• Sonuç bulunamadı

A novel optical chemical sensor for the determination of nickel(II) based on fluorescence quenching of newly synthesized thiazolo-triazol derivative and application to real samples

N/A
N/A
Protected

Academic year: 2021

Share "A novel optical chemical sensor for the determination of nickel(II) based on fluorescence quenching of newly synthesized thiazolo-triazol derivative and application to real samples"

Copied!
6
0
0

Yükleniyor.... (view fulltext now)

Tam metin

(1)

ContentslistsavailableatSciVerseScienceDirect

Sensors

and

Actuators

B:

Chemical

j o u r n al hom e p a g e :w w w . e l s e v i e r . c o m / l o c a t e / s n b

A

novel

optical

chemical

sensor

for

the

determination

of

nickel(II)

based

on

fluorescence

quenching

of

newly

synthesized

thiazolo-triazol

derivative

and

application

to

real

samples

Nur

Aksuner

a,∗

,

Emur

Henden

a

,

Ibrahim

Yilmaz

b

,

Alaaddin

Cukurovali

c aDepartmentofChemistry,FacultyofScience,UniversityofEge,35100Bornova, ˙Izmir,Turkey

bDepartmentofChemistry,FacultyofScience,UniversityofKaramano˘gluMehmetBey,70200Karaman,Turkey cDepartmentofChemistry,FacultyofArtsandSciences,UniversityofFırat,23169Elazı˘g,Turkey

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received16November2011

Receivedinrevisedform14February2012 Accepted20February2012

Available online 27 February 2012 Keywords: Thiazolo-triazol PVCmatrix Opticalsensor Fluorescencespectroscopy Nickel(II)

a

b

s

t

r

a

c

t

ThecharacterizationofanewopticalsensormembraneisdescribedforthedeterminationofNi(II)based ontheimmobilizationofthefluorescentthiazolo-triazolderivativeinPVCmatrix.Thisoptodehasawide linearrangeof1.0×10−9–4.4×10−3MatpH6.0forNi(II)ionswiththedetectionlimitof8.5×10−10M.

TheresponseoftheoptodemembranetoNi(II)isfullyreversibleandrevealsaverygoodselectivity towardsNi(II)ionoverawidevarietyofothermetalionsinsolution.Themembraneshowedagood durabilityandshortresponsetimewithnoevidenceofreagentleaching.Theproposedopticalsensor givesgoodresultsforapplicationsindirectdeterminationofNi(II)inrealsamplesthataresatisfactorily comparablewithcorrespondingdatafromflameatomicabsorptionspectrometry.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Nickelisamoderatelytoxicelementcomparedtoother tran-sitionmetals.However,itisknownthatinhalationofnickeland itscompoundscanleadtoseriousproblems,includingrespiratory systemcancer[1,2].Moreover,nickelcancauseadisorderknown asnickel-eczema[3].Itsdeterminationisthusimportantinviewof toxicnatureandwidespreadpresenceinenvironment.The deter-minationoftracenickelinwaterand environmentalsamplesis difficultduetovariousfactors,particularlylowconcentrationand matrixeffects. Toovercometheseproblems,several preconcen-trationand separationtechniquesare neededbeforemeasuring [4–6].Manyofthesepretreatmenttechniquesare,however,time consuming or require complicated and expensiveinstruments. Therefore,developmentofaccurateandrapiddetectionmethod formonitoringthelevelofnickelinenvironmentalandbiological samplesisnecessaryandindispensable.

Chemicalopticalsensors(optode)offeradvantagessuchas sim-plepreparationprocedure,relativelyfastresponse,wideresponse range,reasonableselectivityandhighsensitivity[7–9].The immo-bilizationofvarioussensingreagentsofoptodemembraneshave been developed for many analytically relevant ions, especially

∗ Correspondingauthor.Tel.:+902323888264;fax:+902323888264. E-mailaddress:nur.erdem@ege.edu.tr(N.Aksuner).

heavymetalions.Immobilizationofdyesintoorontoasolid sup-port is a keyissue for theirapplicationin opticalsensing [10]. Thereagentisnormallyphysicallyentrappedbyadsorption, elec-trostaticallyattractedorchemicallybondedtothesolidsupport. Generally,sol–gelglasses[11,12]orpolymermatrices[13,14]are usedforthepreparationoftheoptodes.Poly(vinylchloride)(PVC) hasbeenusedforthepreparationofmembraneoptodesduetoits relativelylowcost,goodmechanicalpropertiesandamenabilityto plasticization[15].Recently,ourgrouphasbeeninvolvedinoptical sensorsforheavymetalionsembeddedinPVCfilms[16–18].

Uptonow,there areonlyafew reportsondeterminationof nickelbasedonchemicalopticalsensor.ANi(II)optodebasedon immobilizingof2-amino-1-cyclopentene-1-dithiocarboxylicacid totransparentacetylcellulosefilmwasdevelopedbyEnsafiand Bakhsi[19].Thedetectableconcentrationof nickel ina sample solution was in the range of 5.0×10−6–1.0×10−3M with the detectionlimitof5.2×10−7M(0.03␮g/ml)Ni(II).Shamsipuretal. [20]havedesignedanewfluorimetricbulkoptodemembranefor the determination of Ni2+ ions. The plasticized PVC-membrane

incorporating2,5-thiophenylbis(5-tert-butyl-1,3-benzexazole),as a highly fluorescent chromoionophore, displays a calibration responseforNi2+ionswithalinearrangecoveringfrom1.0×10−3

to1.0×10−8M.Anopticalsensorfornickelionbasedon immo-bilizationof2-(5-bromo-2-pyridylazo)-5-(diethylamino)phenolin NafionmembranewasofferedbyAminietal.[21].Hashemietal. [22]recentlyreportedaphotometricsenorbasedonthecovalently 0925-4005/$–seefrontmatter © 2012 Elsevier B.V. All rights reserved.

(2)

Table1

GeneralperformancecharacteristicsofsomeNi2+optodes.

Reagent/supportmatrix Workingrange(M) Limitof detection(M) Response time Measured signal Reference 2-amino-1-cyclopentene-1-dithiocarboxylicacid/acetyl cellulosemembrane 5.0×10−6–1.0×10−3 5.2×10−7 10min Absorbance [19] 2,5-thiophenylbis(5-tert-butyl-1,3-benzexazole)/PVCmembrane 1.0×10−8–1.0×10−3 8.0×10−9 <40s Fluorescence [20] 2-(5-bromo-2-pyridylazo)-5-(diethylamino)phenol/Nafion

membrane

8.5×10−6–3.4×10−4 5.1×10−6 3min Absorbance [21]

thionine/agarosemembrane 1.0×10−10–1.0×10−7 9.3×10−11 3min Absorbance [22]

2-amino-1-cyclopentene-dithiocarboxylicacid/PVCmembane 3.1× 10−8–8.0× 10−3 NRa 3min Absorbance [23]

2-

{6-(3-methyl-3-mesitylcyclobutyl)-thiazolo[3,2-b][1,2,4]triazol-2-yl}-phenol/PVC

membane

1.0×10−9–4.4×10−3 8.5×10−10 2min Fluorescence Thiswork

aNR:notreported.

immobilizedthionineinagarosemembrane.Thedetectionlimit ofthesensorforNi2+was9.30×10−11M.Yarietal.[23]

devel-opedanopticalsensorfordeterminationofnickel,whichwasbased ontheincorporationof2-amino-1-cyclopentene-dithiocarboxylic acidina plasticizedPVCmembrane.The sensordisplaysa cali-brationresponseforNi2+ionoverawideconcentrationrangeof

3.1×10−8–8.0×10−3M.In Table1 therecentlypublished opti-calsensorsforNi(II)determinationwerecompared intermsof theirworkingranges,limitofdetections(LOD),sensingagentsand matrixmaterialswiththeofferedwork.

Herewepresentanewopticalthin-filmsensorbasedonthe fluorescentthiazolo-triazol derivativeentrapped inPVC matrix. Theproposedopticalsensorshowsasignificantfluorescence sig-nalchangeonexposuretoanaqueoussolutioncontainingNi(II) ion.Basedonthis,ahighlysensitive,selectiveandrapidmethod forthedetermination of nickelwas developed.The sensorwas appliedtodeterminetheconcentrationsofNi(II)inrealsamples, withsatisfactoryresults.

2. Experimental

2.1. Reagents

The polymer membrane components, polyvinylchloride (PVC) (high molecular weight) and the plasticizers, bis-(2-ethylhexyl) phtalate (DOP), bis(2-ethylhexyl)sebecate (DOS), bis-(2-ethylhexyl)adipate (DAO) and 2-nitrophenyl octyl ether (NPOE)wereobtainedfromFluka.Thelipophilicanionicadditive reagentpotassiumtetrakis-(4-chlorophenyl)borate(PTCPB)was supplied by Aldrich. Absolute ethanol (EtOH), tetrahydrofuran (THF)and dimethylformamide (DMF) were of analytical grade. Solventsforthespectroscopicstudieswereusedwithoutfurther purification.EDTAwasobtainedfromBDH.SheetsofMylar-type polyester(Dupont,Switzerland)wereusedassupport.Allsolutions werepreparedwithglass-distilledwater.

The pH values of the solutions were checked using a digi-talpH meter (WTW) calibrated with standard buffer solutions ofMerck.Buffercomponentsandmetalsaltswereof analytical grade (Merck and Fluka). All of the experiments were oper-ated at room temperature, 25±1◦C. Quinine sulphate (Sigma)

wasusedasreference(

Ф

st=0.54)forfluorescencequantumyield

calculations of the dye. Schematic structure of the employed dye molecule 2- {6-(3-methyl-3-mesitylcyclobutyl)-thiazolo[3,2-b][1,2,4]triazol-2-yl}-phenol(MMT)isshowninFig.1.

2.2. Instrumentation

UV–visabsorptionspectrawererecordedusingVarianCary100 bioUV–visiblespectrophotometer.Allfluorescencemeasurements werecarriedout ona ShimadzuRF-5301PCspectrofluorimeter withaXenonshortarclampasthelightsource.GBC904PBTatomic absorptionspectrophotometerwithanair-acetyleneflame(FAAS) wasalso usedfor nickel measurements.A CEM MARS 5 (CEM, Matthews,NC,USA)microwaveapparatusequippedwithPTFE ves-selswasusedformicrowavedigestion.Thefilmthicknessesofthe sensingslidesweremeasuredwithAmbiosTechnologyXP-1HGH Resolutionsurfaceprofiler.

2.3. Synthesisandthecharacterizationofthe2-

{6-(3-methyl-3-mesitylcyclobutyl)-thiazolo[3,2-b][1,2,4]triazol-2-yl}-phenol

(MMT)

Thecompoundwassynthesizedasin Fig.1bythefollowing procedure. To a stirred solution of 5-(2-hydroxy-phenyl)-2,4-dihydro-[1,2,4]triazole-3-thione (1.9323g, 10mmol) in 30mL ofethanol,2-chloro-1-(3-methyl-3-mesityl-cyclobutyl)-ethanone (2.6479g,10mmol)wasaddedinportions.Aftertheadditionof the␣-haloketone,thetemperaturewaskeptat50–55◦Cfor2h. Aftercoolingtotheroomtemperature,thesolutionpHwasbrought about 6.8 with an aqueous solution of NH3 (5%). The

precipi-tatewasfilteredoff,washedwithaqueousNH3 solutionseveral

times and dried in air. Yellow crystals of the compound were obtainedbyslowevaporationofitsethanolsolution.Yield:93%, meltingpoint:152◦C.CharacteristicIRbands:3445cm−1(O H), 2951–2867cm−1 (aliphatics), 1624cm−1 (C N), 1586cm−1 (C N),754cm−1(C S C).Characteristic1HNMRshifts(CDCl

3,

ı,ppm):1.73(s,3H, CH3),2.24(s,6H,o-CH3),2.26(s,3H,p-CH3),

2.69–2.74(m,2H, CH2 cyclobutane),2.86–2.92(m,2H, CH2

cyclobutane),3.88(quint,j=8.92Hz,1H, CH cyclobutane),6.56 (d,j=1.2Hz,1H,aromaticonthiazolering),6.80(s,2H,aromatics

(3)

onmesityl),6.94–6.98(m,1H,aromatic),7.04–7.06(m,1H, aro-matic),7.26–7.35(m,1H,aromatic),8.11(dd,j1=7.8Hz,j2=1.8Hz,

1H,aromatic),10.74(s,1H, OH,D2Oexchangeable).

Characteris-tic13CNMRshifts(CDCl

3,ı,ppm):166.14,157.13,143.74,137.55,

135.33, 135.32, 131.60, 130.74, 130.72, 127.40,119.60, 117.50, 114.77,106.30,42.14,41.86,27.47,24.78,21.69,20.69.

2.4. Preparationofpolymerfilm

Themembranecocktailwaspreparedusingamixtureof120mg ofPVC,240mgofplasticizer(DOA),2.0mgofPTCPBand1.5mgof MMTdye.Themembranecomponentsweredissolvedin1.5mL driedTHFina glassvial.Thesolutionwasimmediatelyshaken vigorouslytoachievecompletehomogeneity.Theprepared mix-turescontained33%PVCand66%plasticizerbyweightwhichis inaccordancewithliterature[24,25].Theresultingcocktailswere spreadontoa125␮mpolyestersupport(MylarTMtype)byknife coatinglocatedinaTHF-saturateddesiccator.Thepolymersupport isopticallyfullytransparent,ionimpermeableandexhibitsgood adhesiontoPVC.Thefilmswerekeptinadesiccatorinthedark. Thiswaythephotostabilityofthemembranewasensuredandthe damagefromtheambientairofthelaboratorywasavoided.Each sensorfilmwascuttoasizeof13×50mm.Thefilmthicknessesof thesensingslidesweremeasuredwiththehighresolutionsurface profilerandfoundtobe4.78±0.024␮mforPVCmatrices(n=8).

Absorption and fluorescence emission spectra of PVC mem-braneswererecordedinquartzcellswhichwerefilledwithsample solution.Thepolymerfilmswereplacedindiagonalpositioninthe quartzcell.Theadvantageofthiskindofplacementwastoimprove thereproducibilityofthemeasurements.Alloftheexperiments wereoperated at roomtemperature,25±1◦C. Themembranes werenotconditionedbeforeuse.

2.5. Samplepreparation

Samplesolutionsoftealeaveandwildediblemushroom sam-ples were prepared by microwave digestion method. For the digestionofsamples,0.5gofeachsamplewasaccuratelyweighed andtransferredintotheTeflonvessels.Samplesweredigestedwith 3mlofHNO3and1mlofH2O2 inamicrowavedigestionsystem

anddilutedto10mlwithpurewater.Digestionprogramforthe microwavesystemwereappliedsequentiallyas3minfor180W, 5minfor360Wand3minfor180W.Certifiedreferencematerial andtheblankdigestionswerealsocarriedoutinthesameway.All thesolutionswerestoredintightlycappedpolythenebottles.

3. Resultsanddiscussion

3.1. Spectralcharacterizationstudies

InordertoperformthespectralcharacterizationoftheMMT dye,excitationandemissionspectrawererecordedinthesolvents ofdifferentpolaritiesandPVCfilm(Fig.2).Inalltheemployed solventsandPVCfilmtheStokes’shiftvalues, ST (the

differ-encebetweenexcitationandemissionmaximum),calculatedfrom thespectraldatawerequitehighandwasfoundtospreadinthe wavelengthrangeof109–118nm(Table2).WhendopedinPVCthe

Fig.2.ExcitationandemissionspectraofMMTdyeindifferentsolventsandPVC. (a)THF(ex=380nm,em=493nm),(b)DMF(ex=379nm,em=495nm),(c)EtOH (ex=378nm,em=487nm),(d)PVC(ex=384nm,em=502nm).

Stokes’shiftsofMMTexhibitedanenhancementwithrespecttothe solutionphase.Therefore,whenimmobilized,theMMTdyecould beexcitedatlongerwavelengthswithrespecttothesolutionphase. Thisresultcanbeattributedtotherestrictedvibrationalrotational motionsinsolidstates.

3.2. Fluorescencequantumyieldcalculations

Fluorescencequantumyieldvalues(

Ф

F)oftheMMTcompound

were calculated employing the comparative William’s method whichinvolvestheuseofwell-characterizedstandardswithknown (

Ф

F)values[26].Forthispurpose,theUV–visabsorbtionand

emis-sionspectraofsixdifferentconcentrationsofreferencestandard (quininesulphatein0.1MH2SO4)andMMTwererecorded.The

integratedfluorescenceintensitieswereplottedversusabsorbance forthereferencestandardandthedye.Thegradientsoftheplots are proportional to the quantity of the quantum yield of the studiedmolecules.Theequationsoftheplotsarey=1,578,160x; R2=0.9988 for reference standard, y=36,341x; R2=0.9954 for

MMT dyein PVC, and y=17,845x; R2=0.9742 for MMT dyein

EtOH.Thedataobtainedandquantumyield(

Ф

F)valuescalculated

accordingtoEq.(1)areshowninTable2. x=ST



Grad x GradST

 

n2 x n2 ST



(1) whereST andxdenotestandardand sample,respectively,Grad isthegradientfromtheplotandnistherefractiveindexofthe solventorpolymermatrixmaterial.Accordingtothedataobtained, theMMTdyeexhibitedhigherquantumyieldinplasticizedPVC comparedtothatobtainedinthesolventsused.

3.3. FluorescencequenchingofoptodebyNi2+

ToinvestigatetheopticalresponseofMMTembeddedPVCfilm towardNi2+,afluorescencedeterminationwascarriedoutinthe

Table2

Theexcitation-emissionspectrarelatedcharacteristicsofMMTindilutedsolutionsofTHF,DMF,andEtOHandinsolidmatricesofPVC.

Matrix Excitationwavelengthex(nm) Emissionwavelengthem(nm) Stokes’shiftST(nm) Refractiveindexn QuantumyieldФF

THF 380 493 113 1.4070 0.025

DMF 379 495 116 1.4305 0.016

EtOH 378 487 109 1.3614 0.028

(4)

Fig.3.FluorescenceresponseoftheMMTdyedopedPVCfilmtoNi2+ionsatpH6.0.

(a)Ni-freebuffer,(b)1.0× 10−9M,(c)5.0× 10−9M,(d)2.5×10−8M,(e)1.3×10−7M,

(f)6.5×10−7M,(g)3.3×10−6M,(h)1.7×10−5M,(i)8.5×10−5M,(k)4.3×10−4M,

(m)2.2× 10−3M,(n)4.4×10−3M(ex=384nm).

Ni2+concentrationrangefrom1.0×10−9to4.4×10−3M.A

signifi-cantdecreaseinfluorescenceintensityoftheoptodewasobserved

uponincreasingNi2+concentrationinthisrange(Fig.3).A

cali-brationcurvewasobtainedfromtheplotoffluorescenceintensity withtheaddedNi2+concentration.Thecurveequationasshownin

theinsetofFig.3wasy=−0.1023x+0.932,R2=0.9928.Thelimitof

detectionbasedon3oftheblankwas8.5×10−10M.Thedetection limitobtainedforNi2+inthepresentstudywascomparedwiththe

reportedmethodsisgiveninTable1.ItcanbeseenfromTable1 thatthelimitofdetectionobtainedinthepresentmethodisoneof thelowestforNi2+.

Quenching can occur by different mechanisms. In dynamic quenching,chargetransferoccursand fluorescenceis quenched whenthequenhercollideswiththeexcitedfluorophore.Because thecollisionbetweenthequencherandfluorophoreaffectsonly theexcitedstateofthefluorophore,nochangesintheabsorption orexcitationspectrumareexpected.Onthecontrary,the forma-tionofground-statecomplexinstaticquenchingwillperturbthe absorptionspectraofthefluorophore[27].Thus,byexaminationof theabsorptionspectrum,staticanddynamicquenchingcanbe dis-tinguished.Fig.4showstheabsorptionspectraoftheMMTinthe absenceandpresenceofthequencher.Byconsideringthechanges intheabsorptionspectrumthequenchingtypeisassumedtobe static.

ThestoichiometryofNi2+–MMTcomplexwasdeterminedby

meansofJob’smethod(Fig.5).ThefluorescencequenchingofMMT by Ni2+ wasattributed to the1:1 complex formation between

Ni2+ and MMT and its association constant was calculated as

2.24×106M−1.

3.4. Optimizationofmembranecomposition

Theresponsecharacteristicsofoptodessuchasdynamicrange andresponsetimedependonmembranecomposition[25]. Dif-ferentaspectsofthecompositionofmembranes-basedonMMT forNi2+ionswereoptimized,andtheresultsaresummarizedin

Table3.Inallcases,themembraneswerepreparedaccordingto recommendedprocedures.

Fig.4. AbsorptionspectraofMMT(a)intheabsenceand(b)inthepresenceofthe quencher;Ni(II).

Forahomogeneousmembranephase,themembranesolvent (plasticizer) must be physically compatible with polymer. The natureoftheplasticizerisalsowellknowntoaffectthedynamic concentrationrangeandselectivitybehaviorofthesensing mem-braneandfacilitatethetransportoftargetions.Inordertostudy thenatureoftheplasticizer,severalsolventmediatorssuchasDOP, DOS,DAOandNPOEweretested.Duetoitslineardynamicrange towardNi(II)ions,whichisthelongest,anditssuperiorphysical properties,theDAOcontainingmembranewasselectedasthe opti-mumcompositionforpreparationofthemembranestobeusedin subsequentexperiments.

TheamountofPTCPBasanionicsitesinthemembraneisanother parameterthataffectstheoptoderesponse.Inthedesignofthe proposed optical sensor, the optode membrane working range becomeswiderandresponsetimeshorterastheamountofPTCPB intheoptodemembraneincreasesfrom1mgto2mg.Thus,2mg PTCPBwasselectedforfurtherstudies.

Theotherparameterofthemembranecomposition,whichhas tobeinvestigated,is theconcentrationoftheligand. Optimum responsewasfoundwhentheamountofMMTwas1.5mg.From thedatashowninTable3,themembranenumber8withoptimized PVC:DOA:MMP:PTCPB weight percentage ratio of 33:66:0.4:0.6 wasselectedforfurtherstudies.

Fig.5.Job’splotofMMTandNi(II)inwater(pH6.0).ThetotalconcentrationofMMT andNi(II)was1.0×10−6M.

(5)

Table3

Optimizationofthemembranecomposition.

Composition Response

No. Plasticizer MMT(mg) PTCPB(mg) Responsetime(min) Workingconcentrationrange(M)

1 DOP 1 1 3 5.0×10−7–5.0×10−3 2 DOS 1 1 3 1.0×10−7–1.0×10−4 3 DOA 1 1 3 5.0×10−8–4.4×10−3 4 NPOE 1 1 4 1.0×10−6–1.0×10−4 5 DOA 0.5 1 3 1.0×10−7–1.0×10−4 6 DOA 1 1 3 5.0×10−8–1.0×10−4 7 DOA 1.5 1 3 5.0×10−8–4.4×10−3 8a DOA 1.5 2 2 1.0×10−9–4.4×10−3

aOptimummembranecomposition.

3.5. EffectofpH

Theresponsecharacteristicsoftheoptodesuchassensitivity, responserangeanddetectionlimitdependonpH.Theresponse curvedatawereobtainedbymeasuringthefluorescencevaluesfor 3.3×10−6MNi2+atdifferentpHvaluesandtheresultsareshown

inFig.6.Fromthisfigure,weseethatthepHofthesolutionhasno considerableeffectontheresponseofthefilminpHrange5.0–8.0. Ontheotherhand,thedecreasedopticalresponseofthesensor atpH>8.0couldbeduetothehydroxideformationofnickelions aswellasapossibleslightswellingofthepolymericfilmunder alkalineconditionsofsolution.Therefore,apHof6.0adjustedbya 0.01MacetatebufferwasconsideredasoptimumandusedforNi2+

determinations.

3.6. Reversibility,reproducibilityandshort-termstability

Theregenerationoftheproposedmembranesensorwas stud-iedbyusingdifferentreagentsincludingHCl,HNO3andEDTAin

differentconcentrations.Theresultsindicatedthata0.1MEDTA solutioncanefficientlyremoveanyadsorbedNi2+fromthe

mem-braneandreturnitsfluorescencetoitsinitialvalueinabout3min. Thereproducibilityoftheopticalmembranewasevaluatedby per-formingeightdeterminationswiththesamestandardsolutionof nickelionsusingasinglemembranesensor.Theresultsareshown in Fig.7. Ascanbe seenfrom this figure,thesystemis highly reversible.Therelativestandarddeviation(RSD)forthe determi-nationof3.3×10−6MNi(II)standardsolutionwas3.1%.

Theshort-termstabilityoftheoptodemembranewasdefined intermofthestabilityoffluorescenceoftheoptodemembrane. Tostudytheshort-termstabilityoftheoptodemembrane,its flu-orescenceintensityincontactwitha3.3×10−6MsolutionofNi2+

bufferedatpH6.0wasmeasuredoveraperiodof6h.Fromthe fluorescenceintensitiestakenevery30min(n=12),itwasfound thattheresponseisalmostconstantwithonlya1.6%increasein

Fig.6. TheeffectofpHonthesensorresponseinsolutionscontaining3.3×10−6M Ni2+.

Fig.7. Reproducibilityandreversibilityoftheresponseoftheoptodemembraneto 3.3×10−6MNi2+andtotheregenerationsolution,0.1MEDTA.

intensityafter6hmonitoring.Thisindicatedasatisfiedshort-term stability.

3.7. Selectivity

Obviously,theselectivityisoneofthemostimportant prop-ertiesof theresponse ofa sensor.Thisproperty representsthe preferenceofasensorresponsetotheprimaryionwithrespect tothepotentiallyinterferingions.Fortheevaluationofthe selec-tivityoftheproposedfilm,theresultingtoleratedrelativeerrorin thepresenceofaninterferingionwasdefinedas,Relativeerror (%)=[(F−F0)/F0]×100,inwhichFandF0denotethefluorescence

of the filmin the presence and absence of theinterfering ion, respectively.Theselectivityoftheoptodewastestedforthe deter-minationofNi2+inthepresenceofotherinterferingcationsnamely

Ag(I),Cd(II),Co(II), Cr(III),Cu(II),Fe(III),Mg(II), Na(I),Pb(II)and Zn(II).Theconcentrationoftheinterferingionwas100timesas muchtheprimaryion(Ni2+,3.3×10−6M).Theresultsof

selectiv-itystudiesaresummarizedinFig.8.Ascanbeseeninthisfigure,

(6)

Table4

DeterminationofNi(II)intealeaveandwildediblemushroomsamplesofthree replicatemeasurementswiththeproposedsensorandFAAS.

Sample Ni2+(␮gg−1) Relativeerror(%)

Optode FAAS

Tealeave1 5.20±0.21 5.09±0.16 2.16 Tealeave2 4.22±0.12 4.17±0.15 1.19 Mushroom1 5.14±0.15 5.28±0.21 −2.65 Mushroom2 3.75±0.23 3.61±0.18 3.88

inthepresenceofalltheinterferingionsstudied,therelativeerror

islessthan5.0%,whichisrecognizedastolerable.

3.8. Analyticalapplication

Totestthepracticalapplicationofthepresentsensor,

applica-tionsfordirectdeterminationofNi(II)intealeaveandwildedible

mushroomsampleswerecarriedout.Threeparallelanalyseswere

doneforeachsample.Thesampleswerepreparedasdescribedin

Section2.5.Tocheckthevalidityoftheproposedmethod,the

con-centrationsofNi(II)inthesampleswerealsodeterminedbyflame atomicabsorptionspectrometry(FAAS).Therelativeerrorobtained withthesensorvariedintherange,1.19–3.88%comparedtothe resultsobtainedbyFAAS(Table4).

Inordertovalidatetheaccuracyofthedevelopedmethod, certi-fiedreferencematerial(NIST-SRM1547Peachleaves)wasanalyzed fornickel(II).Themeasuredvalue(0.67±0.06␮gg−1)wasingood agreementwiththecertifiedvalue(0.69±0.09␮gg−1).

4. Conclusion

Theproposedsensorisaprecise,lowcost,sensitiveandhighly selective metod for determination of Ni(II),based on the fluo-rescentthiazolo-triazol derivativeentrappedinPVCmatrix.The sensorproducedalinearresponseforNi(II)concentrationrangeof 1.0×10−9–4.4×10−3Mwiththedetectionlimitof8.5×10−10M. TheopticalsensorhasagoodselectivitytowardNi(II)versusother metalions.Thesensingmembranealsoexhibitedgood photosta-bilityandreproducibility.Theoptodewasfoundtobestableand reliablefor usein realsamples.Moreover,a comparison ofthe proposedoptodewiththepreviouslyreportedsensorsfor deter-minationofNi(II)(Table1)indicatesthattheproposedmethod, inadditiontofastandsimplicity,providesacomparabledetection limitwithmostoftheothermethods.

References

[1]D.Templeton,BiologicalMonitoringofChemicalExposureintheWorkplace, WorldHealthOrganization,Geneva,1990.

[2]G.D.Nielsen,U.Soderberg,P.J.Jorgensen,D.M.Templeton,S.N.Rasmussen,K.E. Andersen,P.Grandjean,Absorptionandretentionofnickelfromdrinkingwater inrelationtofoodintakeandnickelsensitivity,Toxicol.Appl.Pharmacol.154 (1999)67–75.

[3]H.A.Mckenzie,L.E.Smythe,QuantitativeTraceAnalysisofBiologicalMaterials, Elsevier,Amsterdam,1988.

[4]S.L.C.Ferreira,W.N.L.dosSantos,V.A.Lemos,On-linepreconcentrationsystem fornickeldeterminationinfoodsamplesbyflameatomicabsorption spectrom-etry,Anal.Chim.Acta445(2001)145–151.

[5]Z.Sun,P.Liang,Q.Ding,J.Cao,Determinationoftracenickelinwatersamplesby cloudpointextractionpreconcentrationcoupledwithgraphitefurnaceatomic absorptionspectrometry,J.Hazard.Mater.B137(2006)943–946.

[6]N.Yunes,S.Moyano,S.Cerutti, J.A.Gasquez,L.D.Martinez,On-line pre-concentration and determination of nickel in natural watersamples by flowinjection-inductivelycoupledplasmaopticalemissionspectrometry (FI-ICPOES),Talanta59(2003)943–949.

[7]I.Oehme,O.S.Wolfbeis,Opticalsensorsfordeterminationofheavymetalions, Microchim.Acta126(1997)177–192.

[8]J.P.Desvergne,A.W.Czarnic,ChemosensorsofIonsandMolecularRecognition, vol.492,KluwerAcademicPublishers,Dordrecht,1997.

[9]H.Hisamoto,K.Suzuki,Ion-selectiveoptodes:currentdevelopmentsandfuture prospects,TrendsAnal.Chem.18(1999)513–524.

[10]I.Oehme,S.Praltes,O.S.Wolfbeis,G.J.Mohr,Theeffectofpolymericsupports andmethodsofimmobilizationontheperformanceofanoptical copper(II)-sensitivemembranebasedonthecolourimetricreagentZincon,Talanta47 (1998)595–604.

[11]M.Zevin,R.Reisfeld,I.Oehme,O.S.Wolfbeis,Sol–gel-derivedopticalcoatings fordeterminationofchromate,Sens.ActuatorsB39(1997)235–238. [12]G. Cabello-Carramolino,M.D.Petit-Dominguez,Applicationofnewsol–gel

electrochemicalsensorstothedeterminationoftracemercury,Anal.Chim. Acta614(2008)103–111.

[13] E.Bakker,P.Bühlmann,E.Pretsch,Carrierbasedion-selectiveelectrodesand bulkoptodes.1.Generalcharacteristics,Chem.Rev.97(1997)3083–3132. [14] E.Pretsch,P.Bühlmann,E.Bakker,Carrierbasedion-selectiveelectrodesand

bulkoptodes.2.Ionophoresforpotentiometricandopticalsensors,Chem.Rev. 98(1998)1593–1687.

[15]T.E.Brook,R.Narayanaswamy,Polymericfilmsinopticalgassensors,Sens. ActuatorsB51(1998)77–83.

[16]N.Aksuner,E.Henden,I.Yilmaz,A.Cukurovali,Selectiveopticalsensingof copper(II)ionsbasedonanovelcyclobutane-substitutedschiffbaseligand embeddedinpolymerfilms,Sens.ActuatorsB134(2008)510–515. [17] N.Aksuner,B.Basaran,E.Henden,I.Yilmaz,A.Cukurovali,Asensitiveand

selectivefluorescentsensorforthedeterminationofmercury(II)basedona noveltriazine-thionederivative,DyesPigm.88(2011)143–148.

[18]N.Aksuner,Developmentofanewfluorescentsensorbasedona triazolo-thiadiazinderivativeimmobilizedinpolyvinylchloridemembraneforsensitive detectionoflead(II)ions,Sens.ActuatorsB157(2011)162–168.

[19]A.A. Ensafi,M.Bakhshi, Newstable optical film sensorbasedon immo-bilization of 2-amino-1-cyclopentene-1-dithiocarboxylic acid on acetyl cellulose membraneforNi(II)determination,Sens. ActuatorsB96(2003) 435–440.

[20]M.Shamsipur,T.Poursaberi,A.R.Karami,MortezaHosseini,A.Momeni,N. Alizadeh,M.Yousefi,M.R.Ganjali,Developmentofanewfluorimetricbulk optodemembranebasedon2,5-thiophenylbis(5-tert-butyl-1,3-benzexazole) fornickel(II)ions,Anal.Chim.Acta501(2004)55–60.

[21]M.K.Amini,T.Momeni-Isfahani,J.H.Khorasani,M.Pourhossein,Development of an optical chemical sensor based on 2-(5-bromo-2-pyridylazo)-5-(diethylamino)phenolinNafionfordeterminationofnickelion,Talanta63 (2004)713–720.

[22]P.Hashemi,M.Hosseini,K.Zargoosh,K.Alizadeh,Highsensitiveoptodefor selectivedeterminationofNi2+basedonthecovalentlyimmobilizedthionine inagarosemembrane,Sens.ActuatorsB153(2011)24–28.

[23] A.Yari,M.B.Gholivand,F.Rahhedayat,Developmentandcharacterization ofanewnickel(II)ionselectiveoptodebasedon 2-amino-1-cyclopentene-dithiocarboxylicacid,Measurement44(2011)1691–1698.

[24] E.Bakker,W.Simon,Selectivityofionsensitivebulkoptodes,Anal.Chem.64 (1992)1805–1812.

[25]K.Seiler,W.Simon,Theoreticalaspectsofbulkoptodemembranes,Anal.Chim. Acta266(1992)73–87.

[26] A.T.R.Williams,S.A.Winfield,J.N.Miller,Relativefluorescencequantumyields usingacomputer-controlledluminescencespectrometer,Analyst108(1983) 1067–1071.

[27]J.R. Lakowicz, Principles of Fluorescence Spectroscopy, Kluwer Aca-demic/PlenumPublishers,NewYork,1999.

Biographies

NurAksunerhasB.Sc.degreeinchemistry,M.Sc.andPh.D.degreein analyti-calchemistryfromEgeUniversity,Izmir,Turkey.Hercurrentresearchinterests includefluorescencespectroscopy,photo-characterizationofnewlysynthesized fluoroionophores,developingopticalchemicalsensorsformetalions.

EmurHendenhasB.Sc.degreeinchemistryfromEgeUniversity,Izmir,Turkey.He receivedhisM.Sc.degreeandPh.D.degreein1976inchemistryattheUniversityof Birmingham,UK.HeiscurrentlyaprofessorofanalyticalchemistryatEge Univer-sity.Hiscurrentresearchinterestsincludethedevelopmentofatomicspectrometric methodsandopticalsensors.

IbrahimYilmazhasB.Sc.degreeinchemistryfromInonuUniversity,M.Sc.andPh.D. degreeinchemistryfromFıratUniversity,Elazı˘gTurkey.Heworksasaprofessorin Karamano˘gluMehmetBeyUniversity.Hiscurrentresearchinterestsinclude synthe-sisofnewthiazoleandthiazoleringcontainingcompounds,andsubstitutedSchiff baseligands.

AlaaddinCukurovalihasB.Sc.degreeinchemistryfromAnkaraUniversity,M.Sc. andPh.D.degreeinchemistryfromFıratUniversity,Elazı˘gTurkey.Heiscurrently aprofessorofchemistryatFıratUniversity.Hiscurrentresearchinterestsinclude synthesisanddesignofnewheterocycles(thiazoleandthiazoleringcontaining compounds,cyclobutanederivatives,azomethineandhydrazonecompounds).

Şekil

Fig. 1. Synthetic route for the synthesis of the 2-{6-(3-methyl-3-mesitylcyclobutyl)-thiazolo[3,2-b][1,2,4]triazol-2-yl}-phenol (MMT).
Fig. 2. Excitation and emission spectra of MMT dye in different solvents and PVC. (a) THF ( ex = 380 nm,  em = 493 nm), (b) DMF ( ex = 379 nm,  em = 495 nm), (c) EtOH ( ex = 378 nm,  em = 487 nm), (d) PVC ( ex = 384 nm,  em = 502 nm).
Fig. 3. Fluorescence response of the MMT dye doped PVC film to Ni 2+ ions at pH 6.0. (a) Ni-free buffer, (b) 1.0 × 10 −9 M, (c) 5.0 × 10 −9 M, (d) 2.5 × 10 −8 M, (e) 1.3 × 10 −7 M, (f) 6.5 × 10 −7 M, (g) 3.3 × 10 −6 M, (h) 1.7 × 10 −5 M, (i) 8.5 × 10 −5 M,
Fig. 6. The effect of pH on the sensor response in solutions containing 3.3 × 10 −6 M Ni 2+ .

Referanslar

Benzer Belgeler

Starting from the conduction band (CB) mini- mum at the G point, we trace the POP scattering rates of the CB electrons, assuming a very high electric field applied along a

In general, manufacturing system design problem (MSDP) encompasses the problem of facility location, plant layout, materials handling system design, assembly line balancing,

Bu kadar büyük bir farkın tesbitinden sonra hamamın kimin tarafından inşa edildiği fikrin­ den vazgeçildi.. Patronamn bu hamamda tellâk olduğu

Behçet’s disease is a systemic vasculitic disorder that is charac- terized by recurrent oral and genital ulcers, uveitis, skin lesions such as papulopustular lesions, erythema

Bodipy is chosen as the signalling unit of the probes because of their excellent photophysical and phsyco-chemical properties, such as high photostability,

Benchmark target textures of the 0- TO -1 type displaying a macroscopically anisotropic response are depicted together with the output designs from the optimization algorithm based

In this study, we particularly focused on Robo2, a gene known to have a repulsive role during axon guidance yet also has been shown to be dysregulated in certain tumors

derdimendiŋ dâmânı 31b, 1-2 Belirli isim tamlaması cihânıŋ niómetindeŋ 26a, 9 Belirli isim tamlaması iliŋ kâşânesinden 26a, 10 Belirli isim tamlaması kendü miøkdârın