil, Yuseong-gu, Daejeon, 305-811, South Korea. 2Department of Elementary Mathematics Education, Necatibey Faculty of Education, Balikesir University, Balikesir, 10100, Turkey.

Received: 26 July 2013 Accepted: 23 September 2013 Published:08 Nov 2013 References

1. Hahn, H: Convolution sums of some functions on divisors. Rocky Mt. J. Math. 37(5), 1593-1622 (2007) 2. Besge, M: Extrait d’une lettre de M. Besge à M. Liouville. J. Math. Pures Appl. 7, 375-376 (1862)

3. Cheng, N, Williams, KS: Evaluation of some convolution sums involving the sum of divisors functions. Yokohama Math. J. 52, 39-57 (2005)

4. Lahiri, DB: On Ramanujan’s functionτ(n) and the divisor functionσ(n), I. Bull. Calcutta Math. Soc. 38, 193-206 (1946) 5. Melfi, G: On some modular identities. In: Number Theory (Eger, 1996), pp. 371-382. de Gruyter, Berlin (1998) 6. Huard, JG, Ou, ZM, Spearman, BK, Williams, KS: Elementary evaluation of certain convolution sums involving divisor

functions. In: Number Theory for the Millennium, vol. II, pp. 229-274 (2002)

7. Kim, D, Kim, A, Sankaranarayanan, A: Bernoulli numbers, convolution sums and congruences of coefficients for certain generating functions. J. Inequal. Appl. 2013, 225 (2013)

8. Williams, KS: Number Theory in the Spirit of Liouville. London Mathematical Society Student Texts, vol. 76. Cambridge University Press, Cambridge (2011)

9. Kim, D, Kim, A, Kim, M: A remark on algebraic curves derived from convolution sums. J. Inequal. Appl. 2013, 58 (2013) 10. Simsek, Y: Elliptic analogue of the Hardy sums related to elliptic Bernoulli functions. Gen. Math. 15(2-3), 3-23 (2007) 11. Kim, D, Bayad, A: Convolution identities for twisted Eisenstein series and twisted divisor functions. Fixed Point Theory

Appl. 2013, 81 (2013)

12. Cho, B, Kim, D, Park, H: Combinatorial convolution sums derived from divisor functions and Faulhaber sums (2013, submitted)

10.1186/1687-1847-2013-310

Cite this article as: Kim and Yildiz Ikikardes: Certain combinatoric Bernoulli polynomials and convolution sums of

Referanslar

Benzer Belgeler

DEPARTMENT OF ENGLISH LANGUAGE TEACHING PRE-TEACHING TUTORIAL QUESTIONS.. You will be provided feedback on your lesson plan based on the

►practice the pronunciation of phonemic symbols and improve their pronunciation as well as speaking in English by noticing and modifying their own, if any, pronunciation or

Objectives This course aims to provide a critical overview on the historical and current methods and approaches in the field of English Language Teaching being; The Grammar

Description This course concentrates on building language awareness and teaching skills through a detailed study of techniques and stages of teaching listening, speaking, grammar and

Description Drama, history and background of applied drama, drama in ELT classroom, drama techniques and their implications in English language

Description A variety of different authentic listening texts and academic presentations are utilized to develop students’ receptive listening skills. This course includes

The last question of the survey concerns if the students consider sustainability issues in their projects within the scope of architectural design courses.. In total, the survey

Araştırma sonunda, uzaktan eğitim ile gerçekleştirilen yabancı dil olarak Türkçe öğretimi sürecinde öğrencilerin Edmodo programı ile desteklenebileceği, öğrencilerin bu