• Sonuç bulunamadı

Synthesis and characterization of ZnO micro-rods and temperature-dependent characterizations of heterojunction of ZnO microrods/CdTe and ZnO microrods/ZnTe structures

N/A
N/A
Protected

Academic year: 2021

Share "Synthesis and characterization of ZnO micro-rods and temperature-dependent characterizations of heterojunction of ZnO microrods/CdTe and ZnO microrods/ZnTe structures"

Copied!
10
0
0

Yükleniyor.... (view fulltext now)

Tam metin

(1)

SensorsandActuatorsA261(2017)56–65

ContentslistsavailableatScienceDirect

Sensors

and

Actuators

A:

Physical

jo u r n al h om ep a g e :w w w . e l s e v i e r . c o m / l o c a t e / s n a

Synthesis

and

characterization

of

ZnO

micro-rods

and

temperature-dependent

characterizations

of

heterojunction

of

ZnO

microrods/CdTe

and

ZnO

microrods/ZnTe

structures

M.A.

Olgar

a

,

Y.

Atasoy

a

,

E.

Bacaksız

a

,

akir

Aydo˘gan

b,c,∗

aDepartmentofPhysics,FacultyofSciences,KaradenizTechnicalUniversity,61080Trabzon,Turkey

bDepartmentofPhysics,FacultyofSciences,AtatürkUniversity,25240,Erzurum,Turkey

cDepartmentofEnvironmentalEngineering,FacultyofEngineering,ArdahanUniversity,Ardahan,Turkey

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received30September2016

Receivedinrevisedform27April2017

Accepted28April2017

Availableonline3May2017

Keywords: Microrods Heterojunction XRD SEM

a

b

s

t

r

a

c

t

ZnOmicrorodswerefabricatedonZnO-coatedSnO2 glasssubstratesbyspraypyrolysismethod.To obtainp-nheterojunction,ptypeCdTeandZnTelayersweredepositedonZnOmicrorods.Thestructural characterizationsdemonstratedthatZnOmicrorodshaveahexagonalwurtzitestructurewithvertically alignedrodmorphology.Additionally,hexagonalrodgeometrywascompressedbycoatingCdTelayer onmicro-sizedZnOrods.ThediodetyperectifyingbehaviourofZnOmicrorods/CdTeandZnO micro-rods/ZnTeheterojunctionshavebeencarriedoutandtheelectricalcharacteristicsofbothdeviceshave beenanalyzedwithcurrent-voltagemeasurementsasafunctionoftemperature.Althoughthemismatch betweenZnOandZnTe,theZnOmicrorods/ZnTeheterojunctionshowedgoodrectifyingbehaviouratall temperatures.Accordingtotheourfindings,bothidealityfactornandbarrierheightbare temperature-dependentduetothedeviationfrompurethermionicemissiontheoryandinhomogeneityattheinterface ofZnO-CdTeandZnO-ZnTe.

©2017ElsevierB.V.Allrightsreserved.

1. Introduction

Zincoxide(ZnO)isaversatilematerialwhichhasagreat poten-tialforuseinmanybasicapplicationsofsemiconductingdevice technology.ZnOisan-typesemiconductorcompoundwithband gapof3.2eVatroomtemperatureanditisconsideredoneofthe mostpromisingalternativematerialtoGaNinmanyapplications; lightemittingdiodes,solarcells,andtransparentconductingoxides [1–4].ComparedwithGaN, ZnOhasa considerablelarger bind-ingenergyatroomtemperature(∼60meV)thatmakesitanideal candidateforoptical devicessuchasUVlasers[5].ZnOreveals differentmorphologiessuchasnanotubes[6],nanocones[7],and nanowires[8,9]withrespecttofabricationmethods.Various appli-cationfieldsavailableforZnOmaterialaccordingtoitsmorphology. ButregularlymorphologycontrollableZnOnanometarialprocess isstillunderdebate.Therefore,inthisstudyZnOmicrorodswere producedbylow-costnon-vacuummethod,spraypyrolysis.

∗ Correspondingauthorat:DepartmentofPhysics,FacultyofSciences,Atatürk

University,Erzurum,25240,Turkey.

E-mailaddress:saydogan@atauni.edu.tr(S¸.Aydo˘gan).

Recently, ZnO based core-shell structureshave gained great attentionssincebandalignmentofthesestructuresseparatethe chargecarriers,electronsandholes,intodifferentregionsandthus may enhance thecarrier lifetimes. Vertically aligned core/shell micro-nanorodstructureswiththatkindofbandalignmenttakea wideapplicationspartinoptoelectronicdevicessuchassolarcells [10–12].Becauseitpresentshighsurface-to-volumeratioandmore preferablelighttrappingeffectcomparedtoplanarstructures[8]. Inaddition,ZnO-basedcore/shellstructureshaveaspecialinterest since ZnOshows perfect chemicalstability, nontoxic, and envi-ronmentallyfriendlyproperties. Remarkableoutputs havebeen obtained in ZnO/ZnS [13], ZnO/ZnSe [14], ZnO/ZnTe [15], and ZnO/CdTe[16]incore/shellstructuresduetoexcellentproperties ofthesestructures.Amongstthep-typesemiconductinglayerofthe abovementionedheterojunctions,ZnTeandCdTearewidelyused indevicetechnology.ZnTeisintrinsicallyp-type semiconductor withadirectbandgapof2.26eVatroomtemperature[17].And, CdTeisasemiconductingmaterialwhichhasabandgapof1.45eV and highabsorptioncoefficient [18]. Severalstudieshave been managedonZnO/CdTeandZnO/ZnTebasedcore/shellstructures intheliterature[19,20].Butelectricalpropertiesofthese struc-turesatextendedlowtemperaturerange(150K(−123◦C)—300K (27◦C))havenotbeenexaminedinmoredetailed.Inthisstudy, http://dx.doi.org/10.1016/j.sna.2017.04.053

(2)

M.A.Olgaretal./SensorsandActuatorsA261(2017)56–65 57

Fig.1.–Schematicdiagramofspraypyrolysissystem.

structuralandmorphologicalcharacterizationsofZnO/CdTeand ZnO/ZnTecore/shellstructureswerecarriedoutinadvancethen temperature-dependentelectrical characterizationof aforemen-tionedstructureswereperformed.

2. Experimental

ZnOmicrorodswerefabricatedonSnO2-coatedglasswithtwo

stagemethod;coatingZnOseedthinlayeronSnO2-coatedglass

anddepositionofZnOmicrorodsbyspray pyrolysis.Firstofall, thecoatedZnOseedlayerwasobtainedbydissolving5mMzinc acetatedihydrate(Zn(OOCCH3)2·2H2O)inethanol.Secondly,ZnO

microrodsweresynthesizedbyspraypyrolysismethodinair atmo-sphere.Thechemicalsolution(0.1M)waspreparedbydissolving zincchloride (ZnCl2,98+ %,AlfaAesar) indeionized water.The

schematicdiagramofspraypyrolysissystemwasshowninFig.1 [21].Priortodeposition,allglasssubstrates(10×15mm2)were

cleanedinacetone,ethanol,anddistilledwatersequentially.Then, cleanedsamplesweredried withairflow. Theflow rateofthe solutionwasadjusted2ml/min.Thedistancebetweennozzleand substrate waskeptat 5cm and thesubstrate temperaturewas maintainedto823K(550◦C).Inordertoobtainhomogenousfilms, thesubstrateswererotatedwithaspeedof10rpminatmospheric pressure[21–23].

ToobtainZnO/CdTeandZnO/ZnTemicrorodscore-shell struc-ture,CdTeandZnTelayersweredepositedseparatelyontheZnO microrodsbythermalevaporationsysteminaquasi-closed vol-umeatapressureof3×10−2Pa.Aquartzlinegraphitechamber wereusedasavacuumapparatusincludedaheatedsourcebottle, aquartzfilteroverthesourcebottleandsubstrateholdermounted 8cmabovethequartzfilter.Theclamp-mountedsubstrateswere faceddownontothesampleholder.Thesourcetemperaturewas controlledviathermocouple[17,18].CdTeandZnTethinfilmswere grownonZnOmicrorodsatasubstratetemperatureof300K(27◦C) usinghighpurity (99.99%,Alfa Aesar) CdTe and ZnTe powders. Evaporation rateof thesourcematerialswas controlledbythe sourcetemperatureintherangeof873–923K(600–650◦C). Evap-orationrateofCdTeandZnTelayerswereabout1.5and3nm/sand

theirfinalthicknesswerenominally2␮m.Thicknessesofthefilms weredeterminedfromscanningelectronmicroscopy(SEM,JEOL JST-6400)cross-sectionimages(notshown).Afterdepositionof CdTeandZnTe,thecompletestructureofZnO/CdTeandZnO/ZnTe wereannealedat673K(400◦C)for30mininairandAratmosphere, respectively. The reason for this anneal step wasin general to improvethecompositional,structuralandelectricalcharacteristics oftheroom-temperature-depositedlayers.Oneadditionalreason for theCdTeanneal inair wastoassurep-typeconductivityin thisfilm,whichcanbeobtainedbyannealinginoxygencontaining atmosphereataround673K(400◦C)[24].Annealingtemperature andthepresenceofoxygenintheannealingatmosphereis essen-tialforobtainingp-typeCdTefilmsiftheas-grownlayersarenot intentionallydoped[24].Ouras-depositedCdTefilmsshowedhigh resistivityn-typebehaviour.TheconversionofCdTefilmsfromn toptypewasachievedinmanypaststudieswithannealing treat-mentsincludingoxygen.Thisphenomenonwasattributedtosome reasonssuchasp-typenatureofoxygenasadopantand/or forma-tionofCdvacanciesandvacancycomplexes,whichareacceptors inCdTefilms[25]ismajormechanismresponsiblefortype con-versioninCdTefilms[26].ThenZnO/CdTestructurewasetchedin (Br+methanol)solutiontoremovethepossibleoxidelayeronthe surfaceoftheCdTethinfilm.TheAufrontcontactwascreatedby thermalevaporationandInGapastewasusedasbackcontact.The frontandbackcontactswereconstructedasadotwithasizeof 1mmdiameter.ElectricalcharacterizationoftheZnO/CdTe struc-turewas performedby I–Vmeasurements using Keithley2400 source-meter.

The X-ray diffraction (XRD) measurements were performed byRigakuD/Max-IIICdiffractometerwithCuKradiationsource (␭=1.5405Å) inthe range of2=20–60◦ atroom temperature. The morphological analyses of core-shell structures were per-formedbySEM.InadditiontoSEMimagesofZnOmicrorods,the surfaceroughnesswasinvestigatedbyAtomicForceMicroscopy (AFM,Hitachi5100N).TemperaturedependentI–Vmeasurements ofZnO/CdTeandZnO/ZnTeheterostructureswerecarriedoutin ahome-madeHecryostatintherangeof150K(−123◦C)—300K

(3)

58 M.A.Olgaretal./SensorsandActuatorsA261(2017)56–65

Fig.2.–XRDpatternsofannealedZnO/CdTe(a)andZnO/ZnTe(b)structures.

3. Resultsanddiscussion

XRDpatternsofZnO/CdTeandZnO/ZnTeafterannealing treat-mentareshowninFig.2.AscanbeseeninFig.2(a–b),astrong preferentialorientationinthe(002)planedirectionwhichbelongs towurtzitestructure ofZnO isobserved inallpatterns. Promi-nentdiffractionpeaksof(100),(101),(102)and(110)planesof ZnOweresymbolizedwith‘x’.The(002)preferentialorientation peakofZnOmicrorodremainedafterobtainingtheZnO/CdTeand ZnO/ZnTecore-shellstructures.Furthermore,thediffractionpeaks of(111),(220)and(311)planeorientationsofCdTeandZnTeare demonstratedinFig.2(a,b).Itmeansthatbothofthetwocore/shell structuresexhibitedthezincblendstructureofCdTeandZnTe.The calculatedlatticeparameterofthe(111)peakofCdTeandZnTeis foundtobe0.647nmand0.609nm,respectively.Thesevalues are inagoodagreementwiththescientificreports[17,18].

SEMmicrographstakenfromthetopviewoftheZnOmicrorods, ZnO/CdTe,andZnO/ZnTeweredemonstratedinFig.3(a–c).ZnO microrodswithhexagonalandsmoothfacetsweregrownalmost verticallyalignedonthesurfaceofthesubstrate.Thegrowing direc-tionoftherodsisnotuniformthroughoutthecoatedstructure. TheZnOmicrorodsgrewentirelyoverthesurfaceofasubstrateof 1cmx1cmsizeanddiameterofthemicrorodsvariesfromabout 0.7–3␮m.ThecoatingofZnOrodschangedtherodsmorphology, especiallyforCdTecoatedsurface.ThecoatingofZnOrodswith CdTecausedformationofafusedstructureafterannealing treat-mentat673K(400◦C).Thestructurehasalsosomeplaceswhich connecttherodstoeachother.Moreimportantly,thehexagonal rodgeometrywascompressedordisappearedbycoatingCdTe.The structureofthesamplecoatedbyZnTeisdifferentfromthe sam-plecoatedbyCdTe.Nofusedstructureoccursandtherodsremain theiroriginalrodshapewithacoating.Itresemblesasabunchof grapes.Alsowell-distributedandroundedultra-finegrainsformed ontheZnOrods.

Fig.4displays5␮mx5␮mAFMimageforZnOmicrorods.We observedformation ofvertically aligned hexagonalshapedZnO microrodswithvarieddiametersizes.TheroughnessofZnO micro-rodsweredeterminedbyAFMmeasurements.Ascanbeseenin

thefigure,theroughnessofthemicrorodsmeasuredfromthree (3)differentregionsandultimateresultwastakenasaverageof 3differentmeasurements.Theroughness ofthemicrorods was obtainedaround190nm.

As stated in the Experimental section, the ZnO/CdTe struc-turewasannealedat673K(400◦C)inairatmospheretoassure p-typeconductivityintheCdTelayer.Annealingprocesshas sig-nificanteffectsonthepropertiesofCdTethinfilms.Bacaksızetal. showedthat400◦Ciscriticalannealingtemperaturesincesome changesinthesurfacestructureandgrainmorphologymayoccur. Theyconcludedthatannealtemperaturesat400◦Candabovemay contributetoobtaindevice-qualitymaterial[18].Inaddition,the ZnO/ZnTestructurewasannealedatthesametemperatureinAr atmosphere.Inthiscasetherewasnoneedforoxygencontaining environmentduringannealingsinceZnTeisintrinsicallyp-type. Besides,airannealingwouldformaZnOsurfacelayerontheZnTe film.AscanbeseenfromourdatatheZnO/CdTestructuresappear morefusedthantheZnO/ZnTestructuresaftertheheattreatment. Thisobservationmaybeexplainedasfollows:CdTehasalower meltingpoint(1314K(1041◦C))thanZnTe(1568K(1295◦C)),and smallgrainCdTematerialdepositedatlowtemperatures(suchis thecaseforourexperiments)hasatendencyforgraingrowthand fusingattemperaturesaboveabout623K(350◦C),whichisnot thecaseforZnTe.Furthermore,whenannealedinair,CdTesurface getsoxidizedandaverythinCdTeO3compoundforms.CdTeO3has

evenlowermeltingpointof1063K(790◦C)[27].Inverythin sur-facelayerform,thismeltingtemperatureisexpectedtobemuch lower.Asaconsequenceofthefactorsdescribedabovewhenour ZnO/CdTestructureswereannealedinairthemobilityofatoms wereenhancedbythefluxingactionofthelowmelting temper-atureoxideaswellastheinherentstraininthesmallgrainCdTe layerdeposited atroomtemperature,and graingrowth, coales-cenceandfusingwereobservedfillingthenarrowgapsbetween thehexagonalZnOrods.

Energy-banddiagramof ZnO/ZnTeheterojunctionis givenin Fig.5(a) forbefore contactand (b) for aftercontact and under thermalequilibrium.Inthefigure,eVd2isthebarriertohole

(4)

M.A.Olgaretal./SensorsandActuatorsA261(2017)56–65 59

Fig.3.–SEMmicrographsofZnOmicrorod(a),ZnO/CdTeheterojunction(b)andZnO/ZnTeheterojunction(c).

Fig.4.–AFMimageofZnOmicrorods.

injectionfromZnOsidetoZnTeside.Ecisthedifferenceinthe electronaffinitiesbetweenZnOandZnTematerials.Similar dia-gramisdrawnforZnO/CdTeandgivenFig.5(c,d).

The conduction bandoffsetof ZnO/ZnTe and ZnO/CdTe het-erostructuresaredeterminedusingtheelectronaffinities(␹)of ZnO,ZnTeandCdTeas4.20,4.95and4.50eV,respectively.This determinationforZnO/ZnTeheterojunctionisgivenas:

EC= (ZnTe)− (ZnO)=4.95−4.20=0.75eV (1)

Ev=



Eg(ZnO)−Eg(ZnTe)



+EC= (3.37−2.26)+0.75=1.86eV (2) andalsotheconductionandvalancebandoffsetofZnO/CdTe arerespectivelygivenas;

EC= (CdTe)− (ZnO)=4.50−4.20=0.30eV (3)

Ev=



Eg(ZnO)−Eg(CdTe)



+EC= (3.37−1.45)+0.30=2.22eV (4)

Fig.6depictsthecurrent–voltage (I–V)characteristicsof the ZnO/CdTeheterojunctionasafunctionoftemperatureintherange of 150K (−123◦C)—300K (27C).As can be seen, all I–Vplots

present typical rectifying characteristics of the heterostructure diode.Theforwardturn-onvoltageoftheZnO/CdTeheterojunction wasdeterminedtobeabout0.62V,atroomtemperature. Further-more,asseenfromthetemperaturedependenceofI–Vcurvesat constantforwardbias,thecurrentincreaseswithincreasingthe temperatureandthisresponsecanbeexplainedbythethermionic emission(TE)theoryofthemaincurrenttransportmechanism.The

(5)

60 M.A.Olgaretal./SensorsandActuatorsA261(2017)56–65

Fig.5.–Energy-banddiagramofZnO/ZnTeheterostructure(a)presentationofbandalignment(bandoffset)(b)underthermalequilibriumconditions.Theenergyband

diagramofZnO/CdTeheterostructurebeforec)andaftercontact,underthermalequilibrium(d).

temperaturedependentidealityfactornandthebarrierheightb

oftheZnO/CdTeheterojunctionweredeterminedfromEqs.(5)and (6),respectively[28]: n= kTq d(nI)dV (5) q˚b=kTln



AA∗T2/I 0



(6) whereqiselectroniccharge,kisBoltzmannconstant,Visthebias, TisthetemperatureinKelvin,I0isthesaturationcurrent,A*the

Richardsonconstant,andAeffectivediodearea.Experimental val-uesoftheidealityfactorandthebarrierheightsoftheZnO/CdTe heterojunctionshowtemperaturedependency(seeFigs.7and8). Thebarrierheightforelectrons(seeFig.13):

˚b=Ecmax−EF (7)

whereEcmaxisconductionbandminimumofthesemiconductorin

thejunction.Ifanyinteractionbetweenjunctionmaterialswould neglect,thenbarrierheightwilldependonlyontheelectron affin-ityofthejunctionmaterials(Schottky-Mottmodel).However,in practicethisisnotthecasesuchthatitisaffectedbythesurface

ofthesematerialduetothedanglingbondscauseinhomogeneity properties(Bardeenmodel).Oneresultofinhomogeneoussurfaces isthepresenceoflaterallyinhomogeneousbarrierheightasseenin Fig.13.Theanotheroneisbarrierheightinhomogeneity.According toinhomogeneitybarrier,barrierheightformedbetweencontact materialsmightbeaffectedbythenon-uniformityofthenature interfaciallayer.Similarly,inhomogeneousstructures,the ideal-ityfactorequals1.AccordingtoEqs.(5)and(6),forforwardbias, theidealityfactorandeffectivebarrierheightdependonbias(V) andtemperature,respectively.Namely,theeffectivebarrierheight ismeasuredashigherandidealityfactorisdeterminedlower,at highertemperatures.However,forpureTEconductionmechanism, theidealityfactorandbarrierheightvalueofidealcontactare inde-pendentoftemperature.

According to experimental results, both n and b are

temperature-dependentanditmaybeattributedtothe inhomo-geneityattheinterfaceof ZnOmicrorods and CdTe[29].n and b valuesof ZnO/CdTeheterojunctionvariedbetween5.98and

0.65eV at300K (27◦C) and 11 and 0.32eV at150K(−123◦C),

respectively.Lowvalueofthebarrierheightisattributedtoimage forcelower.Forexample,Hussainreportedthiseffectinhisstudy

(6)

M.A.Olgaretal./SensorsandActuatorsA261(2017)56–65 61

Fig.6.–Thetemperaturedependentcurrent–voltage(I–V)characteristicofthe

ZnO/CdTeheterojunction.

Fig.7.–TemperaturedependentoftheidealityfactorsfortheZnO/CdTe

hetero-junction.

[30].Furthermore,Hazraetal.reportedtheimageforcelowering andinhomogeneitiesatp-siliconnanowire/n-ZnOthinfilm[31]. Sincethecarriersmaybefreeze-outatlowtemperatureitcanbe expectedthattheimageforceloweringtoo.Inaddition,thiseffect maybethenanostructurenatureofourdevicestoo.

The high values of ideality factor for ZnO/CdTe heterojunc-tioncanbeexplainedbythepresenceofhighdensityofinterface

Fig.8. –TemperaturedependentofthebarrierheightsfortheZnO/CdTe

hetero-junction.

states[32]inheterojunctiondiodes.Thepropertiesoftheinterface dependonthefabricationmethodandthusthenatureofinterface variesgreatlyfrommaterialtomaterial.So,thehighervaluesof theinterfacestatesdensityplayavitalroleinthecurrent mecha-nismofheterojunctionsuchthattheyactascarriertraps.Thetraps mayemptytowardthehighertemperatureduetotheionizationof traps[33].Afterionizationofthetraps,themobilityandthe con-ductivityincreaseandasaresultofthis idealityfactordecrease towardhighertemperatures.Asknownthatthehigherthevalue formobility,themoretheidealityfactorclosetounity.Contrary, recombinationof carriersviatrapsmayalsoincrease the ideal-ityfactortoosinceidealityfactoralsodependstherecombination processtoo[34].Otherreasonsofthehighidealityfactormaybe explainedasfollows:i)recombinationofelectronsandholesinthe depletionregion[35],ii)largeseriesresistanceassociatedwithZnO microrodsembeddedheterostructure[36].

Fig. 9 depicts experimental ideality factors versus barrier heightsforZnO/CdTeheterojunctiondeviceinrangeof temper-ature from 150K (−123◦C) to 300K (27C). As seen, a linear

variationisobservedbetweenbothparameters.Thislinear rela-tionshipbetweenthebarrierheightbandidealityfactornisan

evidenceoftheinhomogeneitiesofbarrierheights[37].The het-erojunctionparametersdeterminedfromexperimentalresultsmay giveinformationaboutthepresenceorexistenceofinhomogeneity asexplainedintextaboutthissubject.Namely,thisinhomogeneity mayoccuratthestageoffabricationofdevicesincetheproperties ofthedevicedependsonpreparationtechniquetoo.

Fig.10showsthecurrent–voltage (I–V)characteristicsofthe ZnO/ZnTe heterojunction carried out between 150K (−123◦C)

and 300K(27◦C). Asseen thatall I–Vcurves are temperature-dependentand allshowtypical rectifyingcharacteristicsof the heterostructurediodeasZnO/CdTeheterojunction.Itisexpected thatthemaincurrenttransportmechanismtakesplaceafter jump-ingthechargecarriersoverthebarrier.Thisphenomenonoccursby theappliedforwardbias-voltage.Highervoltageshouldbeapplied atlowtemperaturesforjumpingthecarriersoverthebarriersdue tolowenergeticallychargecarriers.Therefore,whileI–Vcurves ofbothZnO/CdTeandZnO/ZnTestructuresdonotshow remark-able differences at reverse-biased voltage, the turn-on voltage increasesatforward-biasedsituationswithdecreasing tempera-turesforoperatingtheheterojunctionstructure.

(7)

62 M.A.Olgaretal./SensorsandActuatorsA261(2017)56–65

Fig.9.–ExperimentalidealityfactorsagainstbarrierheightsforZnO/CdTe

hetero-junctiondeviceintemperaturerangefrom150K(–123◦C)to300K(27◦C).

Fig.10.–Thecurrent–voltage(I–V)characteristicsoftheZnO/ZnTeheterojunction

asafunctionoftemperature.

Temperaturedependentoftheidealityfactorandthebarrier heightsoftheZnO/ZnTeheterojunctionobtainedfrom tempera-turedependentI–VplotsaregiveninFigs.11and12,respectively. Themeasurementsofcurrent-voltagecharacteristicsforZnO/ZnTe heterojunctionwerecarriedoutatlowtemperaturesintherange from150K(−123◦C)to300K(27C).Asseeninbothfigures,

sim-Fig.11.–TemperaturedependentoftheidealityfactorsfortheZnO/ZnTe

hetero-junction.

Fig.12.–TemperaturedependentofthebarrierheightsfortheZnO/ZnTe

hetero-junction.

ilartemperatureresponseofZnO/CdTe heterojunctionhasbeen determinedfortheZnO/ZnTeheterojunctiontoo.

n and b values of ZnO/ZnTe heterojunction varied from

4.83 and 0.44eVat 300K (27◦C) to 7.29and 0.24eV at 150K (−123◦C),respectively.Animportantreasonoflowerbarriermay

beattributedtoincreaseinimageforceloweringattheinterface of theheterojunction material [38,39].Whenimage force low-eringisefficient,itmeansthatThermionicEmissionconduction mechanismmaybeaffectedfromthat.So,ourexperimentalresults indicatethattheeffectoftheimageforceisobservedinZnO/ZnTe heterojunctiondevicesuchthatalowerbarrierheighthasbeen determinedcomparedtotheZnO/CdTeheterojunction. Further-more,itisknownthatinlaterallyinhomogeneousbarriersthere arevariousbarrierheightsasseenbelowFigure(3-dimentional)at theinterfaceofjunction/diodematerials.Onereasonofthismay

(8)

M.A.Olgaretal./SensorsandActuatorsA261(2017)56–65 63

Fig.13.–Apresentationofalaterallyinhomogeneousbarrierheightofrectifyingdevices.

defectsorpatches.Namely,moreelectronspassoverthebarrierat highertemperatureduetohavinghigherthermalenergy,contrary atlowtemperatures,theelectronspassoveratlowerbarrier[40]. Fig.13showsapresentationofalaterallyinhomogeneousbarrier heightofrectifyingdevices.

Inaddition,thedecreaseofidealitywithincreasingtemperature issharplyupto150K(−123◦C)andthatchangesareweaker.The

seriesresistanceoftheZnO/CdTeheterojunctionwhichisthe resis-tanceofneutralregionofsemiconductorsdecreaseswithincrease intemperatureandthermionicfieldemissionmechanismmaybe effectiveatlowtemperatures.Namely,thevoltagedropsarehigher atlowertemperatureandthiswillincreasetheexperimental ide-alityfactor[41].

However,towardstohighertemperaturethermionicemission (TE)iseffectiveconductionmechanism.So,aboutandafter150K (−123◦C)themainmechanismisTEconductionmechanismand

theexperimentalidealityfactorislowerandhasmorestablevalue. Fig. 14 depicts experimental ideality factors versus barrier heightsforZnO/ZnTeheterojunctiondeviceintemperaturerange from150K(−123◦C)to300K(27C).Thedecreaseinideality

fac-torand increasein thebarrier heightwithtemperaturecanbe explainedwithdeviationfrompurethermionicemissiontheory and inhomogeneity barrier properties. Accordingto thermionic emission(TE) electronsare emittedacrossa barrier.So, at low temperatures,theyhavelowenergyandpassoveratlowbarriers orviceversaandthiscontributetothelargeidealityfactor. Con-trary,athighertemperaturesthecarriersgainsignificantenergy tocrosshigherbarrierandthisresultsinloweridealityfactorat higher temperatures[43]. Disagreement betweenthe values of barrierheightsandtheconductionbandoffsetEC ofZnO/ZnTe

andZnO/CdTeindicatestheinhomogeneousbarrierheightnature betweenheterojunctionmaterials[42].Indeed,itishardtoseethe sameofourstudyinliterature.However,itispossibletoseevarious studiesdealingwithZnOnanorodsornanowiresandingenerally, thebarrierheightandidealityfactorofthesenanostructuresyield lowerbarrierheightandhigheridealityfactorvalues.For exam-ple,K.BandopadhyayandJ.Mitra[44]havedeterminedthebarrier heightandidealityfactorofZnOnanostructureas0.37eVand8.5, respectively.

Fig.14. –ExperimentalidealityfactorsagainstbarrierheightsforZnO/ZnTe

het-erojunctiondeviceintemperaturerangefrom150K(–123◦C)to300K(27C).

4. Conclusions

In this study, ZnO microrods werepreperad onZnO seeded SnO2-coatedglasssubstratesbyasimplespraypyrolysismethod.

CdTe and ZnTe layers were deposited separately on the ZnO microrodstoformZnO/CdTeandZnO/ZnTecoreshellstructures. Scanning electron microscopy and x-ray diffraction measure-ments revealed almost vertically aligned ZnO microrods with a hexagonal wurtzite structure. The electrical characteristicsof theZnOmicrorods/CdTeandZnOmicrorods/ZnTeheterojunctions were investigated by current–voltage (I–V) measurements as a function oftemperature in therange of 150K (−123◦C)—300K

(27◦C).Thecurrent–voltagecharacteristicsofbothZnO/CdTeand ZnO/ZnTeheterojunctionsshowedrectifyingproperties.Both ide-ality factors and the barrier heights have been found to be

(9)

64 M.A.Olgaretal./SensorsandActuatorsA261(2017)56–65

stronglytemperature-dependentforZnO/CdTeandZnO/ZnTe het-erojunctionsand this behaviourhasbeen attributedthelateral inhomogeneityofthebarrierheightforZnO/CdTeandZnO/ZnTe heterojunctions.

References

[1]P.Klason,M.Rahman,Q.-H.Hu,O.Nur,R.Turan,M.Willander,Fabrication andcharacterizationofp-Si/n-ZnOheterostructuredjunctions,Microelectron. J.40(2009)706–710.

[2]J.Herrero,C.Guillen,ImprovedITOthinfilmsforphotovoltaicapplications withathinZnOlayerbysputtering,ThinSolidFilms451(2004)630–633.

[3]J.D.Major,R.Tena-Zaera,E.Azaceta,L.Bowen,K.Durose,DevelopmentofZnO nanowirebasedCdTethinfilmsolarcells,Sol.EnergyMater.Sol.Cells160 (2017)107–115.

[4]E.S.Cha,Y.M.Ko,S.C.Kim,B.T.Ahn,Short-circuitcurrentimprovementin CdTesolarcellsbycombiningaZnObufferlayerandasolutionbackcontact, Curr.Appl.Phys.17(2017)47–54.

[5]M.Yilmaz,S¸.Aydo˘gan,TheeffectofMnincorporationonthestructural, morphological,optical,andelectricalfeaturesofnanocrystallineZnOthin filmspreparedbychemicalspraypyrolysistechnique,Metall.Mater.Trans.A 46(2015)2726–2735.

[6]C.Soh,C.Tay,S.Chua,H.Le,N.Ang,J.Teng,Optimizationofhydrothermal growthZnOnanorodsforenhancementoflightextractionfromGaNblue LEDs,J.Cryst.Growth312(2010)1848–1854.

[7]Y.Xie,B.Cai,D.Yu,W.Shan,W.-H.Zhang,Template-guidedgrowthof well-alignedZnOnanoconearraysonFTOsubstrate,J.Cryst.Growth346 (2012)64–68.

[8]A.Nadarajah,T.Smith,R.Könenkamp,Improvedperformanceof nanowire–quantum-dot–polymersolarcellsbychemicaltreatmentofthe quantumdotwithligandandsolventmaterials,Nanotechnology23(2012) 485403.

[9]L.Li,S.Yang,W.Jing,Z.Jiang,F.Han,EnhancedphotocurrentgainbyCdTe quantumdotmodifiedZnOnanowire,SensorsActuatorsA:Phys.232(2015) 292–298.

[10]G.Yang,Q.Wang,C.Miao,Z.Bu,W.Guo,Enhancedphotovoltaicperformance ofdye-sensitizedsolarcellsbasedonZnOmicrorodarray/TiO2nanoparticle hybridfilms,J.Mater.Chem.A1(2013)3112–3117.

[11]M.Abd-Ellah,J.P.Thomas,L.Zhang,K.T.Leung,Enhancementofsolarcell performanceofp-Cu2O/n-ZnO-nanotubeandnanorodheterojunction devices,Sol.EnergyMater.Sol.Cells152(2016)87–93.

[12]L.Vikas,K.Vanaja,P.Subha,M.Jayaraj,FastUVsensingpropertiesofn-ZnO nanorods/p-GaNheterojunction,SensorsActuatorsA:Phys.242(2016) 116–122.

[13]H.X.Sang,X.T.Wang,C.C.Fan,F.Wang,EnhancedphotocatalyticH2 productionfromglycerolsolutionoverZnO/ZnScore/shellnanorodsprepared byalowtemperatureroute,Int.J.HydrogenEnergy37(2012)1348–1355.

[14]K.Wang,J.Chen,W.Zhou,Y.Zhang,Y.Yan,J.Pern,etal.,Directgrowthof highlymismatchedtypeIIZnO/ZnSecore/shellnanowirearrayson transparentconductingoxidesubstratesforsolarcellapplications,Adv. Mater.20(2008)3248–3253.

[15]H.Chao,J.Cheng,J.Lu,Y.Chang,C.Cheng,Y.Chen,Growthand

characterizationoftype-IIZnO/ZnTecore-shellnanowirearraysforsolarcell applications,SuperlatticesMicrostruct.47(2010)160–164.

[16]J.Michallon,D.Bucci,A.Morand,M.Zanuccoli,V.Consonni,A.

Kaminski-Cachopo,LightabsorptionprocessesandoptimizationofZnO/CdTe core–shellnanowirearraysfornanostructuredsolarcells,Nanotechnology26 (2015)075401.

[17]E.Bacaksiz,S.Aksu,N.Ozer,M.Tomakin,A.Özc¸elik,Theinfluenceofsubstrate temperatureonthemorphology,opticalandelectricalpropertiesof thermal-evaporatedZnTeThinFilms,Appl.Surf.Sci.256(2009)1566–1572.

[18]E.Bacaksiz,B.Basol,M.Altunbas¸,V.Novruzov,E.Yanmaz,S.Nezir,Effectsof substratetemperatureandpost-depositionannealonpropertiesof evaporatedcadmiumtelluridefilms,ThinSolidFilms515(2007)3079–3084.

[19]J.Schrier,D.O.Demchenko,A.P.Alivisatos,OpticalpropertiesofZnO/ZnSand ZnO/ZnTeheterostructuresforphotovoltaicapplications,NanoLett.7(2007) 2377–2382.

[20]X.Wang,H.Zhu,Y.Xu,H.Wang,Y.Tao,S.Hark,etal.,AlignedZnO/CdTe core-shellnanocablearraysonindiumtinoxide:synthesisand

photoelectrochemicalproperties,AcsNano4(2010)3302–3308.

[21]E.Bacaksiz,S.Aksu,S.Yılmaz,M.Parlak,M.Altunbas¸,Structural,opticaland electricalpropertiesofAl-dopedZnOmicrorodspreparedbyspraypyrolysis, ThinSolidFilms518(2010)4076–4080.

[22]S.Yılmaz, ˙I.Polat,S¸.Altındal,E.Bacaksız,Structuralandelectrical characterizationofrectifyingbehaviorinn-type/intrinsicZnO-based homojunctions,Mater.Sci.Eng.:B177(2012)588–593.

[23]S.Yılmaz,E.Bacaksız,E.McGlynn,I.Polat,S¸.Özcan,Structural,opticaland magneticpropertiesofZn1-xMnxOmicro-rodarrayssynthesizedbyspray pyrolysismethod,ThinSolidFilms520(2012)5172–5178.

[24]B.M.Basol,S.S.Ou,O.M.Stafsudd,Typeconversion,contacts,andsurface effectsinelectroplatedCdTefilms,J.Appl.Phys.58(1985)3809–3813.

[25]B.M.Basol,ProcessinghighefficiencyCdTesolarcells,Int.J.SolarEnergy12 (1992)25–35.

[26]Y.A.Bodakov,G.Lomakina,G.Naumov,Y.P.Maslakovets,Investigationof surfacelayersincadmium-telluridecrystals,Sov.Phys.-SolidState2(1960) 49–54.

[27]Z.Bai,D.Wang,OxidationofCdTethinfilminaircoatedwithandwithouta CdCl2layer,Phys.StatusSolidi(a)209(2012)1982–1987.

[28]M.-S.Contacts,E.H.Rhoderick,R.H.Williams,Clarendon,Oxford,1988,pp. 1–70.

[29]F.Iucolano,F.Roccaforte,F.Giannazzo,V.Raineri,Barrierinhomogeneityand electricalpropertiesofPt/GaNSchottkycontacts,J.Appl.Phys.102(2007) 113701.

[30]A.Hussain,Temperaturedependentcurrent–voltageandphotovoltaic propertiesofchemicallyprepared(p)Si/(n)Bi2S3heterojunction,Egypt.J. BasicAppl.Sci.3(2016)314–321.

[31]P.Hazra,S.Jit,Ap-siliconnanowire/n-ZnOthinfilmheterojunctiondiode preparedbythermalevaporation,J.Semicond.35(2014)014001.

[32]K.Alfaramawi,EstimationoftheidealityfactorofZnTe/CdTepp heterojunctiondiodes,Optoelectron.Adv.Mater.RapidCommun.2(2008) 763–765.

[33]J.N.Zemel,NondestructiveEvaluationofSemiconductorMaterialsand Devices,SpringerScience&BusinessMedia,2013.

[34]U.Würfel,D.Neher,A.Spies,S.Albrecht,Impactofchargetransporton current-voltagecharacteristicsandpower-conversionefficiencyoforganic solarcells,Nat.Commun.6(2015).

[35]S.Sze,PhysicsofSemiconductorDevices,JohnWilly&SonsInc,NewYork, 1981.

[36]E.Bacaksiz,S.Aksu,G.Cankaya,S.Yılmaz,I.Polat,T.Küc¸ükömero˘glu,etal., Fabricationofp-typeCuSCN/n-typemicro-structuredZnOheterojunction structures,ThinSolidFilms519(2011)3679–3685.

[37]R.Schmitsdorf,T.Kampen,W.Mönch,Explanationofthelinearcorrelation betweenbarrierheightsandidealityfactorsofrealmetal-semiconductor contactsbylaterallynonuniformSchottkybarriers,J.Vac.Sci.Technol.B: Microelectron.NanometerStruct.Process.Meas.Phenom.15(1997) 1221–1226.

[38]T.Kampen,S.Park,D.Zahn,BarrierheightengineeringofAg/GaAs(100) Schottkycontactsbyathinorganicinterlayer,Appl.Surf.Sci.190(2002) 461–466.

[39]E.S.Yang,MicroelectronicDevices,McGraw-Hill,NewYork,1988.

[40]Metin,S¸.Aydo˘gan,K.Meral,Anewrouteforthesynthesisofgraphene oxide–Fe3O4(GO–Fe3O4)nanocompositesandtheirSchottkydiode applications,J.AlloyCompd.585(2014)681–688.

[41]R.K.Gupta,K.Ghosh,P.K.Kahol,Temperaturedependenceofcurrent-voltage characteristicsofgold-strontiumtitanatethinfilmSchottkydiode,Phys.E: Low-DimensionalSyst.Nanostruct.42(2010)1509–1512.

[42]S.Panigrahi,D.Basak,Solution-processednovelcore–shelln–p heterojunctionanditsultrafastUVphotodetectionproperties,RSCAdv.2 (2012)11963–11968.

[43]I.Hussain,M.Y.Soomro,N.Bano,O.Nur,M.Willander,Systematicstudyof interfacetrapandbarrierinhomogeneitiesusingI-V-Tcharacteristicsof Au/ZnOnanorodsSchottkydiode,J.Appl.Phys.113(2013)234509.

[44]K.Bandopadhyay,J.Mitra,Spatiallyresolvedphotoresponseonindividual ZnOnanorods:correlatingmorphology,defectsandconductivity,Sci.Rep.6 (28468)(2016).

Biographies

Mr.M.AliOlgarisaresearchassistantatDepartment

ofPhysics,ScienceFaculty,KaradenizTechnical

Univer-sity,inTurkey.Hisstudyareasmainlyare;1)Synthesis

ofinorganicmaterialssuchasZnO,ZnTe,CZTSetc.;(2)

developmentandapplicationsofnovelmaterialssuchas

heterojunctionsandSchottkydiodes;(3)Synthesisand

characterizationofnanoandmicromaterialsand(4)The

Synthesisandcharacterizationsofbulkandthinfilm

semi-conductorslikeIII-VandII-VI.

Mr.YavuzAtasoyisaresearchassistantatDepartment

ofPhysics,ScienceFaculty,KaradenizTechnical

Univer-sity,inTurkey.Hisstudyareasmainlyare;1)Synthesis

ofinorganicmaterialssuchasZnO,CdTe,CdSetc.;(2)

developmentandapplicationsofnovelmaterialssuchas

heterojunctionsandSchottkydiodes;(3)Synthesisand

characterizationofnanoandmicromaterialsand(4)The

Synthesisandcharacterizationsofdopedandun-doped

(10)

M.A.Olgaretal./SensorsandActuatorsA261(2017)56–65 65

Dr.EminBacaksizisaProfessoratDepartmentofPhysics,

ScienceFaculty,KaradenizTechnicalUniversity,inTurkey.

Hisstudyareasmainlyare;1)Synthesisofnanoandmicro

scalematerialssuchasZnO,CdTe,CdSetc.;(2)

develop-ment,characterizationandapplicationsofnoveldoped

materialssuchasheterojunctionsandSchottkydiodes;(3)

Synthesisandcharacterizationofnanoandmicro

materi-alsasthinfilmand(4)TheSynthesisandcharacterizations

ofdopedandun-dopedsemiconductors.

Dr.SakirAydoganisaprofessorofPhysicsatScience

fac-ulty,AtatürkUniversityinTurkey.Thecurrentresearch

interests in Professor Aydogan group:1)Synthesis of

organicandinorganicmaterials;(2)developementand

applicationsofnovelmaterialssuchasheterjunctionsand

Schottkydiodes;and(3)Thecharacterizationsof

Şekil

Fig. 1. – Schematic diagram of spray pyrolysis system.
Fig. 2. – XRD patterns of annealed ZnO/CdTe (a) and ZnO/ZnTe (b) structures.
Fig. 3. – SEM micrographs of ZnO microrod (a), ZnO/CdTe heterojunction (b) and ZnO/ZnTe heterojunction (c).
Fig. 5. – Energy-band diagram of ZnO/ZnTe heterostructure (a) presentation of band alignment (band offset) (b) under thermal equilibrium conditions
+4

Referanslar

Benzer Belgeler

Onuncu Alt Probleme Yönelik Bulgular: Bütünleşik FeTeMM eğitimi uygulamalarının gerçekleştirildiği deney grubu ile kontrol grubunun FeTeMM eğitimi tutum ölçeği son

İran Azeri populasyonuna ait bir çalışmada 50 yaş altı bayanlarda FGFR2 rs1219648 polimorfizmi erken yaş meme kanseri ile ilişkilendirilmiş olup,

Thus, UTD based solution (valid in the non-paraxial region), evaluated with numerical integration approach, and closed-form paraxial solution form a complete and efficient solution

Popularity and social features reflect social aspects of POIs in the search results: user count that indicates the number of users who have visited a POI, checkin count

3. You must understand the health care system. Health care systems are not just manufacturing sys- tems with untreated patients as "raw materials" and treated patients

plified, curated pathway notation like those featured in TCGA manuscripts, specializes in cancer pathways, features visualization of alteration frequencies and allows

The experimental data collected shows that while I/O prefetching brings benefits, its effectiveness reduces significantly as the number of CPUs is increased; (ii) identify

Our aim in the current study was to compare operation type and time, patient satisfaction and objective and subjective cure rates of anterior colporrhaphy