• Sonuç bulunamadı

Thermal evolution of structure and photocatalytic activity in polymer microsphere templated TiO2 microbowls

N/A
N/A
Protected

Academic year: 2021

Share "Thermal evolution of structure and photocatalytic activity in polymer microsphere templated TiO2 microbowls"

Copied!
8
0
0

Yükleniyor.... (view fulltext now)

Tam metin

(1)

ContentslistsavailableatScienceDirect

Applied

Surface

Science

j o u r n a l ho me p ag e : w w w . e l s e v i e r . c o m / l o c a t e / a p s u s c

Thermal

evolution

of

structure

and

photocatalytic

activity

in

polymer

microsphere

templated

TiO

2

microbowls

Deniz

Altunoz

Erdogan

a

,

Meryem

Polat

a

,

Ruslan

Garifullin

b

,

Mustafa

O.

Guler

b

,

Emrah

Ozensoy

a,∗,1

aDepartmentofChemistry,BilkentUniversity,06800Ankara,Turkey

bInstituteofMaterialsScienceandNanotechnology,NationalNanotechnologyResearchCenter(UNAM),BilkentUniversity,06800Ankara,Turkey

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received22January2014

Receivedinrevisedform4April2014 Accepted12April2014

Availableonline21April2014

Keywords: TiO2

Photocatalyst

Cross-linkeddivinylbenzene NO(g)oxidation

RhodamineB

a

b

s

t

r

a

c

t

Polystyrenecross-linkeddivinylbenzene(PS-co-DVB)microsphereswereusedasanorganictemplate inordertosynthesizephotocatalyticTiO2microspheresandmicrobowls.Photocatalyticactivityofthe microbowlsurfacesweredemonstratedbothinthegasphaseviaphotocatalyticNO(g)oxidationbyO2(g) aswellasintheliquidphaseviaRhodamineBdegradation.Thermaldegradationmechanismofthe poly-mertemplateanditsdirectinfluenceontheTiO2crystalstructure,surfacemorphology,composition, specificsurfaceareaandthegas/liquidphasephotocatalyticactivitydatawerediscussedindetail.With increasingcalcinationtemperatures,sphericalpolymertemplatefirstundergoesaglasstransition, cover-ingtheTiO2film,followedbythecompletedecompositionoftheorganictemplatetoyieldTiO2exposed microbowlstructures.TiO2microbowlsystemscalcinedat600◦Cyieldedthehighestper-sitebasis pho-tocatalyticactivity.CrystallographicandelectronicpropertiesoftheTiO2microspheresurfacesaswell astheirsurfaceareaplayacrucialroleintheirultimatephotocatalyticactivity.Itwasdemonstratedthat thepolymermicrospheretemplatedTiO2photocatalystspresentedinthecurrentworkofferapromising andaversatilesyntheticplatformforphotocatalyticDeNOxapplicationsforairpurificationtechnologies. ©2014ElsevierB.V.Allrightsreserved.

1. Introduction

Shape-definednanoand microscale titaniumdioxide(TiO2)

structuresare widelyutilized asphotocatalytic systems;where

theyhaveattractedaparticularinterestinenvironmental

applica-tions.Ithasbeenreportedthatcontrollingparticleshape,geometry,

size,surfacemorphology,electronicstructure,relativeabundance

ofanatase/rutile surfacedomains and thenatureofthesurface

functionalgroups(suchas OH)aresomeofthekeyfactorsfor

designingefficientTiO2photocatalyticarchitectures[1–5].

TiO2 materials can be produced with unique

morpholo-gies, shapes and structures at the micro/nanoscale revealing

extraordinaryphysical,chemical,electronicandopticalproperties,

renderingthesesystemsveryversatilephotocatalysts[3].Template

directedsynthesis isoneoftheapproachesfor fine-tuningsize,

夽 ElectronicSupplementaryInformation(ESI)available:Gas-phaseand solution-phasephotocatalyticperformenceofP25.

∗ Correspondingauthor.Tel.:+903122902121;fax:+903122664068. E-mailaddress:ozensoy@fen.bilkent.edu.tr(E.Ozensoy).

1 Web:http://www.fen.bilkent.edu.tr/∼ozensoy.

shape andporosityofTiO2 particles[6–8].In particular,

utiliza-tionoforganictemplatessuchaspolymersoffersvastopportunities

forcontrollingtheshapesofinorganicmaterialsatthe

microme-ter/nanometerscale.Suchstrategiescanbeexploitedtosynthesize

shape-definedTiO2 materialsexhibitingnano/microspheres[9],

hollowstructures[10],tubes[11],wires[3],core–shellstructures

[3],andegg-yolkstructures[12].

In thecurrent report,TiO2 microbowls weresynthesizedby

usingpolystyrenecrosslinkeddivinylbenzene(PS-co-DVB)

micro-spheres.Thepolymertemplatewasremovedbycalcinationand

TiO2 microbowls were produced. The effect of the calcination

temperatureonthestructuralpropertiesandactivityofthe

pho-tocatalystswerestudiedinthegasphaseaswellasinthesolution

phaseoxidationreactions.

2. Experimental

2.1. Samplepreparation

Acustomsol–gelmethodcombinedwithapolymertemplating

techniquewasusedforthesynthesisofTiO2microbowlstructures

http://dx.doi.org/10.1016/j.apsusc.2014.04.082

(2)

Scheme1. SyntheticprotocolforPS-co-DVB-templatedTiO2microspheresandmicrobowls.

[13–15].Commerciallyavailablepolystyrenecross-linkeddivinyl

benzene(PS-co-DVB)microspheres(Aldrich)withanaverage

parti-clesizeofca.8␮mwereusedasthetemplatematerial.Preparation

ofTiO2microspheresandmicrobowlsisshowninScheme1.First,

equalmasses(i.e.1.0g)ofpolymermicrospheresandtitanium(IV)

isopropoxide(TIP,97%,Aldrich)weremixedandstirredfor24h

underambientconditions.Then,100mLofdeionizedwater

(Milli-Q,18.2Mcm)wasaddedtothemixtureundercontinuousstirring

(24h),wherehydrolysisandcondensationreactionswerecarried

out.Then,microsphereswerevacuum-filtered,washedwith

deion-ized water anddried for 24h at60◦C in air. Later,thesample

wascalcinedinairinordertoremove thepolymertemplateas

wellastocrystallizetheinorganiccomponent(i.e.TiO2).Samples

werecalcinedatvarioustemperatures(200,300,400, 500,600,

700◦C) inair for 2h(using a heatingrate of8◦C/min) to

con-trolcrystallinity and surface morphologyof TiO2 microspheres.

SynthesizedsampleswerenamedasPsTi-200,PsTi-300,PsTi-400,

PsTi-500, PsTi-600, and PsTi-700 depending on the calcination

temperature.

2.2. Structuralcharacterization

Themorphologyandtheparticlesizeofthepolymertemplated

TiO2 microspheresand microbowls wereinvestigated byusing

a Carl-ZeissEvo40environmentalscanningelectron microscope

(SEM) equipped with a Bruker energy dispersive X-Ray (EDX)

detector.Determinationofthecrystalstructureofthesynthesized

materialswerecarriedoutwithaRigakuMiniflexX-ray

diffrac-tometer(XRD)equippedwithCuK␣radiationoperatedat30kV,

1.54 ˚Aand15mA.TheXRDpatternswererecordedinthe2range

of10–60◦withastepwidthof0.02s−1.Ramanspectraofthe

sam-pleswerecollectedintherangeof200–1500cm−1witharesolution

of4cm−1usingaHoribaJobinYvonLabRAMHR800spectrometer

equippedwitha confocalRaman BX41microscope.The Raman

spectrometerwasequippedwitha Nd:YAGlaser (=532.1nm)

where the laser power was 20mW. The thermal properties

of the TiO2 systems were also investigated by using thermo

gravimetricanalysis(TGA).TGAmeasurementswerecarriedout

between30and800◦C(ataheatingrateof10◦C/minandunder

nitrogenflow)by usinga TAInstrumentsTGA-Q500 setup.The

specificsurfacearea(SSA)oftheTiO2sampleswasdeterminedby

conventional Brunauer–Emmett–Teller (BET) N2 adsorption

methodwithaMicromeriticsTristar3000surfaceareaandpore

sizeanalyzer.PriortotheBETmeasurements,allofthesamples

wereoutgassedinvacuumfor2hat150◦C.

2.3. Photocatalyticperformanceanalysismeasurements

2.3.1. Gas-phasephotocatalyticoxidationperformance

measurements

ReactivityoftheTiO2microstructureswasstudiedvia

photo-catalyticNOoxidation(NO(g)+½O2(g)→NO2(g)).Thegasphase

photocatalyticactivityoftheTiO2microstructureswasanalyzedin

acustom-madecontinuousflowreactionsystem,whichisshown

in Scheme2.Theexperimentalsetupwascomprisedofa

high-puritygasmixturecontainingNO(g)(100ppmNO(g)inN2(g),Linde

GmbH),O2(g)(99.998%,LindeGmbH)andN2(g)(99.998%,Linde

GmbH) which was humidified with70% RH(relative humidity,

measured viaa Hanna HI 9565humidity analyzer atthe

sam-plepositioninthephotocatalyticreactor).Inatypicalgasphase

photocatalytic performance analysis test, a total gas flow rate

of1SLM(SLM,standard litersperminute)wasused,wherethe

volumetric flow ratesof N2(g),O2(g) andNO(g) weresettobe

0.750SLM, 0.250SLM and 0.010SLM via mass flow controllers

(MFCs, MKS,1479A),respectively.Beforetheperformancetests,

synthesizedTiO2 microsphere/microbowl powdersampleswere

dispersedonapoly-methylmethacrylate(PMMA)sampleholder

(2×40×40mm3)andirradiatedwithUVAillumination(Sylvania

UV-lamp,black-light,F8W,T5,368nm)underambientconditions

for18hinordertoremovethesurfacecontaminationsandto

acti-vatethephotocatalysts.Afterthisactivationanddecontamination

procedure,sampleswereinsertedintothephotocatalyticflow

reac-torforperformanceanalysis.UVAilluminationsourceusedinthe

performanceanalysistests(SylvaniaUV-lamp,black-light,F8W,T5,

368nm)generatedaUVAphotonfluxof7.5W/m2atthesample

positionundertypicalreactionconditions.Duringtheperformance

tests, reaction gases were swept over a 950mg photocatalyst

sample and the concentration of NO(g), NO2(g) and total NOx

(g)speciesinthephotocatalyticreactorwerequantitatively

mea-sured online with a Horiba APNA-370 chemiluminiscence NOx

analyzer.

(3)

Gasphasephotocatalyticactivitymeasurementsarereportedin

termsofpercentphotonicefficiencies(%)asdescribedinEqs.(1)

and(2).

%= nNOx

nphoton×

100 (1)

wherenNOxcorrespondstoeitherthedecreaseinthetotalnumber

ofmolesofallgaseousNOxspeciesorthenumberofmolesofNO2(g)

generatedina60min(i.e.3600s)photocatalyticperformancetest.

Ontheotherhand,nphotoncorrespondstothetotalnumberofmoles

ofincidentUVAphotonsimpingingonthecatalystsurfacein3600s,

whichcanbecalculatedthroughEq(2)as:

nphoton=

(ISt)

(Nhc) (2)

whereIrepresentsthephoton powerdensityoftheUVAlamp,

experimentallymeasuredatthesamplepositioninthe

photocat-alyticreactor(typically,7.5W/m2),istherepresentativeemission

wavelengthoftheUVAlamp(i.e.368nm),Sisthesurfaceareaof

thephotocatalystsampleholderinthereactorthatisexposedto

theUVAirradiation(i.e.4cm×4cm=16cm2);tisthedurationof

theperformancetest(i.e.3600s),NistheAvogadro’snumber,his

Planck’sconstantandcisthespeedoflight.

2.3.2. Liquid-phasephotocatalyticoxidationperformance

measurements

Liquid-phase photocatalytic oxidation activity of the TiO2

microstructureswasdemonstratedbyphotodegradation[16–18].

Oxidative degradation of Sulforhodamine B (RhB, 95%, Sigma)

underUVA irradiation (SylvaniaUV-lamp, F8W, T5,Black-light,

8W,368nm)wasconductedinabatch-modephotocatalytic

reac-torofdimensions45×23×28cm3.AnaqueousRhBsolutionat

concentrationof1mg/Land 30mg ofTiO2 microstructures was

addedintothereactorandstirredcontinuouslyatastirringrateof

100rpm.Then,thephotocatalyticdegradationprocesswas

stud-iedbymeasuring thechangein thedyeconcentrationwithan

UV–visspectrophotometer(Carry300,Agilent).Attenuationofthe

majorabsorptionbandofRhB(564nm)associatedwiththeS0→S1

absorption[19]wasrecordedevery30minuntilthetestsolution

becamevisuallytransparent.BeforetheUV–visabsorption

mea-surements,testsolutionswerecentrifugedandtheabsorbanceof

thefiltratewasrecorded.Byusingacalibrationcurve(R2=9994)of

thedyesolution,thepercentdecolorizationefficiency(Def)ofthe

systematanirradiationtimet(min)wascalculatedasdescribedin

Eq.(3)[20].

Def(%)= (C0C−Ct)

0 ×

100 (3)

InEq.(3),C0andCtrepresenttheconcentrationofthetest

solu-tionbeforeandafterirradiationattimet,respectively.AplotofC0/C

versusirradiationtime(t)determinesthedecolorizationdegreeof

thetestsolution.

3. Resultsanddiscussion

3.1. Structuralcharacterizationofpolymer-templatedTiO2

microstructures

The SEM imagesin Fig.1a–d illustrate themorphology and

theparticlesizeoftheTiO2 coatedPS-co-DVBmicrospheres.The

particlesizevariationinthemicrostructuresstemsfromthe

cor-respondingsizedistributioninthenascentcommercialPS-co-DVB

material.SEMimagesinFig.1a–dandthecorrespondingEDX

mea-surements(Fig.1e)oftheTiO2-coatedmicrospheresrevealedthat

thesurfaceofthepolymermicrosphereswascoatedwithathin

layerofTiO2andadditionalTiO2wasalsofurtherdeposited.

Fig.1.(a–d)SEMimagesand(e)arepresentativeEDXspectrumofTiO2-coated

PS-co-DVBmicrospheresbeforecalcination.

UponcalcinationoftheTiO2coatedPS-co-DVBmicrospheres

between200and700◦C,significantmorphologicalchangeswere

observed. The microspheres were converted into microbowls

(Fig.2).Thisobservationwasalsoaccompaniedbyaconsiderable

weightloss,whichwillbediscussed furtherinthetext(Fig.3).

Fig.2showstheSEMimagesandthecorrespondingEDXspectrum

ofthepolymer-templatedTiO2microbowls,whichwerecalcined

at600◦Catambientconditionsfor2h.Duetodecompositionof

thepolymertemplateandtheassociatedformationofHxCy(g)and

HxCyOz(g),pressureaccumulationinsidethemicrosphereleadsto

theruptureofthesphericalmorphologyduringtheevolutionof

theentrappedgas.Theresultingopenmicrobowlstructuresare

shownintheinsetofFig.2b.Theinteriorcavitiesofthemicrobowls

haveanaveragediameterof8␮mwithanaveragewallthickness

of 600nm.The EDXspectrum ofthemicrobowls(Fig.2b)

indi-cates TiO2/TiOx content witha relatively minorcontributionof

carbon-basedspecies.Ontheotherhand,EDXspectrumofthesame

samplesbeforethecalcinationrevealedexcessiveCsignal(Fig.1e).

EvolutionofHxCy(g)andHxCyOz(g)andtheanticipatedweight

loss of the sample upon the decomposition/degradation of the

polymertemplatebelow600◦Cisinperfectagreementwiththe

(4)

Fig.2.(a)SEMimage,(b)EDXspectrumofPS-co-DVBtemplatedTiO2microbowls

aftercalcinationat600◦Cfor2h(insetshowsthedetailedmorphologyofthe

microbowlsinSEM).

within400–500◦C.TheTGAcurveofTiO2-coatedPS-co-DVB

micro-spheres(Fig.3)exhibitsa2.7wt%lossinthetemperaturerangeof

30–250◦Cduetotheevaporationofwaterandothervolatile

organ-ics. TiO2 revealsa negligiblegravimetric losswithin 30–800◦C,

whilepure/uncoatedpolystyreneundergoesalmost100wt%loss

within 300–500◦C due to decomposition/degradation [21–23].

Fig.3. TGAmeasurementforPS-co-DVBtemplatedTiO2microspheres.

Thus, TGA data in Fig. 3, suggest that after the 71wt% loss at

T>400◦C,alargeportionoftheremainingsample,which

corre-spondsto29%oftheoriginalsampleweight,isduetotheinorganic

content(i.e.TiO2).

In order toinvestigate theinfluenceof the calcination

tem-perature onthe photocatalyst structure and the photocatalytic

activity,sampleswerecalcinedatdifferenttemperatureswithin

200–700◦C. CorrespondingXRD patternsand Ramanspectraof

thesesamplesarepresentedinFig.4.Calcinationat200and300◦C

leadstotheformationofanamorphousTiO2/TiOxstructure,which

startstocrystallizeintoaratherdisorderedanatasephaseat400◦C

withasmallaverageparticlesize,evidentfromthecorresponding

broadanataseXRDdiffractionsignals(ICDDCardNo:21-1272)in

Fig.4aandthecharacteristicallyintenseanataseRamanscattering

observedat144cm−1 [24–26].At500◦C,awell-orderedanatase

phasewithalargeraverageparticlesizeisformedascanbeseen

fromthesharpandintenseanatasesignalsinbothXRD(Fig.4a)

andRaman(Fig.4b)results.Atthistemperature,rutilephasealso

appearsasasecondaryphaseinbothXRDresultsshowninFig.4a

(ICDDcardno:04-0551)aswellasintheRamandatainFig.4b.

For-mationoftherutilephaseleadstotheevolutionoftypicalRaman

scatteringfeaturesat236,447,612,826cm−1[24–26].Rutilephase

becomesmorecrystallineandabundantathighercalcination

tem-peratures.Uponcalcinationat700◦C,rutilebecomesthedominant

phase,althoughanatasephasecanstillbedetectedasasecondary

phase(Fig.4aandb).

3.2. Photocatalyticactivityofthepolymer-templatedTiO2

microspheresandmicrobowls

3.2.1. Gas-phasephotocatalyticoxidationperformance

ThephotocatalyticNO(g)oxidation withO2(g)wasusedasa

modelreaction[27–32].Fig.5illustratesatypicalgasphase

pho-tocatalyticperformanceanalysistestinwhichthephotocatalyst

sampleisexposedtoafeedgasmixturecontaining1ppmNO(g)

aswellasacertaincompositionofN2(g)andO2(g)witha70%RH

(seeSection2fordetails).Fig.5showsthetime-dependent

pro-filesforthetotalNOxconcentration(i.e.sumoftheconcentrations

ofalloftheNOxspeciesexistinginthereactor,i.e.bluecurvein

Fig.5)as wellasseparateNO(g)(blackcurve) and NO2(g)(red

curve)concentrationsinthephotocatalyticreactormeasuredby

thechemiluminiscenceNOxanalyzer.AsshowninFig.5,during

theinitial15minoftheperformancetest,gasmixturecontaining

1ppmNO(g)isfedtothephotocatalystwhileUVAlampisinoff

positionandthereactoris keptindarkinordertopreventany

exposuretosunlight.Thisleadstoaminortransientfallinthetotal

NOx(g)andNO(g)concentrations,whichisassociatedwiththe

dilu-tionofthegasinthereactorpipelineandthethermaladsorption

of NOxspecies onthegaslines,reactorwallsaswellasonthe

photocatalystsurface.Asthesystemiskeptindarkunderthese

conditions,nophotocatalyticactivityisobservedduringthis

ini-tialstage,whichisevidentbythelackofanyNO2(g)production.

Aftertheinitialtransientperiod,reactorwallsandthe

photocata-lystsurfacearesaturatedwithNOx,afterwhichNOx(g)andNO(g)

tracesquicklyreturntotheoriginalinletconcentrationvalueof

1ppm.

Next,UVAlampisturnedonandthephotocatalyticreaction

is started.UponUVAradiation,asharpand apermanentfallin

the NO(g) and total NOx(g) concentrations along with a quick

rise inNO2(g)signal,wereobserved. Thisiscaused by

conver-sionofNO(g)intoNO2(g)viaphotocatalyticoxidation.Inaddition,

generated NO2(g)can also adsorbonthe photocatalystsurface

intheformofchemisorbedNO2,nitric/nitrousacid,nitritesand

nitrates [24–26,33] and stored in the solid state, leading to a

furtherdecreaseintheNO(g)signal.Furthermore,direct

(5)

100 200 300 400 500 600 700 800 A A A PsTi-200 PsTi-300 PsTi-400 PsTi-500 PsTi-700

Raman Intensity (a.u.)

Raman Shift (cm-1) x20 R A R R A A PsTi-600 A R A R A 10 000 10 20 30 40 50 60 Intensity (a.u) 2θ(deg) PsTi-700 PsTi-600 PsTi-500 PsTi-400 PsTi-300 PsTi-200 1000 R R R R A R R A A AA R A R R A R R A R A A A R R A R R A A A A A (a) (b) Ra m an In tensi ty (a.u.) Raman Shi (cm-1)

Fig.4. (a)XRDpatterns,(b)RamanspectraofPS-co-DVBtemplatedTiO2microspheres/microbowlsuponcalcinationat200◦C,300◦C,400◦C,500◦C,600◦C,and700◦Cfor

2hunderambientconditions(insethighlightsthedetailedRamanfeaturesofPsTi-600andPsTi-700samples).A:anatase,R:rutile.

and/orN2O(g)cannotberuledout[34].ThetotalNOx

concentra-tion(blue)curve(whichismostlycomprisedofthesumofNO(g)

andNO2(g)signals)inFig.5staysalwaysbelow1ppmduringthe

UVA-activatedregime,illustratingthecontinuousphotocatalytic

activity.

Gas-phasephotocatalyticperformancetestssimilartotheone

giveninFig.5werealsoperformedonotherPS-co-DVBtemplated

TiO2microsphere/microbowlphotocatalysts,whichwerecalcined

atvarioustemperaturesbetween200and700◦C.Percentphotonic

efficiencyvaluesderivedfromsuchexperimentsareshowninFig.6,

wherebluebarsrepresentthe%photonicefficiencyoftotalNOx(g)

decrease,whileredbarscorrespondtothe%photonicefficiencyof

NO2(g)production.

Fig.6showsthatPsTi-200samplerevealsbothconsiderableNOx

storage(bluebar) andNO2(g)production (redbar)capabilities.

0 20 40 60 80 0.0 0.2 0.4 0.6 0.8 1.0 Concentration (ppm) Time(min) Thermal NOx adsorpon

Light-on Light-off

NOx (g)

NO(g)

NO2(g)

Fig.5.Typicaltime-dependentconcentrationprofilesfortotalNOx(g),NO(g)and

NO2(g)overPS-co-DVBtemplatedTiO2microbowlphotocatalyst(PsTi-600)during

gas-phasephotocatalyticNOoxidationactivitytests.(Forinterpretationofthe ref-erencestocolorinthisfigurelegend,thereaderisreferredtothewebversionof thisarticle.)

Ontheotherhand,uponincreasingthecalcinationtemperature

to300◦C,bothNOxstorageandNO2(g)productionperformances

wereobservedtodeclinedrastically.Ontheotherhand,after

calci-nationat400◦C,NOxstoragecapabilityisrecoveredwhileNO2(g)

productionisstillnoticeablysuppressed.Above500◦C,although

NOx storagecapacitydecreasestoa certainextent,NO2(g)

pro-ductioncapabilityisfullyregained,reachingitshighestvalueat

600◦C.Increasingthecalcinationtemperatureto700◦Cleadstoa

decreaseintheNOxstorageandNO2(g)productionperformances

simultaneously.

Interestinggas-phasephotocatalyticperformancetrendsgiven

inFig.6canbeelucidatedbyusingthestructuralpropertiesofthe

polymer-templatedTiO2microstructuresshowninScheme3.The

crosslinkedpolystyrenesystemshavetypicalglasstransition

tem-peratures(Tg)within100–150◦C,abovewhichthesolidpolymer

tendstoswitchtoamobilemolten/glassystate[23].Ascanbeseen

fromthespecificsurfacearea(SSA)resultsshown inScheme3,

PsTi-200samplehasamoderatelyhighSSA(86m2/g)suggesting

that the mobilized PS-co-DVB microsphere template starts to

segregateontheverytopsurface,onlypartiallycovering/blocking

Fig.6. ComparisonofthephotonicefficienciesofTiO2microspheres/microbowls.

(Forinterpretationofthereferencestocolorinthisfigurelegend,thereaderis referredtothewebversionofthisarticle.)

(6)

Scheme3.Temperature-inducedstructuralevolutionofTiO2microspheres/microbowls.

the amorphous TiO2/TiOx coating on the microsphere system.

Thus, at this calcination temperature, TiO2/TiOx coating is still

partiallyaccessibleforgasphasephotocatalyticNOxstorageand

NO2(g)production(Fig.6).

However,uponcalcinationat300◦C,theSSAwasobservedto

decreasebyabout50%,whichisaccompaniedbyatotallossof

pho-tocatalyticNOxstorageandNO2(g)productionactivities(Fig.6).

Apparently,calcinationat300◦Cleadstothesegregationofthe

mobilized PS-co-DVB microsphere template onto theTiO2/TiOx

coating(Scheme3).Hence,accesstothephotocatalyticactivesites

toNO(g)iscompletelyblockedandthephotocatalyticactivityis

entirelylost.

Increasingthecalcinationtemperatureto400◦Cshowsaunique

switchinthephotocatalyticactivity.Thisistheborderline

tem-perature, where the PS-co-DVB template starts to decompose

leadingtotheruptureofthemicrospheresandformationofthe

microbowls.Formationofmicrobowlsandeliminationofthe

car-bonaceous/polymericfilmat400◦Cisalsofullyconsistentwiththe

drasticincreaseintheSSAofthesystemto159m2/g(Scheme3).

The increase in theSSA is also accompanied by theformation

of a cavity inside the microspheresdue to the degradation of

thePS-co-DVBtemplate,generatingadditionaladsorptionsites.At

thistemperature,Ti-coatingrevealsmostlyanamorphous/porous

nature, which also exhibits poorly crystallineanatase domains

(Fig.4).Thus,duetothedecomposition/removalofthepolymer

template,mostofthephotocatalyticactivesitesontheamorphous

Ti-coatingbecomereadilyaccessibleandphotocatalyticNO

oxida-tioncanbeperformedefficientlywhichisevidentbytherecovery

ofthephotocatalyticNOxstorage(bluebarforPsTi-400inFig.6).

AlthoughPsTi-400samplecanefficientlyperformphotocatalytic

NOxstorage,yetitgeneratesarelativelysmallamountofNO2(g).

ThiscouldbeduetothelargeSSAofthePsTi-400samplewith

alargenumberofadsorptionsitesthatcanimmediatelycapture

NO2(g)intheformofnitritesandnitratesontheTiO2surfaceand

preventNO2(g)slipintothegasphase.

Fig.6showsthatasthecalcinationtemperatureisincreased

from400◦C to500◦C, thephotocatalyticNOxstoragedecreases

significantlyincontrasttothenoticeableincreaseintheNO2(g)

production.Within400–500◦C,PsTisamplesundergoasubstantial

crystallographictransformation(Fig.4),whereporousand

amor-phous TiO2 domains crystalize into ordered anatase and rutile

domainsresultinginasignificantlossintheSSA.Alongtheselines,

PsTi-500samplehasaSSAof13.9m2/g(Scheme3).Thus,the

pho-tocatalyticNOxstoragecapacityfallsinlinewiththecorresponding

theSSAloss,suggestingthatNO2(g)generatedviaphoto-oxidation

readilyslipsintothegasphase.However,thisdoesnotmeanthat

thephotocatalyticactivitydecreasesuponincreasingthe

tempera-turefrom400◦Cto500◦C.BycomparingthecombinedNOxstorage

andNO2formationresults(i.e.sumoftheredandbluebarsinFig.6)

for400◦Cand500◦CalongwiththecorrespondingSSAvalues

sug-geststhatPsTi-500samplehasaconsiderablyhigherper-sitebasis

photocatalyticactivitywithrespecttoPsTi-400.

Fig. 6 indicates that the optimum gas-phase photocatalytic

activityisreachedforthePsTi-600sample,whichrevealsalower

anatase/rutileratio(Fig.4aandScheme3)estimatedbyXRDresults

byusingtheapproachdevelopedbySpurrandMyers[35].Onthe

otherhand,asthecalcinationtemperatureisincreasedto700◦C,

concomitanttothefurtherdecreaseintheanatase/rutileratio,

pho-tocatalyticactivitystartstodecrease.Thus,itisapparentthatrather

thanthesoleSSAvalues,crystallographicandelectronicproperties

oftheTiO2 microspheres/microbowlsplayamajorrolein

deter-miningtheirultimategas-phasephotocatalyticactivities.

3.2.2. Solution-phasephotocatalyticoxidationperformance

PhotocatalyticactivityofTiO2microstructurecalcinedat

(7)

Fig.7. Time-dependentUV–VisabsorptionspectrashowingUVA-induced pho-tocatalytic degradation ofRhB in thepresence of PS-co-DVBtemplated TiO2

microbowlscalcinedat600◦Cfor2h.

photocatalyticoxidationofRhB.Atypicalseriesoftime-dependent

UV–visabsorptionspectraobtainedduringtheUVAirradiationis

presentedinFig.7.Thisseriesofspectracorrespondstothe

PsTi-600samplewhichiscomprisedofTiO2microbowls(Fig.2).During

thephotocatalyticreaction,thecharacteristicRhBabsorptionband

locatedat 564nm graduallydecreasesindicating photocatalytic

degradation/oxidationof RhB.After330minof UVAirradiation,

thedyesolutionbecomesvisiblycolorlessandthe564nmsignal

vanishesalmostcompletely.

Time-dependent decolorization efficiency results for the

remainingsamplesaresummarizedinFig.8a.Thesolutionphase

photocatalyticoxidationexperimentscouldnotberealizedforthe

PsTi-200andPsTi-300samplesduetolowdensityofthe

corre-spondingsolidphotocatalysts(originatingfromtheirhighpolymer

content),whichresultsinthefloatingofthemicrospheresonthe

Fig.8.(a)Liquid-phasephotocatalyticreactivity ofPS-co-DVBtemplatedTiO2

microspheres/microbowlsinRhodamineBphotodegradationviaUVAirradiation, (b)photocatalyst-containing1mg/LRhBsolutionsafter18hUVAirradiation.

aqueousmediumpreventingtheirefficientmixingand

homoge-nousUVAexposure.Fig.8ashowsthatRhBconcentrationinthe

solutiondecreasesmonotonicallywithincreasingirradiationtime

which isalsoillustratedinFig.8b (forphotocatalyst-containing

1mg/LRhBsolutionsafter18hUVAirradiation).Control

experi-mentsperformedbyexposing1mg/LRhBsolutiontoUVAinthe

absenceofaphotocatalyst(datanotshown)didnotleadtoany

decolorizationundertypicalreactionconditions.Theliquid-phase

photocatalyticactivityofthesynthesizedTiO2structuresexhibits

astrongdependenceonthecalcinationtemperature.Fig.8aclearly

indicatesthatPsTi-600samplewhichhasamicrobowlstructure

(Fig.2)andexhibitspredominantlyanatasephase(inadditionto

rutileasasecondaryphase)revealsthehighestliquid-phase

pho-tocatalyticactivity.ThePsTi-400sampleissignificantlylessactive

thanalloftheanalyzedsamples(Fig.8),andiscomprisedofapoorly

crystallineanatasephase(Fig.4).Thissuggeststhatsolution-phase

photocatalyticactivityrequiresformationoforderedanatase/rutile

crystallographicphases.Ontheotherhand,Fig.8aalsoshowsthat

thesolution-phasephotocatalyticactivitytendstodecreaseat

ele-vatedcalcinationtemperaturessuchas700◦C,suggestingthata

rutile-dominantTiO2microbowlstructureisnotfavorable.

Itisworthmentioningthatthesolution-phasephotocatalytic

reactivitytrendspresentedinFig.8acannotbeexplainedsolely

basedontheSSAvalues ofthesynthesizedmaterials.Although

PsTi-400 sample reveals a significantly higher SSA than all of

the other synthesized materials, it has a considerably lower

liquid-phasephotocatalyticactivity(Fig.8).Inotherwords,

crys-tallographic and the electronic properties of the TiO2-coated

Ps-co-DVBmicrospheres/microbowlsseemtoplayamajorrolein

theirliquid-phasephotocatalyticreactivity.

It is worthmentioningthat wehave alsoperformed similar

liquid-phaseand gas-phase photocatalyticactivitytests usinga

benchmarkphotocatalyst(P25)(Figs.S1andS2,ESI†).Weobserved

thattotalphotocatalyticactivityforP25inbothliquidandgasphase

experimentswereabouttwo timeshigherthanthatofthebest

Ps-co-DVBtemplatedTiO2microsphere/microbowlphotocatalyst

(PsTi-600).TheSSAofP25isabout50m2/g,whichisaboutmore

than5timesgreaterthanthatofPsTi-600.Thus,per-sitebasis

pho-tocatalyticactivityofPsTi-600isstill2.5timeshigherthanthat

ofP25.Thissuggeststhatbyoptimizingthepolymermicrosphere

templatingstrategy(forinstancebyusingpolymernanospheres

withsmalleraverageparticlesizesandthushigherSSA),advanced

photocatalyticsystemscanbedesigned,whichrevealhigher

photo-catalyticperformancebothintermsoftotalphotocatalyticactivity

aswellasper-site-basisphotocatalyticactivity.Inaddition,further

improvements in the photocatalytic performance of PS-co-DVB

templatedTiO2microsphere/microbowlphotocatalystscanalsobe

achievedbyincorporatingplasmonicmetalnanoparticlestothese

systems[36].Suchexperimentaleffortsarecurrentlyunderwayin

ourresearchgroup[37].

4. Conclusions

In this work, Ps-co-DVB microsphere templated TiO2

pho-tocatalysts were synthesized via sol–gel method. Influence of

thecalcinationtemperatureonthestructuralpropertiesandthe

photocatalytic activity of these systems under UVA excitation

wereinvestigatedboth inthegasphase(bystudying

photocat-alyticNO(g)oxidationbyO2(g))aswellasinthesolutionphase

(by monitoring Rhodamine B photocatalytic degradation). The

polymermicrosphereswerefoundtobecoveredwithathinfilmof

TiO2/TiOxaswellasTiO2/TiOxnanoparticles.Photocatalyticactivity

carriedoutinthesolutionphaseandinthegasphaseshowedthat

the photocatalyst calcined at 600◦C exhibiting a microbowl

(8)

activity which is even greater than that of the commercial

benchmarkP25.Our findingsindicatethatnot onlythespecific

surfaceareabutalsothecrystallographicandelectronicproperties

oftheTiO2microstructuresplayamajorroleindeterminingtheir

ultimate photocatalytic activities. This suggests that

polymer-templated TiO2 microstructures offer a promising versatile

syntheticplatformforphotocatalyticDeNOx applications,which

canbefurtherimprovedbyusingpolymernanospheretemplates

withhigherSSAorbyadditionalfunctionalizationwithtransition

metalnanoparticlesand/orplasmoniccomponents.

Acknowledgments

AuthorsgratefullyacknowledgeAssociateProf.Dönüs¸Tuncel

for fruitful discussions,and Zafer Say forperforming BET

mea-surements.E.O.alsoacknowledgesfinancialsupportfromTurkish

AcademyofSciencesthroughthe“TUBA-GEBIPOutstandingYoung

Scientist Prize” and from Fevzi Akkaya Science Fund (FABED)

throughEserTümenScientificAchievementAwardaswellasthe

Scientific and Technical Research Council of Turkey (TUBITAK)

(ProjectCode:109M713).

AppendixA. Supplementarydata

Supplementary material related to this article can be

found, in the online version, at http://dx.doi.org/10.1016/j.

apsusc.2014.04.082.

References

[1]U.Diebold,Thesurfacescienceoftitaniumdioxide,Surf.Sci.Rep.48(2003) 53–229.

[2]T.L.Thompson,J.T.Yates,SurfacesciencestudiesofthephotoactivationofTiO2

-newphotochemicalprocesses,Chem.Rev.106(2006)4428–4453.

[3]X.Chen,S.S.Mao,Titaniumdioxidenanomaterials:synthesis,properties, mod-ifications,andapplications,Chem.Rev.107(2007)2891–2959.

[4]A.Fujishima,X.Zhang,D.A.Tryk,TiO2photocatalysisandrelatedsurface

phe-nomena,Surf.Sci.Rep.63(2008)515–582.

[5]M.A.Henderson,AsurfacescienceperspectiveonTiO2photocatalysis,Surf.Sci.

Rep.66(2011)185–297.

[6]Y.Liu,J.Goebl,Y.Yin,Templatedsynthesisofnanostructuredmaterials,Chem. Soc.Rev.42(2013)2610–2653.

[7]C.N.R.Rao,A.Govindaraj,Synthesisofinorganicnanotubes,Adv.Mater.21 (2009)4208–4233.

[8]A.S.Attar,M.S.Ghamsari,F.Hajiesmaeilbaigi,S.Mirdamadi,K.Katagiri,K. Koumoto,Sol–geltemplatesynthesisandcharacterizationofaligned anatase-TiO2nanorodarrayswithdifferentdiameter,Mater.Chem.Phys.113(2009)

856–860.

[9]F.Cesano,D.Pellerej,D.Scarano,G.Ricchiardi,A.Zecchina,Radiallyorganized pillarsinTiO2 andinTiO2/Cmicrospheres:synthesis,characterizationand

photocatalytictests,J.Photochem.Photobiol.,A:Chem.242(2012)51–58.

[10]J.Hu,M.Chen,X.Fang,L.Wu,Fabricationandapplicationofinorganichollow spheres,Chem.Soc.Rev.40(2011)5472–5491.

[11]T.Kang,A.P.Smith,B.E.Taylor,M.F.Durstock,Fabricationofhighly-ordered TiO2nanotubearraysandtheiruseindye-sensitizedsolarcells,NanoLett.9

(2009)601–606.

[12]I.Lee,J.B.Joo,Y.Yin,F.Zaera,Ayolk@shellnanoarchitectureforAu/TiO2

cata-lysts,Angew.Chem.Int.50(2011)10208–10211.

[13]U.Meyer,A.Larsson,H.Hentze,R.A. Caruso,Templating ofporous poly-mericbeadstoformporoussilicaandtitaniaspheres,Adv.Mater.14(2002) 1768–1772.

[14]A.S. Deshpande, D.G.Shchukin, E.Ustinovich, M. Antonietti,R.A. Caruso, Titania and mixed titania/aluminum, gallium, or indium oxide spheres: Sol–gel/templatesynthesisandphotocatalyticproperties,Adv.Funct.Mater. 15(2005)239–245.

[15]J.H. Schattka, D.G.Shchukin, J. Jia,M. Antonietti,R.A. Caruso, Photocat-alyticactivitiesofporoustitaniaandtitania/zirconiastructuresformedby usingapolymergeltemplatingtechnique,Chem.Mater.14(2002)5103– 5108.

[16]L.Yuan,S.Meng,Y.Zhou,Z.Yue,ControlledsynthesisofanataseTiO2nanotube

andnanowirearraysviaAAOtemplate-basedhydrolysis,J.Mater.Chem.A1 (2013)2552–2557.

[17]D.A.H.Hanaor,C.C.Sorrell,Reviewoftheanatasetorutilephasetransformation, J.Mater.Sci.46(2011)855–874.

[18]P.Zhang,C.Shao,Z.Zhang,M.Zhang,J.Mu,Z.Guo,Y.Sun,Y.Liu,Core/shell nanofibersofTiO2@carbonembeddedbyAgnanoparticleswithenhanced

vis-iblephotocatalyticactivity,J.Mater.Chem.21(2011)17746–17753.

[19]N.K.M.N.Srinivas,S.V.Rao,D.N.Rao,Saturableandreversesaturableabsorption ofRhodamineBinmethanolandwater,J.Opt.Soc.Am.B:Opt.Phys.20(2003) 2470–2479.

[20]K.Sridharan,T.J.Park,Thorn-ballshapedTiO2nanostructures:InfluenceofSn2+

dopingonthemorphologyandenhancedvisiblelightphotocatalyticactivity, Appl.Catal.,B:Environ.134(2013)174–184.

[21]D.Yu,J.H.An,S.D.Ahn,S.Kang,K.S.Suh,Titaniumdioxide/P(St-co-DVB)-MAA hybridcompositeparticlespreparedbydispersionpolymerization,Colloid Surf.,A:Physicochem.Eng.Aspects266(2005)62–67.

[22]E.D.Mekeridis,I.A.Kartsonakis,G.S.Pappas,G.C.Kordas,Releasestudiesof corrosioninhibitorsfromceriumtitaniumoxidenanocontainers,J.Nanopart. Res.13(2011)541–554.

[23]S.E.Shim,S.Yang, H.H.Choi, S.Choe,Fully crosslinked poly(styrene-co-divinylbenzene) microspheres by precipitation polymerization and their superiorthermalproperties,J.Polym.Sci.,PartA:Polym.Chem.42(2004) 835–845.

[24]S.M.Andonova,G.S.S¸entürk,E.Kayhan,E.Ozensoy,NatureoftheTi–Ba inter-actionsontheBaO/TiO2/Al2O3NOxstoragesystem,J.Phys.Chem.C113(2009)

11014–11026.

[25]S.M.Andonova,G.S.S¸entürk,E.Kayhan,E.Ozensoy,Fine-tuningthedispersion andthemobilityofBaOdomainsonNOxstoragematerialsviaTiO2anchoring

sites,J.Phys.Chem.C114(2010)17003–17016.

[26]G.S.S¸entürk,E.I.Vovk,V.I.Zaikovskii,Z.Say,A.M.Soylu,V.I.Bukhtiyarov,E. Ozensoy,SOxuptakeandreleasepropertiesofTiO2/Al2O3andBaO/TiO2/Al2O3

mixedoxidesystemsasNOxstoragematerials,Catal.Today184(2012)54–71. [27]T.Giannakopoulou,N.Todorova,G.Romanos,T.Vaimakis,R.Dillert,D. Bahne-mann,C.Trapalis,Compositehydroxyapatite/TiO2materialsforphotocatalytic

oxidationofNOx,Mat.Sci.Eng.B177(2012)1046–1052.

[28]A.Mitsionis,T.Vaimakis,C.Trapalis,N.Todorova,D.Bahnemann,R.Dillert, Hydroxyapatite/titanium dioxidenanocomposites for controlled photocat-alyticNOoxidation,Appl.Catal.,B:Environ.106(2011)398–404.

[29]Y.Lin,Y.Tseng,J.Huang,C.C.Chao,C.Chen,I.Wang,Photocatalyticactivity fordegradationofnitrogenoxidesovervisiblelightresponsivetitania-based photocatalysts,Environ.Sci.Technol.40(2006)1616–1621.

[30]Y.Tseng,C.Kuo,C.Huang,Y.Li,P.Chou,C.Cheng,M.Wong, Visible-light-responsivenano-TiO2withmixedcrystallatticeanditsphotocatalyticactivity,

Nanotechnology17(2006)2490–2497.

[31]N.Negishi,K.Takeuchi,T.Ibusuki,SurfacestructureoftheTiO2thinfilm

pho-tocatalyst,J.Mater.Sci.33(1998)5789–5794.

[32]T.Sano,N.Negishi,K.Koike,K.Takeuchi,S.Matsuzawa,Preparationof visible-light-responsivephotocatalystfromcomplexofTi4+withnitrogen-containing

ligand,J.Mater.Chem.14(2004)380–384.

[33]R.Hummatov,O.Gülseren,E.Ozensoy,D.Toffoli,H.Üstünel,First-principles investigationofNOx andSOx adsorptiononanatase-supportedBaOandPt

overlayers,J.Phys.Chem.C116(2012)6191–6199.

[34]O.Carp,C.L.Huisman,A.Reller,Photoinducedreactivityoftitaniumdioxide, Prog.SolidStateChem.32(2004)33–177.

[35]R.A.Spurr,H.Myers,Quantitativeanalysisofanatase-rutilemixtureswithan X-raydiffractometer,Anal.Chem.29(1957)760–762.

[36]J.Lu,P.Zhang,A.Li,F.Su,T.Whang,Y.Liu,J.Gong,MesoporousanataseTiO2

nanocupswithplasmonicmetaldecorationforhighlyactivevisible-light pho-tocatalysis,Chem.Commun.49(2013)5817–5819.

Referanslar

Benzer Belgeler

Turkish Culture and Haci Bektas Veli Research Quarterly is a refereed, internatio- nal research journal cited by AHCI (Arts and Humanities Citation Index), EBSCO HOST, THOMSON

Zn 8 Cu 1 was found to have lower photoactivity than the ternary Zn 8 Cu 1 Bent composite, which is most likely due to the greater specific surface area and adsorption ability of

Salisilaldehit ve 2-aminopiridinin reaksiyonu sonucu oluşan prmp (imin) bileşiği reaksiyon başlangıcı background tanımlama yöntemi kullanılarak FT-IR sıvı hücresinde

Günçe'nin yaptığı yenidir, doğrudur.. Dergideki, kaynak metin açısından "kelimesi kelimesine" denecek bir çeviriyi ideal çeviri sayan eleştiriler esas

In the second part of the study, D3 and NIS expression levels were studied in the MP in the 49 term pregnant women (NIS gene expression was below our detection limit in two cases),

sensitivity to anticancer drugs, but definitive evidence of this is polymorphic variants of mutants identified in head and neck squamous cell cancers (HNSCC) to inhibit

ABSTRACT: The effect of carrageenan concentration on thermal phase transitions of the iota carrageenan gels was investigated by using fluorescence technique.. During heating and

Despite the absence of SIP1 in cultured carcinoma cells, negative effects of SIP1 on cell cycle progression and its ability to induce replicative senescence, the idea that SIP1