• Sonuç bulunamadı

Some algebraic identities on the integer sequence associated with imaginary quadratic number field Q(√−163)

N/A
N/A
Protected

Academic year: 2021

Share "Some algebraic identities on the integer sequence associated with imaginary quadratic number field Q(√−163)"

Copied!
12
0
0

Yükleniyor.... (view fulltext now)

Tam metin

(1)

Selçuk J. Appl. Math. Selçuk Journal of Vol. 12. No. 1. pp. 149-160, 2011 Applied Mathematics

Some Algebraic Identities on the Integer Sequence Associated with Imaginary Quadratic Number Field Q(√−163)

Ahmet Tekcan

Uludag University, Faculty of Science, Department of Mathematics, Bursa,Turkiye e-mail: tekcan@ uludag.edu.tr

Received Date: November 24, 2010 Accepted Date: March 29, 2011

Abstract. In this work, we deduce some algebraic identities on the integer se-quence  = ( ) with parameters  and  associated with the imaginary quadratic number field Q(√−163).

Key words: Fibonacci numbers; Lucas numbers; Pell numbers; integer se-quence; imaginary quadratic number field.

2000 Mathematics Subject Classification. 05A19, 11B37, 11B39. 1. Preliminaries

Fibonacci, Lucas and Pell numbers and their generalizations arise in the exam-ination of various areas of science and art. In fact these numbers are special case of a sequence which is defined as a linear combination as follows:

(1) += 1+−1+ 2+−2+ · · · + 

where 1 2 · · ·   are real constants. The applications and identities related with these numbers can be seen in [1, 2, 3, 4, 5,9,10].

2. The Sequences( ) with Parameters  and .

In [6, 7, 8], we deduced some algebraic relations on Lucas, Fibonacci and Pell numbers, respectively. In the present paper, we want to define a new integer sequence associated with the imaginary quadratic number field Q(√−163). To get this we first set let   0 be a square-free integer and set

∆ = (

4   ≡ 1 2( 4)  ≡ 3( 4)

(2)

and call −∆ the discriminant of the imaginary quadratic number field K = Q(√−∆). Let ∆ denote the class number of K. Euler proved that the quadratic polynomials for which many values are primes. He observed that if  is the prime 2 3 5 11 17 or 41, then the values (0) (1) · · ·  ( − 2) of the polynomial

(2) () = 2+  + 

are prime (in other words, ( − 1) = 2 is not prime, so this sequence of consecutive prime values is the best one can hope for). For  = 41, there are 40 prime numbers 41 43 47 53 · · ·  1447 1523 1601. Also G. Rabinovitch (1912) proved that for prime , the integers (0) (1) · · ·  ( − 2) are all primes if and only if the imaginary quadratic field Q(√1 − 4) has class number 1. So an imaginary quadratic field Q(√1 − 4) has class number 1 if and only if 4 − 1 = 7 11 19 43 67 or 163, that is,  = 2 3 5 11 17 or 41. Recall that a quadratic field K has class number 1 if every algebraic integer in K can be expressed as a product of primes in K and if any two such representations differ only by a unit, i.e. an algebraic integer that is a divisor in 1 in K. The imaginary quadratic fields of class number 1 were determined in 1966 by A. Baker and H. M. Stark, independently and free of the doubt that clung to Heegner’s earlier work in 1952. So  = 41 is the largest prime number for which the values (0) (1) · · ·  ( − 2) of the polynomial  in (2) are all primes.

In this section, our first aim is to define a new integer sequence associated with the class number of an imaginary quadratic field Q(√−163) and derive some algebraic identities on it. We see as above that for primes  = 2 3 5 11 17 or 41, the values (0) (1) · · ·  ( − 2) of the polynomial () in (2) are prime. Also the integers (0) (1) · · ·  ( − 2) are all primes if and only if the imaginary quadratic field Q(√1 − 4) has class number 1, and  = 41 is the largest prime number for which Q(√1 − 4) has class number 1. Now we take  = 41. Then 41() = 2+  + 41. Let  be any integer. Then

(3) 41() = 2+  + 41

We set  = 0

41() = 2 + 1 and  = 41() = 2+  + 41 Then we define the sequence  = ( ) with parameters  and  as 0= 0, 1= 1 and (4) =  −1− −2= (2 + 1)−1− (2+  + 41)−2

for all  ≥ 2. The characteristic equation of (4) is 2−(2+1)+(2++41) = 0. The discriminant is hence  = (2 + 1)2− 4(2+  + 41) = −163 So the roots of it are (5)  = (2 + 1) +  √ 163 2   = (2 + 1) − √163 2 

Hence by Binet’s formula we get

(6) =

−   − 

(3)

for all  ≥ 1. Now we can return our main problem. First, we give the following theorem concerning the sum of first non-zero  numbers.

Theorem 2.1. Let  denote the −th number. Then  X =1 = (2+  + 41) − +1+ 1 2−  + 41

Proof: Recall that  = (2 + 1)−1− (2+  + 41)−2. So +2 = (2 + 1)+1− (2+  + 41) = 2+1+ +1− (2+  + 41) and hence

(7) +2− +1= 2+1− (2+  + 41) Applying (7), we deduce that

(8)  = 0 ⇒ 2− 1= 21− (2+  + 41)0  = 1 ⇒ 3− 2= 22− (2+  + 41)1  = 2 ⇒ 4− 3= 23− (2+  + 41)2 · · ·  =  − 1 ⇒ +1− = 2− (2+  + 41)−1  =  ⇒ +2− +1= 2+1− (2+  + 41) If we sum both sides of (8), then we obtain

(9)

+2−1= [2−(2++41)](1+2+· · ·+)+2+1−(2++41)0 Since 0= 0 and 1= 1, (9) becomes +2− 1 = (−2+  − 41)(1+ 2+ · · · + ) + 2+1 and hence (10) 1+ 2+ · · · +  = +2− 1 − 2+1 −2+  − 41  Taking +27→ (2 + 1)+1− (2+  + 41) in (10), we get 1+ 2+ · · · + = (2+  + 41) − +1+ 1 2−  + 41  This completes the proof.

Now we can give the following theorem.

Theorem 2.2. Let  denote the −th number. Then

+  = ⎧ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎩ +1− (2+  + 41)−1 for  ≥ 1 2+1− (2 + 1) for  ≥ 0 (2 + 1)− 2(2+  + 41)−1 for  ≥ 1

(4)

and +  = ⎧ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎩ 1 2−1 P 2 =0 µ  2 ¶ (−1)(2 + 1)−2163if  is even 1 2−1 P−1 2 =0 µ  2 ¶ (−1)(2 + 1)−2163 if  is odd for  ≥ 1.

Proof: Note that +1= (2 + 1)− (2+  + 1)−1. Hence +1− (2+  + 41)−1 = (2 + 1)− 2(2+  + 41)−1 = (2 + 1) µ−   −  ¶ − 2(2+  + 41) µ−1− −1  −  ¶ = (2 + 1) µ −   −  ¶ − 2(2+  + 41) µ −  ( − ) ¶ = (2 + 1) √163 (  − ) − 2 √163(  − ) =  ∙ 2 + 1 − 2 √163 ¸ +  ∙ −2 − 1 + 2 √163 ¸ = + 

We see as above that +1− (2+  + 41)−1 = + . So (2+  + 41)−1= +1− (+ ) and hence + +1 = + [(2 + 1)− (2+  + 41)−1] = (2 + 2)− (2+  + 41)−1 = (2 + 2)− [+1− (+ )] = (2 + 2)− +1+ (+ ) So + = 2

+1− (2 + 1). Similarly it can be shown that +  = (2 + 1) − 2(2 +  + 41)−1 for  ≥ 1 The last assertion is just an application to binomial series.

We can also give the −th number  by using the powers of (2 + 1) and 163 or powers of (2 + 1) and (2+  + 41). To get this we can give the following theorem without giving its proof since it is just an application to binomial series. Theorem 2.3. Let  denote the −th number. Then

1.  = 1 2−1 ⎧ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎩ −2 2 P =0 µ  2 + 1 ¶ (−1)(2 + 1)−(2+1)163if  is even −1 2 P =0 µ  2 + 1 ¶ (−1)(2 + 1)−(2+1)163if  is odd

(5)

2. = ⎧ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎩ −2 2 P =0 µ  − 1 −   ¶ (−1)(2 + 1)−(2+1)(2+  + 41)if  is even −1 2 P =0 µ  − 1 −   ¶ (−1)(2 + 1)−(2+1)(2+  + 41) if  is odd. for all  ≥ 1

Example 2.1.Let  = 4. Then  = 9−1 − 61−2. The first few  numbers are 0 1 9 20 −369 −4541 −18360 111761 2125809 12314860 −18840609 · · ·  Let  = 6. Then 6 = 1 25 2 X =0 µ 6 2 + 1 ¶ (−1)96−(2+1)163 = 1 25[6 · 9 5 − 20 · 93· 163 + 6 · 9 · 1632] = −18360

and let  = 7, then

7 = 1 26 3 X =0 µ 7 2 + 1 ¶ (−1)97−(2+1)163 = 1 26[7 · 9 6 − 35 · 94· 163 + 21 · 92· 1632− 1633] = 111761 Similarly we get 6= 2 X =0 µ 5 −   ¶ (−1)96−(2+1)61= 95− 4 · 93· 61 + 3 · 9 · 612= −18360 and 7 = 3 X =0 µ 6 −   ¶ (−1)97−(2+1)61= 96− 5 · 94· 61 + 6 · 92· 612− 613 = 111761

(6)

Now we set the following identities  = −2 2− 81 + 163 2√163   = − 2 +  − 41  =2 + 3 +  √ 163 2√163  =2 3+ 32− 241 − 121 + (32+ 3 − 39)163 2√163   = 2 2+ 81 + 163 2(2+  + 41)163 Then we can give the following theorem.

Theorem 2.4. Let  denote the −th number. Then

1. The sum of first non-zero  numbers is 1[ − − 1] 2. + +1= −  for  ≥ 0.

3. +1+ −1= −2− −2 for  ≥ 2. 4. − −1= −  for  ≥ 1.

Proof:1. We proved in Theorem 2.2 that += 

+1−(2+ +41)−1. So +1+ +1 = +2− (2+  + 41) = (2 + 1)+1− 2(2+  + 41) = [+1− (2+  + 41)] + 2+1− (2+  + 41) and hence +1− (2+  + 41) = +1+ +1− 2+1+ (2+  + 41) = +1+ +1− 2 µ +1− +1  −  ¶ + (2+  + 41) µ −   −  ¶ =  µ  − 2 √163 + 2+  + 41 √163 ¶ +  µ  + 2 √163 − 2+  + 41 √163 ¶ =  Ã −22− 81 + 163 2√163 ! −  Ã −22− 81 − 163 2√163 ! =  − 

(7)

2. Note that +1= (2 + 1)− (2+  + 41)−1. So +1+  = (2 + 2)− (2+  + 41)−1 = (2 + 2) µ −  √163 ¶ − (2+  + 41) µ −1− −1 √163 ¶ = (2 + 2) µ −  √163 ¶ − µ −  √163 ¶ =  µ 2 + 2 −  √163 ¶ +  µ −2 − 2 +  √163 ¶ =  Ã 2 + 3 + √163 2√163 ! −  Ã 2 + 3 − √163 2√163 ! = − 

3. We proved in Theorem 2.2 that + = 2

+1− (2 + 1). So +  = 2+1− (2 + 1) = 2+1− (2 + 1)[(2 + 1)−1− (2+  + 41)−2] = 2+1− (2 + 1)2−1+ (2 + 1)(2+  + 41)−2 = 2(+1+ −1) − (42+ 4 + 3)−1+ (2 + 1)(2+  + 41)−2 and hence +1+ −1 =  +  + (42+ 4 + 3) −1− (2 + 1)(2+  + 41)−2 2 =  +  +42+4+3 √163 ( −1− −1) −(2+1)(2++41) √163 ( −2− −2) 2 =   2 ∙ 1 +4 2+ 4 + 3 √163 1 − (2 + 1)(2+  + 41) √163 1 2 ¸ +  2 ∙ 1 −4 2+ 4 + 3 √163 1 + (2 + 1)(2+  + 41) √163 1 2 ¸ = −2 " 23+ 32− 241 − 121 + (32+ 3 − 39)163 2√163 # −−2 " 23+ 32− 241 − 121 − (32+ 3 − 39)163 2√163 # = −2− −2

(8)

4. We proved in Theorem 2.2 that + = +1− (2+  + 41)−1. Hence +1= + + (2+  + 41)−1 Further we see that +1− (2+  + 41) =   − . Hence +1 =  − + (2+  + 41) So + + (2+  + 41) −1=  − + (2+  + 41) and − −1 = +  − +   2+  + 41 =  (1 − ) + (1 +  ) 2+  + 41 = ³1 −−22 −81+√163 2√163 ´ + ³1 + −22−81−√163 2√163 ´ 2+  + 41 =  Ã 22+ 81 + 163 2(2+  + 41)163 ! −  Ã 22+ 81 − 163 2(2+  + 41)163 ! = − 

Now we can formulate the sum of even and odd numbers 2 and 2−1, respectively by using the powers of  and .

Theorem 2.5. Let  denote the −th number. Then

 X =1 2= ⎧ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎩   2 P =1 4−3−   2 P =1 4−3 if  is even 2 √163+  −1 2 P =1 4−3  2 √163−  −1 2 P =1 4−3 if  is odd and  X =1 2−1= ⎧ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎩   2 P =1 4−4−   2 P =1 4−4 if  is even 2−1 √163 +  −1 2 P =1 4−4  2−1 √163 −  −1 2 P =1 4−4 if  is odd

Proof:We proved in (3) of Theorem 2.4 that +1+ −1= −2−−2 for  ≥ 2. Now let  be even. Then

 X =1 2 = (2+ 4) + (6+ 8) + · · · + (2−2+ 2) = ( − ) + (5− 5) + · · · + (2−3− 2−3) = ( + 5+ · · · + 2−3) − ( + 5 + · · · + 2−3) =   2 X =1 4−3−   2 X =1 4−3

(9)

and let  be odd, then  X =1 2 = (2+ 4) + (6+ 8) + · · · + (2−4+ 2−2) + 2 = ( − ) + (5− 5) + · · · + (2−5− 2−5) + 2− 2  −  =  2 √163+ ( +  5 + · · · + 2−5) −  2 √163 −( + 5+ · · · + 2−5) =  2 √163+  −1 2 X =1 4−3  2 √163−  −1 2 X =1 4−3

The other assertion can be proved similarly.

Now we want to derive a recurrence relation on  numbers. To get this we can give the following theorem.

Theorem 2.6. Let  denote the −th number. Then

2= (22+ 2 − 81)2−2− (4+ 23+ 832+ 82 + 1681)2−4 and

2+1= (22+ 2 − 81)2−1− (4+ 23+ 832+ 82 + 1681)2−3 for all  ≥ 2

Proof: Note that 2 = (2 + 1)2−1− (2+  + 41)2−2 and hence 2 = (2 + 1)£(2 + 1)2−2− (2+  + 41)2−3¤− (2+  + 41)2−2 = 2−2[(2 + 1)2− (2+  + 41)] − (2 + 1)(2+  + 41)2−3 = 2−2[(2 + 1)2− (2+  + 41)] −(2 + 1)(2+  + 41)£(2 + 1)2−4− (2+  + 41)2−5¤ = 2−2[(2 + 1)2− (2+  + 41)] − (2 + 1)2(2+  + 41)2−4 +(2 + 1)(2+  + 41)22−5 = 2−2[(2 + 1)2− (2+  + 41)] − (2+  + 41)2−2 +(2+  + 41)2−2− (2 + 1)2(2+  + 41)2−4 +(2 + 1)(2+  + 41)22−5

(10)

= 2−2[(2 + 1)2− 2(2+  + 41)] + (2+  + 41)[(2 + 1)2−3 −(2+  + 41)2−4] − (2 + 1)2(2+  + 41)2−4 +(2 + 1)(2+  + 41)22−5 = 2−2[(2 + 1)2− 2(2+  + 41)] + (2 + 1)(2+  + 41)2−3 −(2+  + 41)22−4− (2 + 1)2(2+  + 41)2−4 +(2 + 1)(2+  + 41)22−5 = 2−2[(2 + 1)2− 2(2+  + 41)] +(2 + 1)(2+  + 41)[(2 + 1)2−4− (2+  + 41)2−5] −(2+  + 41)22−4− (2 + 1)2(2+  + 41)2−4 +(2 + 1)(2+  + 41)22−5 = 2−2[(2 + 1)2− 2(2+  + 41)] + (2 + 1)2(2+  + 41)2−4 −(2 + 1)(2+  + 41)22−5− (2+  + 41)22−4 −(2 + 1)2(2+  + 41)2−4+ (2 + 1)(2+  + 41)22−5 = 2−2[(2 + 1)2− 2(2+  + 41)] − (2+  + 41)22−4 = (22+ 2 − 81)2−2− (4+ 23+ 832+ 82 + 1681)2−4 The other assertion can be proved similarly.

For  numbers, we set

 =  () = ∙ 2 + 1 −2−  − 41 1 0 ¸  = () = ∙ 2 + 1 1 1 0 ¸  = () =£ 1 0 ¤ Then we can give the following result.

Theorem 2.8. Let  denote the −th number. Then 1.  = " +1 −(2+  + 41)  −(2+  + 41)−1 # for  ≥ 1 2. −1 = " +1   −1 # for  ≥ 1

(11)

3. If  is odd, then = ⎡ ⎢ ⎢ ⎢ ⎢ ⎣ −1 2 P =0 µ  −   ¶ (2 + 1)−2 −1 2 P =0 µ  − 1 −   ¶ (2 + 1)−1−2 −1 2 P =0 µ  − 1 −   ¶ (2 + 1)−1−2 −3 2 P =0 µ  − 2 −   ¶ (2 + 1)−2−2 ⎤ ⎥ ⎥ ⎥ ⎥ ⎦

for  ≥ 3 and if  is even, then

= ⎡ ⎢ ⎢ ⎢ ⎣  2 P =0 µ  −   ¶ (2 + 1)−2 −2 2 P =0 µ  − 1 −   ¶ (2 + 1)−1−2 −2 2 P =0 µ  − 1 −   ¶ (2 + 1)−1−2 −2 2 P =0 µ  − 2 −   ¶ (2 + 1)−2−2 ⎤ ⎥ ⎥ ⎥ ⎦ for  ≥ 2 4. =  +1 for  ≥ 1

Proof: 1. We prove it by induction on . Let  = 1. Then  = " 2 −(2+  + 41)1 1 −(2+  + 41)0 # = " 2 + 1 −2−  − 41 1 0 #  So it is true for  = 1. Let us assume that this relation is satisfied for  − 1, that is, −1= "  −(2+  + 41)−1 −1 −(2+  + 41)−2 #  Since =  · −1, we get  = " 2 + 1 −2−  − 41 1 0 # "  −(2+  + 41)−1 −1 −(2+  + 41)−2 # = " +1 −(2+  + 41)[(2 + 1)−1− (2+  + 41)−2]  −(2+  + 41)−1 # = " +1 −(2+  + 41)  −(2+  + 41)−1 # 

2. and 3. can be proved similarly. 4.  = £ 1 0 ¤ " +1 −(2+  + 41)  −(2+  + 41)−1 # ∙ 1 0 ¸ = £ 1 0 ¤ ∙ +1  ¸ = +1

(12)

3. Acknowledgements

This work was supported by the Commission of Scientific Research Projects of Uludag University, Project number UAP(F)-2010/55.

References

1. A. F. Horadam. Pell Identities. The Fibonacci Quarterly, 9(3)(1971), 245-252. 2. T. Koshy, Fibonacci and Lucas Numbers with Applications, John Wiley and Sons, 2001.

3. F. Köken and D. Bozkurt. On Lucas Numbers by the Matrix Method. Hacettepe Jour. of Maths. and Sta. 39(4)(2010), 471—475.

4. C. S. Ogilvy and J. T. Anderson, Fibonacci Numbers, Ch. 11 in Excursions in Number Theory, New York, Dover 1988.

5. P. Ribenboim. My Numbers, My Friends. Springer-Verlag, New York Inc. 2000. 6. A. Tekcan, B. Gezer and O. Bizim, Some Relations on Lucas Numbers and their Sums, Advanced Studies in Cont. Maths. 15(2)(2007), 195—211.

7. A. Tekcan, A. Özkoç, B. Gezer and O. Bizim, Some Relations Involving the Sums of Fibonacci Numbers, Proc. Jang. Math. S. 11(1)(2008), 1—12.

8. A. Tekcan, Some Algebraic Identities on Pell Numbers and Sums of Pell Numbers, Accepted for publication to Ars Combinatoria.

9. N.N. Vorobiev (Mircea Martin). Fibonacci Numbers. Birkhauser Verlag, 2002. 10. D.G. Wells, The Penguin Dictionary of Crious and Interesting Numbers, Middle-sex, England Penguin Books, 1986.

Referanslar

Benzer Belgeler

By using the PeaceMaker game, which is a structured simulation of the Israeli-Palestinian conflict, using a cross-cultural experimental design, we assessed whether participants

To implement this, we down- sample two shifted versions of input image (corresponding to (x, y) = {(0, 0), (1, 1)}), filter the two downsampled images using our directional

Knowing what sorts of individual obligations are entailed by our collective obligation to meet individuals needs would require knowing what forms of collective action would

In order to demonstrate the negative refraction effect experimentally, we measured the electric field intensity along the surface of the photonic crystal at the output interface

EM waves emerging from a point source located near a lens with negative refractive index will first be refracted through the first air–PC interface and will come into focus inside the

Other studies consider embedded sources in PCs where the directivity was achieved by employing localized cavity modes [ 42 ], generating partial gaps in the band structure by

Malliaris and Urrutia (1994) uses a vector error correcting (VEC) model to examine long­ term and short-run causality for five major European capital markets: the UK, France, Italy,

yıldan sonra gelecek gelişmeler üzerinde­ ki düşüncelerimizi dile getirmeği daha uygun bulmakta­ yız : Devlet Güzel Sanatlar Akademisi, yurdumuzda, gü­ zel