• Sonuç bulunamadı

Analysis of apoplastic and symplatsic antioxidant system in shallot leaves: Impacts of weak static electric and magnetic field

N/A
N/A
Protected

Academic year: 2021

Share "Analysis of apoplastic and symplatsic antioxidant system in shallot leaves: Impacts of weak static electric and magnetic field"

Copied!
8
0
0

Yükleniyor.... (view fulltext now)

Tam metin

(1)

ContentslistsavailableatSciVerseScienceDirect

Journal

of

Plant

Physiology

jo u r n al h om e p a g e :w w w . e l s e v i e r . d e / j p l p h

Analysis

of

apoplastic

and

symplastic

antioxidant

system

in

shallot

leaves:

Impacts

of

weak

static

electric

and

magnetic

field

Turgay

Cakmak

a,∗

,

Zeynep

E.

Cakmak

b

,

Rahmi

Dumlupinar

c

,

Turgay

Tekinay

d

aDepartmentofMolecularBiologyandGenetics,FacultyofScience,IstanbulMedeniyetUniversity,Istanbul,Turkey bDepartmentofBiology,ScienceandArtFaculty,KırıkkaleUniversity,Kırıkkale,Turkey

cDepartmentofBiology,ScienceFaculty,AtatürkUniversity,Erzurum,Turkey

dLaboratoryofSustainableTechnologies,InstituteofMaterialsScienceandNanotechnology,BilkentUniversity,Ankara,Turkey

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received3November2011

Receivedinrevisedform10March2012 Accepted13March2012 Keywords: Alliumascalonicum Antioxidantsystem Apoplast Electricfield Magneticfield ROS

a

b

s

t

r

a

c

t

Impactsofelectricandmagneticfields(EFsandMFs)onabiologicalorganismvarydependingontheir applicationstyle,time,andintensities.HighintensityMFandEFhavedestructiveeffectsonplants. How-ever,atlowintensities,thesephenomenaareofspecialinterestbecauseofthecomplexityofplant responses.Thisstudyreportstheeffectsofcontinuous,low-intensitystaticMF(7mT)andEF(20kV/m) ongrowthandantioxidantstatusofshallot(AlliumascalonicumL.)leaves,andevaluateswhethershifts inantioxidantstatusofapoplasticandsymplasticareahelpplantstoadaptanewenvironment.Growth wasinducedbyMFbutEFappliedemergedasastressfactor.Despitealackofvisiblesymptomsof injury,lipidperoxidationandH2O2levelsincreasedinEFappliedleaves.Certainsymplasticantioxidant

enzymeactivitiesandnon-enzymaticantioxidantlevelsincreasedinresponsetoMFandEFapplications. Antioxidantenzymesintheleafapoplast,bycontrast,werefoundtoshowdifferentregulationresponses toEFandMF.Ourresultssuggestthatapoplasticconstituentsmayworkaspotentiallyimportantredox regulatorssensingandsignalingenvironmentalchanges.StaticcontinuousMFandEFatlowintensities havedistinctimpactsongrowthandtheantioxidantsysteminplantleaves,andweakMFisinvolvedin antioxidant-mediatedreactionsintheapoplast,resultinginovercomingapossibleredoximbalance.

© 2012 Elsevier GmbH. All rights reserved.

Introduction

Allterrestrialorganismsareexposedtotheearth’selectricand magneticfields(EFsandMFs,respectively),whicharenatural com-ponentsoftheirenvironment.However,interestinstudyingthe effectsofthesenaturalphenomenaonplantsisstrengthenedby theincreasinghumanactivitiesthatgenerateEFandMF.AnEFis afieldofforcesurroundingachargedparticle,whileaMFisafield offorcesurroundingamovingchargedparticle.Achargedparticle alwayshasbothaMFandanEF,andthatiswhyEFandMFare associatedwitheachother(Griffiths,1999).Theyaretwodifferent fieldswithsimilarphysicalcharacteristics,andtheireffectson bio-logicalorganismsshowdifference(McCannetal.,1993;Moonand Chung,2000).Today,differentintensitiesofMFandEFareusedin

Abbreviations: MF,magneticfield; EF,electricfield;CAT, catalase;GPOD, unspecificperoxidase;APX,ascorbateperoxidase;SOD,superoxidedismutase; GR,glutathionereductase;Asc,ascorbate;Glu,glutathione;G6PDH, glucose-6-phosphatedehydrogenase;MDA,malonyldialdehyde.

∗ Correspondingauthor.Presentaddress:DepartmentofMolecularBiologyand Genetics,FacultyofScience,IstanbulMedeniyetUniversity,34730,Istanbul,Turkey. Tel.:+902166022804;fax:+902166022805.

E-mailaddress:turgaycakmak@hotmail.com(T.Cakmak).

awiderangeofareasincludingelectronicappliances,food steril-ization,medicaldiagnostics,medicaltherapeutics,andlevitation. AlargevolumeofliteratureisavailableontheeffectsofMFand EFonbiologicalorganisms.HighintensityMFandEFhavebeen utilizedfordirectbiologicalapplicationsduetotheirdestructive effectsonbiologicalsamples(McCannetal.,1993).Ontheother hand,weakMFandEFhavebeenreportedtohavebeneficialeffects onlivingorganisms(NechitailoandGordeev,2001;Phirkeetal., 1996).KnowledgeofthemechanismsoftheactionofMFandEF onvariousbiologicalsystemsmaybeeffectivelyusedasameans ofregulatingthebiologicalactivityofthesesystems.Stimulatory effectsofweakintensityEFhavebeenreportedonearlygrowth (Costanzo,2008)and flowering(Nechitailoand Gordeev,2001), evenifsmalldecreasesinthegerminationratioandslight disrup-tionof meristemarchitecturewithdistracted celldivisionratio were reported (Wawrecki and Zagorska-Marek, 2007).Positive effectsofweakintensityMFonplantcharacteristics,suchasseed germinationandearlygrowth(Cakmaketal.,2010a;Vashisthand Nagarajan,2010),shootdevelopmentandflowering(Aladjadjiyan, 2002)werereported.Moreover,effectsofweakMFapplicationon proteinbiosynthesis,celldivision,nucleicacidcontent,and mem-braneionmovementwerestudied(Phirkeetal.,1996;Stangeetal., 2002).However,theunderlyingmechanismofthesephenomenais 0176-1617/$–seefrontmatter © 2012 Elsevier GmbH. All rights reserved.

(2)

stillpoorlyunderstoodbecauseofthecomplexityofthebiological responses.

Plantsarefixedorganismsexposedtoenvironmentalstresses. Efficientadaptive cellular mechanismsallowresistancetosuch stresses.When plants areexposed todifferentstress factors, a varietyoffreeradicalsandreactiveoxygenspecies(ROS)are over-produced.OverproductionofROScausesoxidativedamagetoDNA, lipids,andproteins,oftenleadingtothecessationofthecellcycle, andapoptoticornecroticcelldeath(Ahmadetal.,2008).Onthe otherhand,atlowlevels,ROSareimportantsignalingmolecules andareeffectivelymanagedbyseveralantioxidantmolecules.To keep ROS levels in a balance, plants have evolved antioxidant defensemechanisms.Theseincludeenzymaticcomponentssuch assuperoxidedismutase(SOD,EC1.15.1.1),ascorbateperoxidase (APX,EC1.11.1.11),catalase(CAT,EC1.11.1.6),peroxidase(POD, EC1.11.1.7), and glutathionereductase(GR,EC1.6.4.2),aswell asnon-enzymaticcomponents,suchasascorbate(ASC)and glu-tathione(GSH) pool(Mittler,2002).Enzymaticreaction of SOD withsuperoxideradicalsresultsin theformationof H2O2.

Pro-ducedH2O2isthenscavengedbyCAT,nonspecificPODsandthe

ascorbate–glutathionecycle,whereAPXreducesittoH2O(Mittler,

2002).GRalsoplaysakeyroleinantioxidantdefenseprocessesby reducingoxidizedglutathionetoGSH.Pastresearchhasfocused mainlyonthepotentialimportanceofsymplasticantioxidant sys-temsinthedetoxificationoftheROS.Bycontrast,relativelylittle attentionhasbeenpaidtothepotentialforthedetoxificationof ROSintheapoplast.However,manywelldocumentedantioxidants suchasAPX,POD,SOD,andCATarealsolocatedintheleafapoplast (CakmakandAtici,2009;Polleetal.,1994).Therefore,adverse envi-ronmentalfactorsarealsocapableofinducingthesynthesisofROS inapoplasticspaceasintheintracellulararea.Thus,antioxidants locatedintheaqueousmatrixofleafcellwallsconstitutean impor-tantfirstlineofdefenseagainsttheenvironmentalstress(Aticiand Nalbantoglu,2003).

Althoughsomereports haveinvestigated MF-orEF-induced oxidativestressandantioxidantresponse(Hajnorouzietal.,2011; Sahebjameietal.,2007;Wangetal.,2009),toourknowledge,there isnoinformationavailableaboutMF-andEF-inducedapoplastic antioxidantresponse,althoughinitialeventsmostlikelyoccurin theapoplasticareaofplantcellssubjectedtobioticandabiotic envi-ronmentalfactors.Theobjectiveofthepresentstudywastoassess thepossibleeffectsofweakstaticMFandEFontheantioxidant statusofshallotleavesandtoevaluatewhethershiftsin antiox-idantstatusbetweenapoplasticandsymplastic areahelpplants adapttoanewenvironment.Shallotplantswerechosenfor effec-tiveevaluationofapoplasticandsymplasticantioxidantstatusin responsetoweakMFandEFapplicationsbecausetheapoplastic spacebetweencellsinanonionleafislargerthanmostotherplant leaves,andmoreuniformexposuretoleafcellscanbeachieved becauseofthechanneledcone-shapedstructureoftheleaves.

Materialsandmethods Plantgrowthandsampling

Freshshallot(AlliumascalonicumL.)bulbswereobtainedfrom FidanistanbulInc. (Istanbul,Turkey). Sixhealthy bulbs foreach group(control,MFapplied,EFapplied)wereplacedrootdownto thetopof50mlflasksfilledwithnutrientsolutionafterslightly cleaningand rinsingtherootregion.The nutrientmediumwas aspreviouslydescribed(SomervilleandOgren,1982),butathalf strength[2.5mMKNO3,1,25mMKH2PO4(pH5.6),1mMMgSO4,

1mMCa(NO3)2,25␮MFe-EDTA],supplementedwiththereported

micronutrientmixat1× concentration.Flaskswereplacedincoils andbetweenplateswhereMFandEFweregenerated,respectively.

ControlgroupswereplacedincoilswherenoMFwasgenerated. Shallots were sprouted under weakstatic MF and EF withthe magnitudes7mT MFand 20kV/m EF for17 days. Thenutrient solutionin flaskswasrenewedevery48htoavoidsoluble oxy-gendeficiencyorpossibleinfection.Samplingwasperformedon the8th,12thand17thdaysofgrowthinordertoanalyzepossible weakMF-andEF-inducedchangesintheapoplasticand symplas-ticantioxidantsystemsinrelationtotheearlyleafage.Controland applicationgroupswerekeptatleast1mawayfromeachother toavoidanypotentialexternalinfluence.Allsampleswerekept inwell-controlledlaboratoryconditionsoftemperature(22±2◦C) andillumination(16h:8hlight/darkcircle).

Atharvest, roots and leavesof shallots wereseparated; the lengthof each partwas measuredwitha 0.1cm precisionand weighedwith10−4gaccuracy.Shootsandrootsweredriedat80◦C for48htodeterminedry biomass.Extractionofapoplastic and symplasticproteinswasperformedimmediatelyateachtimepoint. Samplesrequiredforascorbate,glutathione,H2O2 and

malonyl-dialdehyde(MDA)determinationswereweighed,frozeninliquid nitrogenandstoredat−80◦Cforfurtheruse.

Magneticandelectricfieldexposure

Thebody materialof coilsused formagnetic treatmentwas madeofseverallayersofwoodlaminatedandgluedtoeachother. Thecoildimensionwas30cmlongwithaninnerradiusof17cm; theouterradiusofeachwas28cmand24cm,respectively.Eachof thecoilswaslocatedinaverticalposition.TheMFapplicationwas carriedoutinthecoilataverticalpositionof6–26cmabovethe coilbottom,whereauniformMFwasobtained.Theexposure mag-nitudeoftheMFdidnotatanypointdeviatemorethan6%fromthe centervalue.Aventilationsystemaroundthecoilswasemployedto avoidanoverheatingeffectfromthecurrentinthecoils.The tem-peraturedeviationinsidethecoilswasnegligible(23±2◦C).The requiredcurrent(0.426A)andvoltage(36V)togenerateMFwas providedbypowersupplies(GlobaldualpowersupplyModelno: 3521,Wilmington,USA).Thenumberofturnsofwirewas17,000 andthewirediameterwas1mm.StaticcontinuousMFintheaxial centerofthecoilswasmeasuredas7mTwithagaussmeter(F.W. BellGaussmeterModelno:5080,Delaware,USA).

TheEFintensitywasdeterminedastheratioofelectric volt-agechargedonplatestothedistancebetweenthem.Theelectric fieldwascreatedbetweentwoparallelaluminumplates,whose diameterswere50cmanddistancebetweentwoplateswas75cm. A50Hz, 15kV DCvoltagewasappliedtoobtainEFintensityof 20kV/m.AdiagramoftheexperimentisshowninFig.1.

Enzymeextraction

Apoplasticproteinsfrom leaveswereextractedas described previously(Vanackeretal.,1998)withsomemodifications. Har-vestedfreshleaves(6g)werecarefullycutwithasharpbistoury into1cm lengthsand rinsed in6 changes of distilled waterto removecellularproteinsandepicuticularwaxesfromthecutends. The leaves were then vacuum-infiltrated for 15min in 20mM ascorbicacidand20mMCaCl2 solution.Theleaveswereblotted

dry andplaced vertically in a 20ml syringe.Thesyringeswere placed incentrifuge tubes.The apoplasticextract wascollected fromthebottomofthetubes aftertheleaveswerecentrifuged at1500×g for20minat4◦C.Thenapoplasticextractfluid was centrifugedtwiceat1500×gfor5minat4◦Ctoremove epicu-ticularwaxes.Aftercentrifugation,thesupernatantwastakenand proteinswereprecipitatedfromapoplasticsupernatantbyadding 1.5times(v/v)MeOHcontaining1%aceticacidandincubatedthe samplesovernightat−20◦C.Thensupernatantsampleswere

(3)

SW PS G T VM EC E1 E2 R

: Electric field cell

EC

: Switch

SW

: Resistor

R

: HV transformer

T

: AC 220 V, 50 Hz

PS

: Voltmeter

VM

: Ground

G

: Aluminum electrodes

E1, E2

Fig.1.Setupforelectricfieldtreatment.

100%ice-coldEtOHand70%ice-coldEtOH,andstoredat−80◦Cfor

furtheruseofapoplasticenzymeactivitydeterminations(Tasgin etal.,2006).Proteincontentoftheapoplasticsupernatantafter proteinprecipitationwasneverdetectedovermorethan7%ofthe precipitatedproteins.

Followingcollection of apoplastic proteins, theresidual leaf materialwaspulverizedinliquidnitrogenbymeansofamortar anda pestle.For enzymeextracts,1gleafwashomogenizedin 10mlofextractionbuffer(50mMKH2PO4,pH7.8containing2%

solublepolyvinylpyrrolidone,0.5mMascorbateand1mMEDTA). Homogenatewascentrifugedat13,000× gfor40minat4◦Cand supernatantwascentrifugedtwiceat1500×gfor5minat4◦Cto removeepicuticularwaxes.Thensupernatantwasfrozeninliquid nitrogenandstoredat−80◦Cforfurtheruseasenzymeextract.

Determinationofenzymeactivities

Thedriedapoplasticproteinpelletsobtainedfromtheleaves were dissolved in 0.2M phosphate buffer (pH 6.5). Symplas-tic enzyme extractwas thawed and usedfor protein level and enzymeactivitydeterminations.Proteinestimationofapoplastic andsymplasticfluidswascarriedoutusingthemethodofBradford (Bradford,1976)usingbovineserumalbuminasstandard.

Glucose-6-phosphate dehydrogenase (G6PDH, EC 1.1.1.49) activitywasusedtoassessthecontaminationdegreeofapoplastic extractbycytoplasmicconstituents.Activitywasmeasured accord-ingtotheprotocolasdescribedbefore(KornbergandHorecker, 1955).ThereductionofNADPat340nmwasfollowedusingan assay containing 66mM potassium phosphate buffer (pH 7.6), 10mMMgCl2,300␮MNADP,2mMglucose-6-phosphateand50␮l

extract.TheactivityofG6PDHwascalculatedusinganextinction coefficientof6.22mM−1cm−1forNADPHat340nm.

Catalase(CAT,EC1.11.1.6)activitywasmeasuredbymonitoring thedecreaseinabsorbanceat240nmin50mMphosphatebuffer (pH7.5)containing20mMH2O2.TheactivityofCATwas

calcu-latedusinganextinctioncoefficientof43.6mM−1cm−1forH2O2

at240nm(BeersandSizer,1952).

Unspecificperoxidase (GPOD,EC1.11.1.7)activity was mea-suredbymonitoringtheincreaseinabsorbanceat470nmin50mM phosphatebuffer(pH5.5)containing1mMguaiacoland0.5mM H2O2.TheactivityofGPODwascalculatedusinganextinction

coef-ficientof26.6mM−1cm−1forguaiacolat470nm(Upadhyayaetal., 1985).

Superoxidedismutase(SOD,EC1.15.1.1)activitywasestimated byrecordingthedecreaseinopticaldensity ofnitro-blue tetra-zoliumdyebytheenzyme(Dhindsaetal.,1981).Threemilliliters ofthereactionmixturecontained,2␮Mriboflavine,13mM methi-onine,75␮Mnitrobluetetrazoliumchloride(NBT),0.1mMEDTA, 50mMphosphatebuffer(pH7.8),50mMsodiumcarbonateand 0.1mlfromtheapoplasticfraction.Reactionwasstartedbyadding 60␮Lfrom100␮Mriboflavinsolutionandplacingthetubesunder two30Wfluorescentlampsfor15min.Acompletereaction mix-turewithoutenzyme, which yieldedthe maximalcolor, served as control. Reaction was stopped by switching off the light. A non-irradiatedcompletereactionmixtureservedasablank.The absorbancewasrecordedat560nm,andoneunitofenzyme activ-ity wasthat amountof enzymewhich reduced theabsorbance readingto50%incomparisonwithtubeslackingenzyme.

Glutathionereductase(GR,EC1.6.4.2)activitywasdetermined followingtheoxidationofNADPHat340nm(FoyerandHalliwell, 1976). The assay mixture contained 25mM sodium phosphate buffer (pH 7.8), 0.12mM NADPH, 0.5mM oxidized glutathione (GSSG)and0.1mlenzymeextractinafinalassayvolumeof1ml. CorrectionsweremadeforanyNADPHoxidationintheabsenceof GSSG.TheactivityofGRwascalculatedusingamolarextinction coefficientof6.22mM−1cm−1forNADPHat340nm.

Ascorbateperoxidase(APX,EC1.11.1.11)activitywas deter-minedasdetailedinNakanoandAsada(1981).Theassaymixture contained50mMpotassium phosphate buffer(pH 7.0),0.5mM ascorbic acid, 1.2mM H2O2, 0.1mM EDTA and 0.1ml enzyme

extractinafinalassayvolumeof1ml.Enzymeactivitywas cal-culatedusingamolarextinctioncoefficientof2.8mM−1cm−1for ascorbateat290nm.

Quantitationofascorbateandglutathione

Extractionofascorbateand glutathionewasaccomplishedas describedpreviously (NoctorandFoyer,1998).Freshleaf mate-rial(0.5g)wasgroundinliquidnitrogenandthenextractedinto 2ml0.2NHCl.ThehomogenatewastransferredintoEppendorf tubes and centrifugedat 16,000×g for 10minat 4◦C. A 0.5ml supernatantwasneutralizedwith50␮lNaH2PO4(0.2M,pH5.6)

and 0.4ml NaOH (0.2M). The final pH was between 5 and 6. The levels of ascorbate and glutathione were measured using previouslydescribedenzyme-linkedspectrophotometricmethods (QuevalandNoctor,2007).Thetotalascorbatelevelwasquantified

(4)

afterconversionofdehydroascorbatetoascorbatebyincubation oftheneutralizedsupernatantwith1mMdithiothreitol(DTT)in NaH2PO4buffer(0.1M,pH7.5)for30min.Forascorbate

measure-ment,theinitialabsorbanceofa30␮lofsupernatant(incubated with1mMDTT)wasmeasuredat265nminNaH2PO4(0.1M,pH

5.6),thenre-measuredover3minfollowingtheadditionof Ascor-bateOxidase(0.5U).Anextinctioncoefficientof12.6mM−1cm−1 forascorbateat265nmwasusedforcalculation.Themethod fol-lowedforglutathionemeasurementreliesontheGR-dependent reductionof5,5-dithiobis(2-nitrobenzoicacid)(DTNB)monitored at 412nm. The assay mixture used for glutathione measure-mentcontains 100mM NaH2PO4 (pH 7.8),0.6mM DTNB, 6mM

EDTA,0.1mMNADPH,25␮lextractand0.6UGR.Thechangein absorbanceat412nmwasrecordedfor5min.Glutathione concen-trationswerecalculatedfromastandardcurveconstructedusing GSHovertherangeof0–1nmol(y=1.143x−0.0453,R2=0.993).

Determinationofthemalonyldialdehydeandhydrogenperoxide levels

Thethiobarbituricacid(TBA)test,whichdetermines malonyl-dialdehyde(MDA) asanend productoflipid peroxidation,was employed to measure lipid peroxidation in the leavesof shal-lots. Briefly, 1g of leaf sample was homogenized in 5ml 80% ethanolsolutionwithamortarandpestle.Thehomogenatewas centrifugedat3000×g for20minand2mlof supernatantwas aliquotedintotwoEppendorftubesas1mlpertube.Then;20% trichloroacetic acid (TCA) (w/v) solution including 0.01% (w/v) butylatedhydroxytolueneand0.65%TBA(w/v),or1ml20%TCA solution including 0.01% (w/v) butylated hydroxytoluene was addedintothese aliquotsand theywere incubatedat95◦C for 20min.Thereactionwasstoppedbyplacingthereactiontubesinan icebathfor5minandthenthesampleswerecentrifugedat3000×g for 10min.The absorbanceof the supernatantswasmonitored at532nmfor MDAcompounds,440nmand600nmfor correc-tionofanthocyaninandsugarabsorbance.TheMDAequivalents werecalculatedusinganextinctioncoefficientof157mM−1cm−1 asdescribedpreviously(Hodgesetal.,1999).

ForH2O2 determination,1gofleafsamplewasgroundin

liq-uidnitrogen and homogenized in 5ml of 0.1% (w/v) TCA. The homogenatewascentrifugedat12,000×gfor15min.Analiquot (1ml)ofthesupernatantwasmixedwithanequalvolumeof10mM potassiumphosphatebuffer(pH7.0)(KH2PO4)and1mlof1MKI.

Theabsorbanceofthemixturewasmonitoredat390nm.The con-tentofH2O2 wascalculatedbyusingastandardcurve(Velikova

etal.,2000).

Twoindependentexperiments,withthreereplicatesforeach measurement, wereperformed.All datawere expressedasthe meanvalues±standarddeviation(SD).Statisticalanalysiswas car-ried out from row data using two tailed probability values of thestudent’st-testandthedifferencesbetweentreatmentswere expressedassignificantatalevelofP<0.05,0.01,or0.001 signifi-cancecriterion.

Resultsanddiscussion

Theworld’snaturalMFhasbeenreportedas25–65␮TandEF hasbeencalculatedas100–140V/minruralareas(Belyavskaya, 2004; Neamtu and Morariu, 2005). However, they can show dramaticincreasesin industrializedregions (Isobe etal., 1999). According to the report released in 2001 by the American Conference of Governmental Industrial Hygenists Organization, occupationalthresholdlimitvaluesforworkersweredefinedas 25kV/mEFand10mTMF(Belyavskaya,2004).Inthisstudy,we wantedtoassessthepossibleeffectsofweakstaticMF(7mT)and

EF(20kV/m)ontheantioxidantstatusofplantleaves.Theshallot plantwaschosenduetothefeasibilitytoextractapoplasticfluids foreffectiveevaluationofapoplasticandsymplasticantioxidant statusinleavesinresponsetoweakMFandEFapplications.

Plants have the ability to adjust their metabolism accord-ingtochanging environmentalconditions.Theyacceleratetheir metabolism and growfaster when optimal conditions develop. However,whenastressconditionarises,plantsgenerally deceler-atetheirmetabolismandlimittheirgrowth(AticiandNalbantoglu, 2003).Inthisstudy,rootandleaflengthincreasedinresponsetoMF buttheseeffectswerenotobservedinresponsetoEFapplication (Table1).Moreover,weakMFinducedsproutingapproximately onedayearlierthanothergroups.Emergenceofthefirstleafwas observedon6thdayoftheincubation.Rootandleafdrybiomass increasedinresponsetoEFandMFapplications.Increaseswere foundtoberelatively higherunder EFapplication (Table 1).In plants,thereactiveoxygenspecies(ROS)productionlevelincreases understressconditionsoratsomegrowthstages(e.g., germina-tion,earlygrowth,senescence).Atcertainlevels,increasesinROS productionimplyeitherincreasedmetabolicactivityorpossible redoximbalancedependingonchangesinthelevelsofoxidative stressmarkerssuchaslipidperoxidationandprotein carbonyla-tion(Mittler,2002).OurresultsshowedthatH2O2levelsdecreased,

butthelevelofMDAcompounds,whichareendproductsoflipid peroxidation,remainedunchangeddependingonleafage(Fig.2a andb).YoungerleaveshadahigherH2O2butapproximatelythe

sameMDAcompoundlevels,whichreflectsthefactthattheyhave ahigher metabolicactivitythan olderones.Anincrease inROS levels,tosomeextent,wasreportedasanindicatorofmetabolic activityinplants(Mittler,2002).Moreover,H2O2andMDAlevels

didnotshowaconsiderablechangeinMFappliedleaves,butboth increasedsignificantlyinEFappliedleaveswhencomparedtotheir respectivecontrols(Fig.2aandb).Theseresultsshowthat7mTMF applicationdoesnot,but20kV/mEFapplicationmay,formastress factoronshallotgrowth.

Under stress conditions or increased metabolic activities at somegrowthstages,plantsgenerallyincreasetheactivityofoneor moreantioxidantmolecules,andtheelevatedactivitylevelsusually correlatewithincreasedstresstolerance(Mittler,2002).Therefore, resistancetostressortheholdingmaximumgrowthrateunder prevailingenvironmentalconditionsisrelatedtoaplant’s antiox-idantcapacity,whichcounteractsredoximbalancebyscavenging overproducedROS.Inaddition,manystudieshavesuggestedthat enzymesystemslocalizedatthecellsurfaceorapoplastare impor-tant sources of superoxide (O2−) and H2O2 production (Tasgin

etal.,2006).Theantioxidantenzymesinapoplastspacesofplants haveimportantrolesin theremovalofROSunderboth normal andstress conditions(CakmakandAtici, 2009;Patykowskiand Urbanek,2003).However,apossiblecorrelationbetween apoplas-ticandsymplasticantioxidantpoolisnotwelldocumented,andto ourknowledge,thereisnostudyreportedthusfaronthe evalua-tionofEForMFeffectsonapoplasticandsymplasticantioxidant systemsinplants.Ourresultsshowedthatthesolubleproteinlevel insymplasticareasslightlyincreasedinresponsetoMF(Fig.3a). Ontheotherhand,12daysofMFapplicationcausedmorethan atwo-foldincreaseinproteinlevelsandastatisticallyimportant decreaseinproteinlevelwasobservedinapoplasticwashingfluid attheendof17daysofEFapplication(Fig.3b).Theseresultsshow thatdifferentenzymaticregulationpatternsmayexistin apoplas-ticandsymplasticareasofshallotleavesinresponsetoMFandEF applications.

Beforestartingenzymaticactivitydeterminations,wemeasured G6PDHactivitytoexaminewhethertherewascontaminationof symplasticfluidintoapoplasticareas.ActivityofG6PDHin apoplas-ticwashingfluidofallleafsampleswasbelowthedetectionlimits whilesymplasticG6PDHactivityincreasedon12thand17thdaysof

(5)

Table1

ChangesinthelengthanddrybiomassofshallotrootandleavesunderEFandMFconditions.

Parameters Control 7mTMF 20kV/mEF

Day8 Day12 Day17 Day8 Day12 Day17 Day8 Day12 Day17

Leaflength(cm) 4.63±0.21 9.28±0.71 14.11±1.27 6.12±0.81* 12.4±1.15* 17.8±2.1* 4.1±0.67 10.6±0.22 14.26±2.25

Rootlength(cm) 3.52±0.68 3.91±0.22 4.42±0.34 4.12±0.68 4.7±0.43* 5.58±0.41* 3.65±0.21 3.36±0.85 4.71±0.44

Leafdrybiomass(%) 5.71±0.44 5.87±0.55 6.37±0.21 6.15±0.22 5.81±0.62 7.38±0.38* 6.72±0.48* 6.95±0.29* 7.65±0.36*

Rootdrybiomass(%) 6.24±0.36 6.46±0.25 6.85±0.62 6.62±0.51 7.2±0.47 6.87±1.07 7.18±0.27* 7.64±0.51* 8.42±0.46*

Dataaremeans±SEofatleastsixseparatemeasurements.

*Asignificantdifferencefromthecontrolint-testatP<0.05inthesameday.

Fig.2. Changesin(a)cellularH2O2and(b)MDAlevelsinshallotleavesinresponsetoweakstaticMFandEFapplications.Dataaremeans±SEofatleastsixseparate

measurements.Asteriskinthesamecolumndenoteasignificantdifferencefromthecontrolint-testatP<0.05.

MFandEFapplications(Fig.5a).Apoplasticwashingfluidisolated fromshallotleaveswasfoundtocontainCAT,GPOD,APX,andSOD, butnotGR.Thisisconsistentwithpreviousreports(Patykowski andUrbanek,2003).

Inthisstudy,symplasticGPODactivityincreasedwhileno sig-nificantchangewasobservedinapoplasticareasinresponsetoMF duringalldaysstudied(Fig.4aandb).Ontheotherhand, sym-plasticGPODactivitydidnotchange,butapoplasticGPODactivity decreased inresponse toEFapplication (Fig.4aand b). Unspe-cificPODsprotectcellsagainstdamagingeffectsofH2O2duringan

oxidative-burstresponsewhichoccursasaresultofcellularredox changes.ApoplasticPODsareboundtocellwallpolymersbyionic orcovalentbonds,andwerereportedtobeeasilyreleasedfrom thecellwallintotheapoplastandplayacriticalroleinregulating thewallstiffeningprocess(DePintoandDeGara,2004),andmany otherfunctionsrelatedtotheirROSscavengingactivity(Xueetal., 2008)undernormalandstressconditions.OurresultsshowthatEF applicationmayimpedecellwalllignificationprocessbyaffecting

chemicalcompositionofapoplasticGPODandsomeotherrelated enzymesboundtocellwallpolymers.SymplasticGPODactivity decreased,butapoplasticGPODactivitydidnotshowasignificant quantitativechangedependingonleafagein anyofthegroups studied.Thefunctionalsignificance ofsuchchanges incellwall propertiesundertheinfluenceofMFandEFareworthyofdetailed investigation.

Remarkably, both CAT and SOD activities in apoplastic and symplasticareasincreasedinresponsetoMFandEFapplications (Fig.4c–f).However,increasesin enzyme activitieswerefound tobehigherinresponsetoEF.Oftheantioxidantenzymes,SOD catalyzestheconversionoftwosuperoxidemoleculesto hydro-genperoxideand oxygen, andhydrogenperoxideis eliminated mainlybyCAT.IncreasedCATandSODactivitieshavebeenrelated toincreasedmetabolicactivity,coldtolerance(CakmakandAtici, 2009;Clareetal.,1984),freezingtolerance(Cakmaketal.,2010b; McKersieetal.,1993),andsaltstresstolerance(Yazicietal.,2007). Inthisstudy,apoplasticSODactivitydidnotchangebutsymplastic

Fig.3.Changesinsymplastic(a)andapoplastic(b)proteinlevelsinshallotleavesinresponsetoweakstaticMFandEFapplications.Dataaremeans±SEofatleastsix separatemeasurements.Valuesfollowedbydifferentsymbols(*,**,and***)inthesamecolumnindicatesignificantdifferencefromthecontrol(*P<0.05,**P<0.01,or ***P<0.001).

(6)

Fig.4. Changesinsymplastic(a,c,e,andg)andapoplastic(b,d,f,andh)antioxidantenzymeactivitiesinshallotleavesinresponsetoweakstaticMFandEFapplications. (aandb)GPOD,unspecificperoxidases;(candd)CAT,catalase;(eandf)SOD,superoxidedismutase;(gandh)APX,ascorbateperoxidase.Dataaremeans±SEofatleast sixseparatemeasurements.Valuesfollowedbydifferentsymbols(*,**,and***)inthesamecolumnindicatesignificantdifferencefromthecontrol(*P<0.05,**P<0.01,or ***P<0.001).

SODactivitydecreasedquantitativelydependingonleafageinall groupsstudied(Fig.4eandf).Indeed,fullfunctionofthisenzyme isnotwelldocumented.Itisthereforedifficulttoassessthe signifi-canceofthedecreaseintheactivityofthisenzymeinthesymplast dependingontheageoftheleaf.ApoplasticSODhasbeen asso-ciatedwithcellwalllignification(Kukavicaetal.,2009).Thus, a possibleconclusionfromourresultsmightbethatsomeofthe symplasticSODmoleculesmightbetransferredtotheapoplastic areainordertohelpcellwallstrengtheningdependingonleafage.

IncreasedapoplasticSODactivityinresponsetoEFapplication sup-portsthishypothesis,asapoplasticSODwasalsoimplicatedinthe perceptionandsignalingofoxidativestress(Foyeretal.,1997).

SymplasticAPXactivitydidnotchangeinresponsetoMFand EFapplications(Fig.4gandh),butsymplasticGRactivityincreased during12days ofEFapplication whiletherewasnosignificant changeinresponsetoMF(Fig.5b).Ontheotherhand,apoplastic APXactivitysharplydecreasedinEFappliedleavesbutiteither increasedor remained unaffectedin MFapplied leaves. To our

(7)

Fig.5. Changesin(a)glucose-6-phosphatedehydrogenase(G6PDH)and(b)glutathionereductase(GR)enzymeactivitiesisolatedfromresidualleafextractafterapoplastic fluidseparationinshallotleavesinresponsetoweakstaticMFandEFapplications.Dataaremeans±SEofatleastsixseparatemeasurements.Valuesfollowedbydifferent symbols(*or**)inthesamecolumnindicatesignificantdifferencefromthecontrol(*P<0.05or**P<0.01).

knowledge,thereisnostudythusfarreportedoneffectsofMFand EFonapoplasticantioxidantstatus,butresearchersreported dif-ferentresultsofMFandEFeffectsoncellularantioxidantenzyme activitiesinplants.IthasbeenreportedthatweakstaticMFs(10and 30mTfor5days,5heachday)increasedSODbutdecreasedCATand APXenzymeactivitiesintobaccocelllines(Sahebjameietal.,2007). Supportedwithincreasedleveloflipidperoxidation,theseauthors concludedthatweakMFcouldhavedeteriorativeeffecton antioxi-dantdefensesystemofplantcells.Ontheotherhand,magnetically (180mT)pretreatedlentilseedsgrewfasterandappearedasmore resistanttodrought withtheincreasedSOD and APXactivities (ShabrangiandMajd,2009).Acomprehensivestudywasreported onthe stimulation of germinationand early growthof rice by usinghigh-voltageEFsintherangeof250–450kV/m(Wangetal., 2009).Theyobservedinducedactivitiesofantioxidantenzymes (SOD,APX,andCAT),andloweredmalonyldialdehydecontentin responsetoa300kV/mEFfor30minrightbeforegermination.They concludedthatahigh-voltageEFcouldelevatetheagedriceseeds’ vigorandimprovethemembranesystemofagedriceseedlings.In addition,ourpreviousinvestigation(Cakmaketal.,2010b)showed thatshortterm(10and40min)EFapplicationwithamagnitudeof 100kV/mdoesnothaveasignificanteffectonantioxidantenzyme activitiesundernormal growthconditions. However,10minEF rightbeforecoldapplicationcouldaugmentchillingresistanceof cold-sensitivebeanspecies withincreased CATand SOD activi-ties.Inthisstudy,weobservedsignificantincreasesofoxidative stressmarkers(H2O2andlipidperoxidationlevels)inresponseto

EFapplicationbutnottoMF(Fig.2aandb).Moreover,increased CATandSODactivitieswerefollowedbydecreasedAPXactivityin

theapoplasticareaofEFappliedshallotleaves.However,apoplastic APXactivityeitherincreasedorremainedunaffectedbyMF(Fig.4). BothCATandAPXareinvolvedinscavengingH2O2andtheyhave

distinctaffinitylevelsfor H2O2.Catalasehasbeenreportedasa

primaryenzymethateffectivelyeliminatesthebulkofH2O2while

APXcanscavengelowlevelsofH2O2thatisnotremovedbyCAT

asithashigheraffinityforH2O2comparedtoCAT(Datetal.,2001;

Ghanatietal.,2005).Inaddition,similarchangesinapoplasticAPX andPODactivities(Fig.4)inresponsetoMFandEFshowthat per-oxidasesareimportantelementsoftheapoplasttakingonthetask ofsensingandsignalingenvironmentalchanges.

Inthisstudy,increasesinGRandG6PDHactivitiesweremore pronouncedinEFappliedleavesthanMFappliedonesingeneral (Fig.5a andb).Glucose-6-phosphatedehydrogenase isthefirst enzymeofthepentosephosphatepathway.Thus,anincreasein thisenzymeactivitysupportedwithincreasedGRactivitymay indi-catethatascorbate–glutathionepathwayworksfasterinEFapplied leaves.Inthiscase,EFappliedleavesareexpectedtohavehigher levelsofascorbateandglutathione.However,increasesin ascor-bateandglutathionelevelsweremorepronouncedinMFapplied leavesthanEFappliedones(Fig.6aandb).Sucheffectsremainto beinvestigatedinA.ascalonicum.

In conclusion,thedata presentedin this paperindicatethat weakMFpromotegrowth,possiblybyincreasingantioxidant sys-temactivity,butEFhassomenegativeeffectsonshallotgrowth despitealackofvisiblesymptomsofinjury.Anincreaseingrowth inresponsetoMF,changeinmetabolicactivitydependingonleaf age,andslightoxidativestresscausedbyEFaredirectlyrelated tocollaborationbetween apoplastic andsymplastic antioxidant

Fig.6.Changesin(a)totalascorbate(Asc+DHAsc)and(b)glutathione(GSH)contentofshallotleavesinresponsetoweakstaticMFandEFapplications.Dataaremeans±SE ofatleastsixseparatemeasurements.Valuesfollowedbydifferentsymbols(*and**)inthesamecolumnindicatesignificantdifferencefromthecontrol(*P<0.05or **P<0.01).

(8)

activityofleafcells.Differentialactivitylevelsofapoplastic and symplasticROSscavengersinresponsetoMFandEFshowedthat the apoplastic area is as important as the symplastic area for sensingandovercomingastressfactor.Shiftsinantioxidant sta-tusoftheapoplastandsymplastcontributetoredoxregulation and help plants adapt to a newenvironment. Lastly, weakMF applicationsmaybeinvolvedinantioxidant-mediatedreactionsin apoplastresultinginovercomingofpossibleredoximbalance.Thus, weakMFcanbeusedasaneffectivemeansforaugmentingplant resistancetodifferentstressfactors.Touncoverpossiblepractical applicationsofweakEFandMFinagriculture,moreresearchonthe effectsofweakMFandEFapplicationsongrowthandbiochemical responseinplantsisnecessary.Ourongoingstudiesarefocusedon thepotentialimportanceofapoplasticantioxidantsinmediating theredoxstateofplantcellsatdifferentgrowthstages.

Acknowledgement

ThisworkwassupportedbygrantsfromtheResearchFundof AtatürkUniversity(Grantno:BAP-2009/233,Grantno:2009/384) andTheScientificandTechnologicalResearchCouncilofTurkey (TUBITAK,grantno2218).

References

AhmadP,SarwatM,SharmaS.Reactiveoxygenspecies,antioxidantsandsignaling inplants.JPlantBiol2008;51:167–73.

AladjadjiyanA.Studyoftheinfluenceofmagneticfieldonsomebiological charac-teristicsofZeamays.JCentEurAgric2002;3:89–94.

Atici O, Nalbantoglu B. Antifreeze proteins in higher plants. Phytochemistry 2003;64:1187–96.

BelyavskayaNA.Biologicaleffectsduetoweakmagneticfieldonplants.AdvSpace Res2004;34:1566–74.

BeersR,SizerI.Aspectrophotometricmethodformeasuringthebreakdownof hydrogenperoxidebycatalase.JBiolChem1952;195:133–40.

BradfordM.Arapidandsensitivemethodforthequantitationofmicrogram quan-titiesofproteinutilizingtheprincipleofprotein–dyebinding.AnalBiochem 1976;72:248–54.

CakmakT,AticiO.Effectsofputrescineandlowtemperatureontheapoplastic antioxidantenzymesintheleavesoftwowheatcultivars.PlantSoilEnviron 2009;55:320–6.

CakmakT,DumlupinarR,ErdalS.Accelerationofgerminationandearlygrowth ofwheatandbeanseedlingsgrownundervariousmagneticfieldandosmotic conditions.Bioelectromagnetics2010a;31:120–9.

Cakmak T, Dumlupinar R, Erdal S. Chilling resistance of Phaseolus vulgaris andBrassicaoleraceaunderahigh-intensityelectricfield.ZNaturforsch C 2010b;65:380–6.

ClareD,RabinowitchH,FridovichI.Superoxidedismutaseandchillinginjuryin Chlorellaellipsoidea.ArchBiochemBiophys1984;231:158–63.

CostanzoE.Theinfluenceofelectricfieldonthegrowthofsoyseedlings.JElectrostat 2008;66:417–20.

DatJF, VanMontaguM,Inze D,Van BreusegemF.Catalase-deficient tobacco plants:toolsforinplantastudiesontheroleofhydrogenperoxide.RedoxRep 2001;6:37–42.

De Pinto M, De Gara L. Changes in the ascorbate metabolism of apoplastic and symplastic spaces are associated with cell differentiation.J Exp Bot 2004;55:2559–69.

DhindsaR,PlumbdhindsaP,ThorpeT.Leafsenescence—correlatedwithincreased levelsofmembrane-permeabilityandlipid-peroxidation,anddecreasedlevels ofsuperoxide-dismutaseandcatalase.JExpBot1981;32:93–101.

FoyerC,HalliwellB.Presenceofglutathioneandglutathionereductasein chloro-plast:aproposedroleinascorbicacidmetabolism.Planta1976;133:21–5. FoyerC, LopezDelgadoH,DatJ,ScottI. Hydrogenperoxide-and

glutathione-associatedmechanismsofacclimatorystresstoleranceandsignalling.Physiol Plantarum1997;100:241–54.

GhanatiF,MoritaA,YokotaH.Effectsofaluminumonthegrowthofteaplantand activationofantioxidantsystem.PlantSoil2005;276:133–41.

GriffithsDJ.Introductiontoelectrodynamics.3rded.PrenticeHall;1999.p.265–266. ISBN0-13-805326-X.OCLC40251748.

HajnorouziA,VaezzadehM,GhanatiF,JamnezhadH,NahidianB.Growth promo-tionandadecreaseofoxidativestressinmaizeseedlingsbyacombinationof geomagneticandweakelectromagneticfields.JPlantPhysiol2011;168:1123–8.

Hodges D, DeLong J, Forney C, Prange R. Improving the thiobarbituric acid-reactive-substancesassayforestimatinglipidperoxidationinplanttissues containinganthocyaninandotherinterferingcompounds.Planta1999;207: 604–11.

IsobeS,IshidaN,KoizumiM,KanoH,HazlewoodCF.Effectofelectricfieldonphysical statesofcell-associatedwateringerminatingmorninggloryseedsobservedby

1H-NMR.BiochimBiophysActa1999;1426:17–31.

KornbergA,Horecker B.Glucose-6-phosphate dehydrogenase.In:Colowick S, KaplanN,editors.Methodsinenzymology,vol.1.NewYork,USA:Academic Press;1955.p.323–5.

KukavicaB,MojovicM,Vuˇcini ´cZ,Maksimovi ´cV,TakahamaU,JovanovicSV. Gen-erationofhydroxylradicalinisolatedpearootcellwall,andtheroleofcell wall-boundperoxidase,Mn-SODandphenolicsintheirproduction.PlantCell Physiol2009;50(2):304–17.

McCannJ,DietrichF,RaffertyC,MartinAO.Acriticalreviewofthegenotoxic poten-tialofelectricandmagneticfields.MutatResRevGenetToxicol1993;297:61–95. McKersieB,ChenY,DebeusM,BowleyS,BowlerC,InzeD,etal.Superoxide dismu-taseenhancestoleranceoffreezingstressintransgenicalfalfa(Medicagosativa L.).PlantPhysiol1993;102:85.

MittlerR.Oxidative stress,antioxidants andstresstolerance.Trends PlantSci 2002;7:405–10.

MoonJD,ChungHS.AccelerationofgerminationoftomatoseedbyapplyingAC electricandmagneticfields.JElectrost2000;48:103–14.

NakanoY,AsadaK.Hydrogen-peroxideisscavengedbyascorbate-specific peroxi-daseinspinach-chloroplasts.PlantCellPhysiol1981;22:867–80.

NeamtuS,MorariuVV.Plantgrowthinexperimentalspaceflightfieldconditions. RomanJBiophys2005;15:41–6.

NechitailoG,GordeevA.Effectofartificialelectricfieldsonplantsgrownunder microgravityconditions.SpaceLifeSci2001;28:629–31.

NoctorG,FoyerC.Are-evaluationoftheATP:NADPHbudgetduringC-3 photosyn-thesis:acontributionfromnitrateassimilationanditsassociatedrespiratory activity?JExpBot1998;49:1895–908.

PatykowskiJ, UrbanekH.Activityofenzymesrelated toH2O2 generationand

metabolisminleafapoplasticfractionoftomatoleavesinfectedwithBotrytis cinerea.JPhytopathol2003;151:153–61.

PhirkeP,KubdeA,UmbarkarS.Theinfluenceofmagneticfieldonplantgrowth. SeedSciTechnol1996;24:375–92.

PolleA,OtterT,SeifertF.Apoplasticperoxidasesandlignificationinneedlesof Norwayspruce(PiceaabiesL.).PlantPhysiol1994;106:53–60.

QuevalG,NoctorG.AplatereadermethodforthemeasurementofNAD,NADP, glu-tathione,andascorbateintissueextracts:applicationtoredoxprofilingduring Arabidopsisrosettedevelopment.AnalBiochem2007;363:58–69.

SahebjameiH,AbdolmalekiP,GhanatiF.Effectsofmagneticfieldontheantioxidant enzymeactivitiesofsuspension-culturedtobaccocells.Bioelectromagnetics 2007;28:42–7.

ShabrangiA,MajdA.Effectofmagneticfieldsongrowthandantioxidantsystemsin agriculturalplants.In:Piers2009Beijing:ProgressinElectromagneticsResearch Symposium,ProceedingsIandII;2009.p.1142–1147.

SomervilleC,OgrenW.IsolationofphotorespirationmutantsinArabidopsisthaliana. In:EdelmanM,HallickR,ChuaN,editors.Methodsinchloroplastbiology.New York,USA:ElsevierBiomedicalPress;1982.p.129–38.

StangeB,RowlandR,RapleyB,PoddJ.ELFmagneticfieldsincreaseaminoaciduptake intoViciafabaL.rootsandalterionmovementacrosstheplasmamembrane. Bioelectromagnetics2002;23:347–54.

TasginE,AticiO,NalbantogluB,PopovaL.Effectsofsalicylicacidandcoldtreatments onproteinlevelsandontheactivitiesofantioxidantenzymesintheapoplastof winterwheatleaves.Phytochemistry2006;67:710–5.

UpadhyayaA,SankhlaD,DavisT,SankhlaN,SmithB.Effectofpaclobutrazolon theactivitiesofsomeenzymesofactivatedoxygen-metabolismand lipid-peroxidationinsenescingsoybeanleaves.JPlantPhysiol1985;121:453–61. VanackerH,CarverT,FoyerC.Pathogen-inducedchangesintheantioxidantstatus

oftheapoplastinbarleyleaves.PlantPhysiol1998;117:1103–14.

VashisthA,NagarajanS.Effectongerminationandearlygrowthcharacteristicsin sunflower(Helianthusannuus)seedsexposedtostaticmagneticfield.JPlant Physiol2010;167:149–56.

VelikovaV,YordanovI,EdrevaA.Oxidativestressandsomeantioxidantsystemsin acidrain-treatedbeanplants—protectiveroleofexogenouspolyamines.Plant Sci2000;151:59–66.

WangG,HuangJ,GaoW,LuJ,LiJ,LiaoR,etal.Theeffectofhigh-voltageelectrostatic field(HVEF)onagedrice(OryzasativaL.)seedsvigorandlipidperoxidationof seedlings.JElectrostat2009;67:759–64.

WawreckiW,Zagorska-MarekB.InfluenceofaweakDCelectricfieldonroot meris-temarchitecture.AnnBot2007;100:791–6.

XueYJ,TaoL,YangZM.Aluminum-inducedcellwallperoxidaseactivityandlignin synthesisaredifferentiallyregulatedbyjasmonateandnitricoxide.JAgricFood Chem2008;56:9676–84.

YaziciI,TurkanI,SekmenA,DemiralT.Salinitytoleranceofpurslane(Portulaca oleraceaL.)isachievedbyenhancedantioxidativesystem,lowerleveloflipid peroxidationandprolineaccumulation.EnvironExpBot2007;61:49–57.

Şekil

Fig. 1. Set up for electric field treatment.
Fig. 3. Changes in symplastic (a) and apoplastic (b) protein levels in shallot leaves in response to weak static MF and EF applications
Fig. 4. Changes in symplastic (a, c, e, and g) and apoplastic (b, d, f, and h) antioxidant enzyme activities in shallot leaves in response to weak static MF and EF applications.
Fig. 6. Changes in (a) total ascorbate (Asc + DHAsc) and (b) glutathione (GSH) content of shallot leaves in response to weak static MF and EF applications

Referanslar

Benzer Belgeler

Tuz piĢiriminde alttan çekiĢli (downdraft) veya çapraz çekiĢli (crossdraft) tipi fırınlar kullanılmaktadır. Tuz sırlarında alev ve tuz buharının uzun süre fırın

(Baş tarafı 3 üncüde) ı Bu mısralardaki dal dal yemeni, Dinliyor kaplamış etrafını yüzler- çifte ezanlar, yazma seccadeler, ce hödük!, kıbleye doğrulma,

Bu bulguya göre, katılımcıların fazla kilolu ya da obeziteli olanlar grubu da obeziteye yönelik olarak diğer beden ağırlığı grupları ile aynı derecede damgalayıcı

Bu araştırmada, Bolu ekolojik koşullarında 18 ekmeklik buğday çeşidi tane verimi, verim unsurları ve bazı kalite özellikleri yönünden incelenerek, bölge

45,X/46,XY mosaicism can be seen in cases with normal male external genitalia.. This phenotype is generally related with bilateral testes and possible higher number of the cell

In this experimental study, prepatterned ITO substrates for OFETs were used as source-drain contacts and PEDOT:PSS composite formulation has been used as gate contact

87 - Eserin Adı: Yaban domuzu Buluntu Yeri: Nevali Çori Dönemi: Orta PPN B; M.Ö. Müzesi:

Bu yazıda, Aydın iline bağlı bir köyden Bornova Veteriner Kontrol ve Araştırma Enstitüsü Müdürlüğü’ne tetanoz şüphesiyle getirilen 2 adet hasta koyunda tespit