• Sonuç bulunamadı

Systematic spatial and stoichiometric screening towards understanding the surface of ultrasmall oxygenated silicon nanocrystal

N/A
N/A
Protected

Academic year: 2021

Share "Systematic spatial and stoichiometric screening towards understanding the surface of ultrasmall oxygenated silicon nanocrystal"

Copied!
8
0
0

Yükleniyor.... (view fulltext now)

Tam metin

(1)

ContentslistsavailableatScienceDirect

Applied

Surface

Science

j o ur na l ho me pa g e :w w w . e l s e v i e r . c o m / l o c a t e / a p s u s c

Systematic

spatial

and

stoichiometric

screening

towards

understanding

the

surface

of

ultrasmall

oxygenated

silicon

nanocrystal

Shanawer

Niaz

a,b,∗

,

Aristides

D.

Zdetsis

b

,

Emmanuel

N.

Koukaras

b

,

Oˇguz

Gülseren

a

,

Imran

Sadiq

c

aDepartmentofPhysics,BilkentUniversity,Ankara06800,Turkey

bMolecularEngineeringLaboratory,attheDepartmentofPhysics,UniversityofPatras,Patras,GR-26500,Greece cCentreofExcellenceinSolidStatePhysics,UniversityofthePunjab,Lahore,Pakistan

a

r

t

i

c

l

e

i

n

f

o

Articlehistory: Received15May2016

Receivedinrevisedform29June2016 Accepted30June2016

Availableonline2July2016 Keywords: Siliconnanocrystals Quantumdots Electronicproperties DFTcalculations Oxygenateddots Stoichiometry

a

b

s

t

r

a

c

t

Inmostoftherealisticabinitioandmodelcalculationswhichhaveappearedontheemissionoflight fromsiliconnanocrystals,theroleofsurfaceoxygenhasbeenusuallyignored,underestimatedor com-pletelyruledout.Weinvestigatetheoretically,bydensityfunctionaltheory(DFT/B3LYP)possiblemodes ofoxygenbondinginhydrogenterminatedsiliconquantumdotsusingasarepresentativecaseoftheSi29

nanocrystal.WehaveconsideredBridge-bondedoxygen(BBO),Doubly-bondedoxygen(DBO),hydroxyl (OH)andMixoftheseoxidizingagents.Duetostoichiometry,allcomparisonsperformedareunbiased withrespecttocompositionwhereasspatialdistributionofoxygenspeciespointedoutdrasticchange inelectronicandcohesivecharacteristicsofnanocrytals.Fromanoverallperspectiveofthisstudy,itis shownthatbridgebondedoxygenatedSinanocrystalsaccompaniedbyMixhavehigherbinding ener-giesandlargeelectronicgapcomparedtonanocrystalswithdoublybondedoxygenatoms.Inaddition, itisobservedthatthepresenceofOHalongwithBBO,DBOandmixedconfigurationsfurtherlowers electronicgapsandbindingenergiesbuttrendsinsamefashion.Itisalsodemonstratedthatwithin samecomposition,oxidizingconstituent,alongwiththeirspatialdistributionsubstantiallyalters bind-ingenergy,highestoccupiedmolecularorbital(HOMO)andlowestunoccupiedmolecularorbital(LUMO) gap(upto1.48eV)andlocalizationoffrontierorbitals.

©2016ElsevierB.V.Allrightsreserved.

1. Introduction

Siliconnanocrystals(SiNCs)areveryinteresting

nanomateri-als whose potential is still not discovered completely or even

understoodinmanyrespects.Comparedtobulksilicon,the

elec-tronic properties of SiNCs are significantly dependent on their

size.In general,thesepropertiesare extremelysensitivetothe

surface conditions of nanocrystals such as passivation,

func-tionalization, spatial distribution of passivants, reconstruction

etc. Silicon nanocrystals (SiNCs) possess quantum confinement

effect, large ratios of surface area to volume, nontoxicity and

biodegradability,leadingtotheuseofSiNCsinavarietyoffields

∗ Correspondingauthorat:DepartmentofPhysics,BilkentUniversity,Ankara, 06800,Turkey.

E-mailaddresses:shanawersi@gmail.com,shanawersi@fen.bilkent.edu.tr

(S.Niaz).

suchas microelectronics,optoelectronics, photovoltaics, in-vivo

bioimaging,photosensitizing,drugdelivery,lab-on-chipsensing,

photocatalysis, phototherapeutics andmuch more [1–12].

Free-standingself-assembledSiNCsareoftensynthesizedwithsurface

hydrogenpassivationwhichcanbefurtheroxidized[8].Butthe

roleofsurfaceoxygenhasbeenusuallyignoredorunderestimated,

despitetheevidencegivenbyvariousexperiments[13–15].Many

techniqueshavebeenusedtoexploretheoxidationstateoftheSi

atomsinvolvedinbondingwithsurfaceoxygen[16–18].Inpast

years,alotofeffortshavebeencarriedoutinordertounderstand

surfacechemistryofsiliconNCsduetothepresenceofoxidizing

constituentsboth experimentally and theoretically [19–28].For

example,itwasreportedearlier[28]thatforBBOcontainingNCs

theredshiftofbandgapisfoundtobesmallercomparedtothe

DBOorcompletehydroxylation.Furthermore,forhydroxyl

passi-vation,energygapislargelydependentonamountofOHonsurface

andtheirspatialdistribution.Zdetsisetal.[25]demonstratedthat

BBO leadsto more stable nanocrystalwith largeHOMO-LUMO

http://dx.doi.org/10.1016/j.apsusc.2016.06.197

(2)

772 S.Niazetal./AppliedSurfaceScience387(2016)771–778

gapandbindingenergiescomparedtoDBObondswithwhichwe

completelyagree.Xiaodongetal.[26]performedsimilaroxygen

treatmenttohydrosylilatedsiliconNCs,wheretheyconcludethat

BBOandOHhardlychangetheHOMO-LUMOgapatgroundstate

(whichisnottrueforhydrogenpassivatedNCs).Nazemietal.[27]

haveinvestigatedeffectofspatialpositionandspatialdistribution

ofBBOpassivantsonabsorptionspectraofhydrogenpassivated

NCs.Accordingtotheirfindings,spatialpositioncansignificantly

effectonHOMO-LUMOgap,opticalabsorptionandlocalization

cen-tersoffrontierorbitalswithwhichweagree.However,wehave

investigatedthatspatialdistributionofDBO,MixandOHalsoplay

vitalroleonsurfacechemistryinadditiontoBBO.

Inthis study,Si29nanocrystal(∼1nm)hasbeendeliberately

consideredforelectronicandcohesiveinvestigations,whichisnot

accidentalaswasdemonstratedinourpreviouswork[25].

There-fore,insteadofrandomselectionofoxygenbondformationand

selectivediscussionontheircharacteristics,wepresentrather

sys-tematic densityfunctional Theory(DFT) study. Henceoxidizing

constituentsofBridge-bondedoxygen(BBO),Doubly-bonded

oxy-gen(DBO),hydroxyl(OH)andmixedareexaminedwithrespect

totheircompositionstoichiometry(identicalisomers)andspatial

position(distribution).

Itisfoundthatelectronicandcohesivecharacteristics

signifi-cantlychangewith(1)concentration,(2)spatialdistributionand

(3)typeofoxygenbondingonthesurfaceofsiliconnanocrystals.In

general,itisobservedthatbridgebondedoxygenatednanocrystals

alongwithMixhavehigherbindingenergiesandlargeelectronic

gapcomparedtonanocrystalswithdoublybondedoxygenatoms

whichisalsotrueifhydroxylgroupisalsopresent.Asfaras

con-cernedtothestabilityofNCs,weconfirmfromourresultsthatBBO

containingNCsaremorestablethanDBOwhereasMixbonding

showintermediatebehavior.

2. Modelandapproach

Initial structure of oxygen free hydrogen terminated Si29

nanocrystalisselectedfromourpreviousstudies[25,29].Inthis

study,oxygenatedSi29nanocrystalsareconstructedwhiletaking

specialcareofstoichiometryinordertopresentcomprehensiveand

unbiasedcomparison.Fig.1representssomefullyrelaxed

struc-tureswithrespecttovariousmodesofoxygenbondingandtheir

concentrations.Detailedinformation aboutoxygenbond

config-urationsalong withspatial positionsofthose stoichiometrically

identicalisomerscanalsobeseeninTable1.Asismentionedabove,

we have considered various types of oxygenbonding, namely,

Bridge-bondedoxygen(BBOor>O),Doubly-bondedoxygen(DBO

or O),hydroxyl(OH)andMix.Weputlargeemphasison

non-hydroxylatednanocrytalswhereasselectedcasesofhydroxylated

nanocrystalsarealsopartofthisresearch.

Forexample,incaseofnon-hydroxylatedSi29O6H24

nanocrys-tal,sixBBOatomsareintroducedinfirstsubgroupSi29(>O)6H24,

sixDBOatomsareintroducedinsecondsubgroupSi29( O)6H24

andinthirdsubgroupamixtureofthreeBBOandthreeDBOatoms

Si29(>O)3( O)3H24withexactly50%ratiowhichkeeps

composi-tionstoichiometry.Similartechniquehasbeenadoptedforother

non-hydroxylatednanocrystals where number of oxygen atom

variesfromO2 toO10 witheven distribution.For hydroxylated

nanocrystals,OHgroupisintroducedinadditiontothe

configu-rationadoptedabove.Forexample,inSi29O10H24nanocrystal,six

BBOatomsareintroducedinfirstsubgroupSi29(>O)6H20(OH)4,six

DBOatomsareintroducedinsecondsubgroupSi29( O)6H20(OH)4

and in third subgroup a mixture of three BBO and three DBO

atomsareintroducedSi29(>O)3( O)3H20(OH)4etc.Incontrastwith

previousexampleofnon-hydroxylatedNCs,fourhydrogenatoms

havebeenreplacedwithfourOHgroup.Forcomparisonwehave

alsoincludedoxygenfreehydrogenpassivatedSi29nanocrystali.e.

Si29H36(Table1).

Spatialpositionorspatialdistributionofoxidizingconstituents,

analogoustotheirstoichiometry,alterssurfacechemistrywhich

cannot beneglected.Hence,structures are furtherdividedinto

three categories dependingupon thepositionof oxygenbonds

whilekeepingtheircompositionsame.Thechoiceofspatial

posi-tionisstrongly dependentontheavailabilityof suitablesilicon

atomand theirvacantneighborhood whichcanbesaturateand

avoid dangling bond. In this process norepetition is involved,

hence,allpossiblecombinationsareincludedinthisstudy(Table1).

Duetothedifferentconfigurationsofnanocrystalsdependingon

thenumber ofoxygenatoms,theirorientationsand spatial

dis-tribution, symmetry of the structures differs compared to the

symmetryoforiginalstructurei.e.Td,whichisobvious.

Allcalculationsin thisworkarebased ondensityfunctional

theory(DFT)usingthehybridexchange-correlationfunctionalof

Becke,Lee,YangandParr(B3LYP)[30].Thisfunctionalhasbeen

showntoefficientlyreproducethebandstructureofawide

vari-etyofmaterials,includingc-Si,withnoneedforfurthernumerical

adjustments[31].ConvergencecriteriafortheSCFenergiesandfor

theelectrondensity(rmsofthedensitymatrix),wereplacedat

10−7au,whereasfortheCartesiangradientstheconvergence

cri-terionwassetat10−4au.Thewholesystemwasrelaxedinthe

geometryoptimizationatthesametime bydemandingthatthe

totalforce(averageandmaximum)oneachatombepractically

zero,i.e.smallerthan10−4a.u.Ourcalculationswereperformed

withtheTURBOMOLE[32]suiteofprogramsusingGaussianatomic

orbitalbasissetsSVP[4s3p1d]forSiliconand[3s2p1d]forOxygen

[33].

3. Resultsanddiscussion

3.1. Cohesiveproperties

Wehavecalculatedbinding/atomizationenergyofoxygenated

siliconnanocrystalusingfollowingexpression[25]:

BENC=NSiE (Si) +NOE (O) +NHE (H) −ENC



SiNSiONOHNH



(1) whereENC



SiNSiONOHNH



istotalenergyofnanocrystal,E(Si),E(O)

andE(H)aretheenergiesofsilicon,oxygenandhydrogenatoms

(withrespecttovacuum)andNSi,NO,andNHarethenumberof

silicon,oxygenandhydrogenatoms.

Fig.2showsbindingenergyperheavyatomwithrespectto

thenumberofoxygenatomsonthesurfaceofsiliconnanocrystals.

Furtherdetailsaboutcomposition,bindingenergiesandelectronic

gapetc for all NCs can beseen in Table1. In general,

regard-lessofanyinterspeciescomparison,thebindingenergydecreases

withincreasingnumberofoxygenatomsonthesurfaceofsilicon

nanocrytals.AswecanseeinFig.2(a)thatBBOP1havehighest

bindingenergyvaluesandDBOP1(andDBOP2)havelowest

bind-ingenergyvalueswhereasallotherconfigurationsincludingmixed

oneshaveintermediatevalues.HencestructuralstabilityofBBOP1

isnotonlyhighercomparedwithotherspatialpositionsofBBObut

alsootherformofoxygenation(DBOandMix).Itisinterestingand

ratherclearfromFig.2thatspatialpositionofDBOdoesnoteffect

bindingenergy.However,incaseofthreedifferentspatialpositions

ofMixoxygenconfigurationswhichcontainbothBBOandDBO,

variationinbindingenergyisinfluencedmainlybythepresenceof

BBO.

Forclearer interpretationof bindingenergycomparision,we

sortedoutourresultsinfurthertwogroups.Hence,Fig.2(b)and(c)

shownanocrystalswithhighestandlowestbindingenergyvalues

respectively,extractedfromFig.2a.Thedifferenceinbinding

(3)

Fig.1. Optimizedstructuresofnon-hydroxylatedSi29O8H20,Si29O10H16andhydroxylatedSi29O10H24,Si29O28H20nanocrystalswithBBO,DBO,OHandMixconfigurations.

Forexample,takingintoaccountfornanocrystalscontaining8

oxy-genatoms,bindingenergyperatomdeferenceis0.27eVwhereasin

caseof2(c)itis0.15eV.Tobemorespecific,anaverageinterspecies

bindingenergydifferenceisabout0.18eV/atom,whichcannotbe

neglected.Itisalsoevidentfromfigurethatthereisa

competi-tivedifferenceofbindingenergiesbetweenBBOandMixwhichis

againduetothepresenceofBBOinMixnanocrystals(asis

dis-cussedabove).ItisworthmentioningthatspatialpositionsofDBO

donotmuchalterenergiesasshowninbindingenergycomparison

ofFig.2.

Insetdiagram of Fig.2(c) shows bindingenergy analysisfor

hydroxylatedsiliconnanocrystalsincludingthepresenceofother

oxidizingagentsi.e.BBO,DBOandMix.Itisobservedthatthetrend

ofcohesivecharacteristicsdonotmuchchangebutenergy

low-erscomparedtonon-hydroxylatednanocrystals(seeFig.2aandc).

Numberofoxygenatomsshownininsetis10and28respectively

whichissumofoxygenatomsfromOHgroupandother

oxidiz-ingagentshencetheseenergiesmaycomparewiththeresultsof

non-hydroxylatedNCshaving6and8oxygenatomsrespectively.

3.2. Electronicproperties

Wenowfocusontheelectronicbehaviorofnanocrystalshence

Fig.3showsHOMO-LUMOgapaccordingtothenumberof

oxy-genatoms forallpossible combinationsofNCs withrespectto

(4)

774 S.Niazetal./AppliedSurfaceScience387(2016)771–778

Table1

Detailsofstoichiometricallyidenticalisomers,oxidizingagents,bindingenergyperheavyatomandHOMO-LUMOgapforallconfigurationsunderstudy.

Cluster Formula ModesofBonds B.E.(eV/atom) H-LGap(eV) B.E.(eV/atom) H-LGap(eV) B.E.(eV/atom) H-LGap(eV)

OxygenFree

Si29H36 Si29H36 – 7.09 5.14 – – – –

Oxygenated(withoutOHgroup)

Position-1 Position-2 Position-3

Si29O2H32 Si29(>O)2H32 BBO 6.73 4.66 6.53 3.49 6.66 4.84 Si29( O)2H32 DBO 6.57 3.88 6.57 3.36 – – Si29(>O)1( O)1H32 Mix 6.65 3.95 6.65 3.85 6.65 3.85 Si29O4H28 Si29(>O)4H28 BBO 6.23 3.49 6.04 3.41 – – Si29( O)4H28 DBO 6.11 3.15 6.10 3.25 – – Si29(>O)2( O)2H28 Mix 6.26 3.65 6.08 3.03 6.19 3.42 Si29O6H24 Si29(>O)6H24 BBO 5.90 3.38 5.79 3.35 – – Si29( O)6H24 DBO 5.69 2.96 5.69 2.57 – – Si29(>O)3( O)3H24 Mix 5.91 3.36 5.82 3.28 5.86 2.90 Si29O8H20 Si29(>O)8H20 BBO 5.59 2.77 5.47 2.60 – – Si29( O)8H20 DBO 5.32 2.84 5.32 2.48 – – Si29(>O)4( O)4H20 Mix 5.46 2.94 5.44 2.85 5.46 2.91 Si29O10H16 Si29(>O)10H16 BBO 5.18 5.19 – – – – Si29( O)10H16 DBO 4.98 2.33 – – – – Si29(>O)5( O)5H16 Mix 5.04 2.60 – – – –

Oxygenated(withOHgroup)

Si29O10H24 Si29(>O)6H20(OH)4 BBO 5.87 3.09 – – – –

Si29( O)6H20(OH)4 DBO 5.67 2.56 – – – –

Si29(>O)3( O)3H20(OH)4 Mix 5.74 3.25 – – – –

Si29O28H20 Si29(>O)8(OH)20 BBO 5.60 2.26 – – – –

Si29( O)8(OH)20 DBO 5.45 2.11 – – – –

Si29(>O)4( O)4(OH)20 Mix 5.51 2.38 – – – –

Fig.2. (a)Bindingenergyperheavyatomwithrespecttonumberofoxygenatomsdiagramofallnanocrytalsconsideredwithpossiblemodesofoxygenbonding,spatial positionsandstoichiometriccompositions.(b)and(c)representcompositionswithhighestandlowestbindingenergiesvaluesrespectivelywhereasinsetof(c)shows bindingenergiesofselectedhydroxylatednanocrytals.Magentastarshowsbindingenergyofoxygenfreesiliconnanocrystal,Si29H36forcomparison.

ofoxygenatomsisincreasingthegapisdecreasingsignificantly.

Allcorrespondingconfigurationsof Fig.2areincludedin Fig.3

insamesequence. Unlikethebindingenergies shownin Fig.2,

HOMO-LUMOgapenergiesareratherdispersed(between2.33eV

and4.84eV)and showirregularbehavior asnumber ofoxygen

atomsisincreasingwhichisobviousduetothesensitivenatureof

siliconsurfacewhichcancausedrasticimpactonbandgap.Again,

onecanobserveacompetitionofgapenergiesbetweenBBOP1and

MixP1configurationswhichcontainlargegapvaluescomparedto

theDBOP1(andDBOP2)andrestoftheNCshaveintermediate

gapvalues.

Fig.3(b)and(c)correspondtonanocrystals withlargestand

smallestHOMO-LUMOgapvalues,respectively,reproducedfrom

(5)

Fig.3. (a)HOMO-LUMOgapwithrespecttonumberofoxygenatomsofnanocrytalswithpossiblemodesofoxygenbonding,spatialpositionsandstoichiometriccompositions. (b)and(c)representnanocrystalswithonlylargestandsmallestHOMO-LUMOgapvaluesrespectively.MagentastarshowsHLgapofoxygenfreesiliconnanocrystal,Si29H36

forcomparison.

betweenBBOandDBOis0.96eVandinFig.3(c)thedifferenceis

just0.13eV.However,wemaydrawanimportantanalogybetween

numberofoxygenatomsandinterspeciesHOMO-LUMOgap

differ-enceinsuchawaythattheenergygapisuniformlydecreasingasfar

astheNCsarefullysaturatedwithoxygen.Inotherword,thegap

differenceis1.12eVincaseofO 2whichisdecreasingconsistently

to0.27eVforO 10case.

Oncemore,itisimportanttointroducecontributionofspatial

position(distribution)ofoxidizingagentswhichcanbeunderstood

whilelookingatbindingenergydifferenceandbandgapdifference

ofnanocrystalsespeciallyDBOcontainingisomers.Forexample,

thereisnodifferenceinbindingenergiesofDBOP1comparedwith

DBOP2(Fig.2a)whereasthegapdifferenceischanged,

dramati-cally,foridenticalcomposition(Fig.3a).HenceourresultsforBBO

supportthedemonstrationofRef.[27]butthisphenomenoncan

alsobeobservedclearly whenDBOorMix oxidizingagentsare

present.Likehydroxylatednanocrystalsalongwithotherformsof

oxygenation,non-hydroxylatednanocrystalsexhibitsimilartrends

(notshownhere).

Fig.4representsHOMOand LUMOenergieswithrespectto

increasingnumber ofoxygenatomsforBBO,DBOand Mix

con-figurations.HOMOandLUMOenergiesinFig.4acorrespondtothe

nanocrystalswithmaximumenergyvalueswithrespecttothe

spa-tialpositionofoxygenbonds.HOMOlevelisincreasingforBBOand

MixconfigurationsbutdecreasingincaseofDBOwhereasLUMO

levelisdecreasingforallconfigurationsinauniformwayasfar

asthenumberofoxygennumbersareincreasingwhichis

actu-allydiscriminationbetweenthenatureofDBOandotheroxidizing

constituents.The configurationsofnanocrystals withminimum

energieslevelsareshowninFig.4bwhichrepresentssimilar

ten-dencyasshowninFig.4aformaximumgapenergyvalues.

Inaddition,werepresentFig.5whichshowsthepartialdensity

ofstatesplotofselectednon-hydroxylated(Si29O8H20,Si29O10H16)

andhydroxylated(Si29O10H24,Si29O28H20)nanocrytalsalongwith

arbitraryposition of BBO, DBO and Mixed configurations.

Con-cerningBBOandMixedconfigurations,thecontributionofsilicon

atoms,near,HOMOisdominantcomparedtotheoxygenatoms

whereasincaseofDBObothsiliconandoxygencontributealmost

equally.Also,onecaneasilynoticefromthisfigurethattheLUMO

level rapidlyshifttowardHOMOlevel when BBOis introduced

whichisnotincaseofDBOandlesssignificantforMix.

Toexploretheeffectofincreasingcoverageonthepreferred

adsorption sites and the energy gaps we have considered a

representativeexampleof “oxygenation”in whichthehydroxyl

units have been added stepwise and we have monitored the

binding energyand HOMO-LUMO gap changesas thecoverage

increases. Namely we have considered two distinct cases (1)

Si29(>O)6H20(OH)4and(2)Si29(>O)6H16(OH)8.Thebindingenergy

andHOMO-LUMO gapfor(1)were5.87eV,and 3.09eV

respec-tively.Forcase(2)inwhich4moreOHwereaddedthebinding

energywaspracticallythesame,5.87eV,whereasthegap,

follow-ingthegeneraltrendwasreducedto2.92eV.Sowemayconclude

thattheincreasedcoveragewillnotaffectthebindingenergyand

thepreferredadsorptionsites,butitwillcontinuetodecreasethe

gap,aswasexpected.

Finally,Fig.6showsgraphicalrepresentationoffrontier

molec-ularorbitalsfortwoisomersofSi29O2H32nanocrystalwithrespect

tospatialpositionsofBBO,DBOandMixconfigurations.Withthe

helpofthisrepresentation,wedemonstratedthatspatialposition

significantlyeffectlocalizationoffrontierorbitalswhichisfurther

investigatedforvariousoxidizingagents.HenceincaseofBBOof

position-1,HOMOislocalizedonlyonleftpartofNCincludingone

ofthetwooxygenatomswhichalterstheHOMO-1wherethe

distri-butionisonrightsideoftheNCwhereasLUMOislocalizedonentire

NCalongwithbothoxygenatomsandhasoverlapwithUMOs.For

DBOcase,chargedistributionisconsistentlyidenticalinall

consid-eredfrontiermolecularorbitalsandlocalizationcoversbothoxygen

(6)

over-776 S.Niazetal./AppliedSurfaceScience387(2016)771–778

Fig.4.(a)and(b)showdiagramsofHOMOandLUMOenergiescorrespondtothegapsshowninFig.2bandcrespectively.

Fig.5. Partialdensityofstatesplotsofnon-hydroxylatedSi29O8H20,Si29O10H16andhydroxylatedSi29O10H24,Si29O28H20nanocrystalswithBBO,DBO,andMixconfigurations

(geometriesshowninFig.1).TheFermilevelhasbeensettozeroforclarity.

lapofHOMOandLUMOlocalizationwhichisdifferentcompared

withtherestofFMOsexceptHOMO-1.

Concerningposition-2,forBBOconfiguration,HOMOandLUMO

localizedmainlyatrightendoftheNCincludingbothoxygenatoms.

Ontheotherhand,theOMOsandUMOs,localizationdiffersfrom

eachpairandasofHOMOandLUMOwheredistributiononboth

oxygenatomsisnotpresentatall.Likeposition-1,inDBO,the

local-izationofHOMOandLUMOoverlapwherebothdoublybonded

oxygenatomsareincludedandforotherfrontierorbitals

situa-tionisnotmuchdifferentwithvaryingconcentrationofthecharge

distributions.AsfarasconcerntotheMixconfiguration,HOMO

andLUMOlocalizedstrongly onbottomoftheNCcomparedto

otheroxygenwhichhasverylesspercentageofcharge

distribu-tion.HOMO-1localizedmostlyontheleftincludingbothoxygen

atomsascanalsobeseenincaseofHOMO-2andUMOs.

4. Conclusions

We investigate theoretically, by density functional theory

(DFT/B3LYP)possiblemodesof oxygenbondingsuchas

Bridge-bonded oxygen (BBO), Doubly-bonded oxygen(DBO), hydroxyl

(OH)andMixof theseoxidizingagentsin hydrogenterminated

silicon quantumdotsusing asa representative case oftheSi29

nanocrystal.Duetostoichiometry,allcomparisonsperformedare

unbiasedwithrespecttocompositionwhereasspatialdistribution

(7)

Fig.6. GraphicalrepresentationofvariousfrontiermolecularorbitalsofSi29O2H32isomers.

cohesivecharacteristicsofnanocrytals.Bridgebondedoxygenated

nanocrystalsaccompanied byMixhave higherbindingenergies

and largeelectronicgapcompared tonanocrystals withdoubly

bondedoxygenatoms.Inaddition,itisobservedthatthepresence

ofhydroxylgroupalongwithBBO,DBOandmixedconfigurations

furtherlowerselectronicgapsandbindingenergiesandtrends.Itis

alsodemonstratedthatoxidizingconstituentalongwiththeir

spa-tialdistributionsubstantiallyaltersbindingenergy,HOMO-LUMO

gap(upto1.48eV)andlocalizationoffrontierorbitalswithinsame

composition.Formanyscientificandindustrialapplications,a

suit-ablerangeofgapenergycanbeachievedbyappropriateselection

andimplementationofoxidizingagentand/ortheirspatial

distri-butionwhichmaybeasafealternativeofsizedependentbandgap

tunability.

Acknowledgments

ThisprojectissupportedbyTheScientificandTechnological

ResearchCouncilofTurkey(TÜB˙ITAK)under2216Research

Fel-lowshipProgrammeforInternationalResearchers.Computational

resourcesfromTurkishAcademicNetworkandInformation

Cen-ter(ULAKB˙IM)andNationalCentreforPhysicsPakistan(NCP)are

gratefullyacknowledged.

References

[1]J.-H.Park,L.Gu,G.Maltzahn,E.Ruoslahti,S.N.Bhatia,M.Sailor,Biodegradable luminescentporoussiliconnanoparticlesforinvivoapplications,J.Nat. Mater.8(2009)331–336.

[2]N.H.Alsharif,C.E.M.Berger,S.S.Varanasi,Y.Chao,B.R.Horrocks,H.K.Datta, Alkyl-cappedsiliconnanocrystalslackcytotoxicityandhaveenhanced intracellularaccumulationinmalignantcellsviacholesterol-dependent endocytosis,Small5(2009)221–228.

[3]S.Huang,S.Banerjee,R.T.Tung,S.Oda,Electrontrappingstoring,and emissioninnanocrystallineSidotsbycapacitance-voltageand conductance-voltagemeasurements,J.Appl.Phys.93(2003)576–581.

[4]Z.Deng,X.D.Pi,J.J.Zhao,D.Yang,Photoluminescencefromsilicon nanocrystalsinencapsulatingmaterials,J.Mater.Sci.Technol.29(2013) 221–224.

[5]D.Pi,L.Zhang,D.Yang,Enhancingtheefficiencyofmulticrystallinesilicon solarcellsbytheinkjetprintingofsilicon-quantum-dotink,J.Phys.Chem.C 116(2012)21240–21243.

[6]Z.F.Li,E.Ruckenstein,Water-solublepoly(acrylicacid)graftedluminescent siliconnanoparticlesandtheiruseasfluorescentbiologicalstaininglabels, NanoLett.4(2004)1463–1467.

[7]Y.He,Y.L.Zhong,F.Peng,X.P.Wei,Y.Y.Su,Y.M.Lu,S.Su,W.Gu,L.S.Liao,S.T. Lee,One-potmicrowavesynthesisofwater-dispersibleultraphoto-and

(8)

778 S.Niazetal./AppliedSurfaceScience387(2016)771–778

pH-stable,andhighlyfluorescentsiliconquantumdots,J.Am.Chem.Soc.133 (2011)14192–14195.

[8]X.D.Pi,O.H.Y.Zalloum,J.Wojcik,A.P.Knights,P.Mascher,A.D.W.Todd,P.J. Simpson,FormationandoxidationofsinanoclustersinEr-dopedSi-richSiOx, J.Appl.Phys.97(2005)096108.

[9]B.H.Choi,S.W.Hwang,I.G.Kimb,H.C.Shinb,Y.Kim,E.K.Kim,ASiliconself assembledquantumdottransistoroperatingatroomtemperature, Microelectro.Eng.47(1999)115–117.

[10]L.Ruizendaal,S.Bhattacharjee,K.Pournazari,M.Rosso-Vasic,L.H.J.deHaan, G.M.Alink,A.T.M.Marcelis,H.Zuilhof,Synthesisandcytotoxicityofsilicon nanoparticleswithcovalentlyattachedorganicmonolayers,Nanotoxicology3 (2009)339–347.

[11]S.Bhattacharjee,L.H.J.deHaan,N.M.Evers,X.Jiang,A.T.M.Marcelis,H. Zuilhof,I.M.C.M.Rietjens,G.M.Alink,Roleofsurfacechargeandoxidative stressincytotoxicityoforganicmonolayer-coatedsiliconnanoparticles towardsmacrophageNR8383cells,Part.FibreToxicol.7(2010)25.

[12]G.G.Qin,G.Z.Ran,K.Sun,H.J.Xu,LightemissionfromnanoscaleSi/Sioxide materials,J.Nanosci.Nanotechnol.10(2010)1584–1595.

[13]J.P.Wilcoxon,G.A.Samara,P.N.Provencio,Opticalandelectronicpropertiesof Sinanoclusterssynthesizedininversemicelles,Phys.Rev.B60(1999)2704.

[14]M.V.Wolkin,J.Jorne,P.M.Fauchet,G.Allan,C.Delerue,Electronicstatesand luminescenceinporoussiliconquantumdots:theroleofoxygen,Phys.Rev. Lett.82(1999)197.

[15]K.Gaál-Nagy,A.Incze,G.Onida,Y.Borensztein,N.Witkowski,O.Pluchery,F. Fuchs,F.Bechstedt,R.DelSole,Opticalspectraandmicroscopicstructureof theoxidizedSi(100)surface:combinedinsituopticalexperimentsandfirst principlescalculations,Phys.Rev.B79(2009)045312.

[16]S.Dreiner,M.Schürmann,C.Westphal,StructuralanalysisoftheSiO2/Si(100)

interfacebymeansofphotoelectrondiffraction,Phys.Rev.Lett.93(2004) 126101.

[17]T.-W.Pi,J.-F.Wen,C.-P.Ouyang,R.-T.Wu,G.K.Wertheim,OxidationofSi(00 1)-2×1,Surf.Sci.478(2001)L333.

[18]A.Yoshigoe,Y.Teraoka,Timeresolvedphotoemissionspectroscopyon Si(001)-2×1surfaceduringoxidationcontrolledbytranslationalkinetic energyofO2atroomtemperature,Surf.Sci.532(2003)690.

[19]W.H.Chen,C.H.Chang,Y.S.Chang,J.H.Pan,H.W.Wang,Y.M.Chou,B.C.Wang, EffectofpassivantsinenergygapofSi47X24Y36nano-clusters:atheoretical

investigation,Phys.E:Low-Dimens.Syst.Nanostruct.43(2011)948–953.

[20]A.Puzder,A.J.Williamson,J.C.Grossman,G.Galli,Surfacecontrolofoptical propertiesinsiliconnanoclusters,J.Chem.Phys.117(2002)6721–6729.

[21]A.Puzder,A.J.Williamson,J.C.Grossman,G.Galli,Surfacechemistryofsilicon nanoclusters,Phys.Rev.Lett.88(2002)097401.

[22]A.Carvalho,M.J.Rayson,P.R.Briddon,Effectofoxidationonthedopingof siliconnanocrystalswithgroupIIIandgroupVelements,J.Phys.Chem.C116 (2012)8243–8250.

[23]Z.Zhou,L.Brus,R.Friesner,Electronicstructureandluminescenceof1.1-and 1.4-nmsiliconnanocrystals:oxideshellversushydrogenpassivation,Nano Lett.3(2003)163–167.

[24]X.B.Chen,X.D.Pi,D.Yang,Bondingofoxygenattheoxide/nanocrystal interfaceofoxidizedsiliconnanocrystals:anabinitiostudy,J.Phys.Chem.C 114(2010)8774–8781.

[25]A.D.Zdetsis,S.Niaz,E.N.Koukaras,Theoreticalstudyofoxygencontaminated siliconquantumdots:acasestudyforSi29H29-xO29-y,Microelectro.Eng.112

(2013)227.

[26]X.Pi,R.Wang,D.Yang,Densityfunctionaltheorystudyontheoxidationof hydrosilylatedsiliconnanocrystals,J.Mater.Sci.Technol.30(2014)639.

[27]N.Sanaz,P.Mahdi,S.E.Asl,K.Hans,Ontheroleofspatialpositionofbridged oxygenatomsassurfacepassivantsontheground-stategapand

photo-absorptionspectrumofsiliconnano-crystals,J.Appl.Phys.118(2015) 205303.

[28]C.S.Garoufalis,A.D.Zdetsis,Highaccuracycalculationsoftheopticalgapand absorptionspectrumofoxygencontaminatedSinanocrystals,Phys.Chem. Chem.Phys.8(2006)808.

[29]S.Niaz,E.N.Koukaras,N.P.Katsougrakis,T.G.Kourelis,D.K.Kougias,A.D. Zdetsis,Sizedependenceoftheopticalgapof ¨small¨siliconquantumdots:ab initioandempiricalcorrelationschemes,Microelectro.Eng.112(2013)231.

[30]J.Stephens,F.J.Devlin,C.F.Chabalowski,M.J.Frisch,Abinitiocalculationof vibrationalabsorptionandcirculardichroismspectrausingdensityfunctional forcefields,J.Phys.Chem.98(1994)11623.

[31]J.Muscat,A.Wander,N.M.Harrison,Onthepredictionofbandgapsfrom hybridfunctionaltheory,Chem.Phys.Lett.342(2001)397.

[32]TURBOMOLEV5.3,UniversitatKarlsruhe,2000,http://www.turbomole.com. [33]A.Sächafer,H.Horn,R.Ahlrichs,FullyoptimizedcontractedGaussianbasis

Referanslar

Benzer Belgeler

Aynı şekilde örgütsel bağlılık için de kadınlar ve erkekler arasında belirgin bir fark görülmezken, medeni hal değişkeninde evli olan çalışanların bekar olanlara

Although it was initially envisaged that members would gradually form a free trade zone which would possibly evolve into a stronger form of integration, it was later agreed that

Turkey’s another concrete reaction was in the form of using hard power capacity in northern Syria following the increasing level of threat from several VNSAs both inside and

(This approach originates in topology of real algebraic curves; historically, it goes back to Viro, Fiedler, Kharlamov, Rokhlin, and Klein.) Our main contribution is the description

Çalışma hayatı ile ilgili bir diğer yaşanan problemin, cezaevi sürecinden sonra artık eski hükümlü olarak nitelendirilmekten kaynaklandığını ifade eden

Türkiye, Brezilya, Rusya, Hindistan ve Çin’in 2005 yılına ait ters Leontief matrisleri satır toplamlarına göre Türkiye’de ileriye bağlantı etkisi en yüksek ilk üç sektör

Schematic representations of the processing steps for the production of core −shell polymer-inorganic nanofibers: (a) electrospinning, (b) atomic layer deposition (ALD); (c)

After adjusting for patient, surgeon, and hospital characteristics, we find that a significant inverse rela- tionship exists between surgeon volume and hospital in-patient