• Sonuç bulunamadı

E-curvature functions in R31

N/A
N/A
Protected

Academic year: 2021

Share "E-curvature functions in R31"

Copied!
5
0
0

Yükleniyor.... (view fulltext now)

Tam metin

(1)

Selçuk J. Appl. Math. Selçuk Journal of Vol. 14. No. 1. pp. 83-87, 2013 Applied Mathematics

e-Curvature Functions inR3 1

Esen ·Iyigün

Uluda¼g University, Art And Science Faculty, Department of Mathematics, 16059, Bursa, Turkiye.

e-mail:esen@ uludag.edu.tr

Received Date: August 27, 2012 Accepted Date: September 03, 2012

Abstract. In this study; we de…ne the ith e-curvature functions mi for 1 i 3 in R31:So, in R31 we give a relation between harmonic curvatures and ith e-curvature functions. Moreover, we …nd a relation between constant e-curvature ratios and ithe-curvature functions. Finally, we apply on a unit speed time-like curve to the some given results.

Key words: ith e-curvature function m

i; ccr-curve; 3-dimensional Lorentz Minkowski space R3

1:

AMS Classi…cation: 53C40, 53C42. 1. Introduction

Let X = (x1; x2; x3) and Y = (y1; y2; y3) be two non-zero vectors in 3-dimensional Lorentz Minkowski space R31:We denoted R31 shortly by L3:For X; Y 2 L3

hX; Y i = x1y1+ x2y2+ x3y3 is called Lorentzian inner product. The couple R3

1; h; i is called Lorentzian space and brie‡y denoted by L3.Then the vector X of L3is called

i)time-like if hX; Xi < 0,

ii)space-like if hX; Xi > 0 or X = 0,

iii)null (or light-like) vector if hX; Xi = 0, X 6= 0.

Similarly, an arbitrary curve = (s) in L3 can be locally be space-like, time-like or null, if all of its velocity vectors 0(s) are respectively space-like, time-like or null.Also, recall the norm of a vector X is given by kXk =pjhX; Xij.Therefore, X is a unit vector if hX; Xi = 1:Next, vectors X; Y in L3 are said to be or-thogonal if hX; Y i = 0:The velocity of the curve is given by 0 .Thus, a

(2)

space-like or a time-like is said to be parametrized by arclength function s;if D 0

; 0E= 1 [1]. 2. Basic De…nitions

De…nition 1. Let : I ! L3be a curve in L3and k

1; k2the Frenet curvatures of . Then for a unit tangent vector V1 =

0

(s) over M the ith e-curvature function mi , 1 i 3 is de…ned by mi = 8 > > > < > > > : 0 ; i = 1 "1"2 k1 ; i = 2 d dt(mi 1) + "i 2mi 2ki 2 "i ki 1 ; 2 < i 3 9 > > > = > > > ; where "i= hVi; Vii = 1.

De…nition 2. Let : I ! L3be a unit speed non-null curve in L3: The curve is called Frenet curve of osculating order d , (d 3) if its 3rdorder derivatives

0

(s); 00(s); 000(s); are linearly independent and 0(s); 00(s); 000(s); {v(s) are no longer linearly independent for all s 2 I: For each Frenet curve of order 3 one can associate an orthonormal 3 frame fV1; V2; V3g along (such that

0

(s) = V1) called the Frenet frame and the Frenet formulas is de…ned in the usual way; V10 = rv1 0 = "2k1V2; V20 = rv1V2= "1k1V1+ "3k2V3; V30 = rv1V3= "2k2V2: 3. Harmonic Curvatures

De…nition 3. Let be a non-null curve of osculating order 3.The harmonic functions Hj: I ! R ; 0 j 1; de…ned by 8 < : H0= 0; H1= k1 k2 = "1"2"3 m3 m2(m2)0

are called the harmonic curvatures of , where the ith e-curvature function mi , 1 i 3:

De…nition 4. Let be a time-like curve in L3 with 0

(s) = V1. X L3 being a constant unit vector …eld if

(3)

then is called a general helix (inclined curves) in L3, ' is called slope angle and the space Sp fXg is called slope axis [7].

De…nition 5. Let be a non-null of osculating order 3. Then is called a general helix of rank 1 if

H12= c; holds, where c 6= 0 is a real constant. We have the following results.

Corollary 1. i) If H1= 0 then is a straight line.

ii) If H1is constant then is a general helix of rank 1. Proof. By the use of above de…nition we obtain.

Proposition 1. V10 = rv1 0 = "1 m2 V2; V20 = rv1V2= "2 m2 V1+ (m2)0 m3 V3; V30 = rv1V3= "2"3 (m2) 0 m3 V2:

Proof. By using de…nition of the ithe-curvature function m

i, 1 i 3 ,we get the result.

4. Constant Curvature Ratios

De…nition 6. A curve : I ! L3 is said to have constant curvature ratios (that is to say, it is a ccr-curve) if all the quotients "i

ki+1 ki

are constant. Here; ki; ki+1are Frenet curvatures of and "i = hVi; Vii = 1:

Corollary 2. For i=1 ccr-curve is "2"3

m2(m2)

0

m3 :

Proof. The proof can be easily seen by using the de…nitions of the ith e-curvature function mi and ccr-curve.

Corollary 3. Let : I ! L3 is a ccr-curve. If " 2"3 m2(m2) 0 m3 ! = constant; then "2"3 m2(m2) 0 m3 !0 = 0:

(4)

Proof. The proof is obvious.

Theorem 1. is a ccr-curve in L3, "

1H12= constant:

Proof. By using the de…nitions of a general helix of rank 1 and ccr-curve, this completes the proof of the theorem.

Now, we will calculate constant curvature ratios and the ithe-curvature function mi, 1 i 3, of a unit speed time-like curve in L3.

5. An Example

Example 1. Let us consider the following curve in the space L3 (s) = p2s; sin s; cos s :

V1(s) =

0

(s) = p2; cos s; sin s

whereD 0(s); 0(s)E= 1; which shows (s) is a unit speed time-like curve.Thus

0

(s) = 1:We express the following di¤erentiations:

00 (s) = (0; sin s; cos s) ) 000 (s) = (0; cos s; sin s) and V2(s) = "2 00 (s) k 00(s)k = 00 (s): So, we have the …rst curvature as

k1(s) = D

V10(s); V2(s) E

= 1 = constant. Moreover we can write third Frenet vectors of the curve,

V3(s) = V1(s) V2(s) = 1; p

2 cos s; p2 sin s : Finally, we have second curvature of (s) as

k2(s) = D

V20(s); V3(s) E

= p2 = constant. Now, we will calculate ithe-curvature function m

i; 1 i 3 , and ccr-curve of (s) in L3: m2= "1"2 k1 = 1; m3= "3(m2) 0 k2 = 0; "1 k2 k1 = p2 = constant:

(5)

Thus, (s) is a ccr-curve in L3: References

1. O’Neill, B. Semi-Riemannian geometry with applications to relativity. Academic Pres, New-York, (1983).

2. ·Iyigün, E. and Arslan, K. On harmonic curvatures of curves in Lorentzian n-space. Commun. Fac. Sci.Univ. Ank. Series A1, V.54, No(1) , pp.29-34, (2005).

3. Gluck, H. Higher curvatures of curves in Euclidean space. Am. Math. Monthly 73 (1966), 699-704.

4. Öztürk, G., Arslan, K. and Hac¬saliho¼glu, H. H. A characterization of ccr-curves in Rm:Proceedings of the Estonian Academy of Sciences, 57 (4) (2008), 217-224. 5. Arslan, K., Çelik, Y. and Hac¬saliho¼glu, H. H. On Harmonic Curvatures of a Frenet Curve. Commun. Fac. Sci.Univ. Ank. Series A1, 49(2000), 15-23.

6. Graves, L. K. Codimension one isometric immersions between Lorentz spaces. Trans. Amer. Math. Soc., 252(1979), 367-392.

7. Ekmekçi, N., Hacisalihoglu, H.H. and ·Ilarslan, K. Harmonic curvatures in Lorentzian space. Bull. Malaysian Math. Sc. Soc. (Second Series) 23(2000), 173-179.

Referanslar

Benzer Belgeler

Meşrutiyeti müteakip Evkaf nezareti inşa- at ve tamirat müdiriyet ve ser mimarlığına tayin olunan mimar Kemalettin, 1 nisan 335' tarihine kadar d e v a m eden memuriyeti

Th is study is based on Registers of the Imperial Nakibüleşraf, an underuti- lized, important source for studying sadat of the Ottoman realm. 7 Yet, they are limited in a number

Diğer güzel sanat kollar arasında yüksek bir sanat atmosferi içinde, ahenkli bir şekilde çalışan Akademiye memleket mimarlığında yapmakta oldu- ğu görevle ölçülü bir

Yapı üslûbu ile doğrudan doğruya alâkadar olmamakla beraber, bina şekilleri üzerine çok tesiri olan ideolojik bir unsur daha vardır ki, onun da üslûbu doğuran in- kilâb

Her bir dairede bir antre ile geçilen genişçe bir hol etra- fında salon, yemek odası, 2 yatak odası, banyo, mutfak, helâ ve sandık odası yapılmıştır.. Plân taksimatında

Duyarlı (Analitik) Ortalamalar Aritmetik Ortalama Geometrik Ortalama Harmonik Ortalama Kareli Ortalama Tartılı Ortalama...

Duyarlı Olmayan (Analitik Olmayan) Ortalamalar Medyan (Ortanca)   Mod Kantiller Düzeltilmiş Ortalama Kırpılmış

Seride önceden belirlenen bir yüzde kadar veri atılmasıyla elde edilen yeni veriye aritmatik.