• Sonuç bulunamadı

Başlık: Vector-valued Cesàro summable generalized Lorentz sequence spaceYazar(lar):OĞUR, Oğuz; SAĞIR, BirsenCilt: 66 Sayı: 1 Sayfa: 179-186 DOI: 10.1501/Commua1_0000000787 Yayın Tarihi: 2017 PDF

N/A
N/A
Protected

Academic year: 2021

Share "Başlık: Vector-valued Cesàro summable generalized Lorentz sequence spaceYazar(lar):OĞUR, Oğuz; SAĞIR, BirsenCilt: 66 Sayı: 1 Sayfa: 179-186 DOI: 10.1501/Commua1_0000000787 Yayın Tarihi: 2017 PDF"

Copied!
8
0
0

Yükleniyor.... (view fulltext now)

Tam metin

(1)

D O I: 1 0 .1 5 0 1 / C o m m u a 1 _ 0 0 0 0 0 0 0 7 8 7 IS S N 1 3 0 3 –5 9 9 1

VECTOR-VALUED CESÀRO SUMMABLE GENERALIZED LORENTZ SEQUENCE SPACE

O ¼GUZ O ¼GUR AND BIRSEN SA ¼GIR

Abstract. The main purpose of this paper is to introduce Cesàro summa-ble generalized Lorentz sequence space C1[d(v; p)]. We study some topologic

properties of this space and obtain some inclusion relations.

1. Introduction

Throughout this work, N; R and C denote the set of positive integers, real numbers and complex numbers, respectively. For some properties of sequences, we refer to [4; 8] :

For 1 p < 1, the Cesàro sequence space is de…ned by

Cesp= 8 < :x 2 w : 1 X j=1 1 j j X i=1 jx(i)j !p < 1 9 = ;; equipped with norm

kxk = 0 @X1 j=1 1 j j X i=1 jx(i)j !p1 A 1 p :

This space was …rst introduced by Shiue [14] : It is very useful in the theory of matrix operators and others. Later, many authors studied this space [see 1; 5; 11; 13] :

Let (E; k k) be a Banach space. The Lorentz sequence space l(p; q; E) (or lp;q(E))

for 1 p; q 1 is the collection of all sequences faig 2 c0(E) such that

kfaigkp;q= 8 < : 1 P i=1 iq=p 1 a (i) q 1=q f or 1 p < 1; 1 q < 1 supii1=p a (i) f or 1 p 1; q = 1

Received by the editors: March 18, 2016, Accepted: Aug 14, 2016. 2010 Mathematics Subject Classi…cation. 40A05, 40H05, 46A45, 46E30.

Key words and phrases. Lorentz sequence space, Cesàro summable, vector-valued space.

c 2 0 1 7 A n ka ra U n ive rsity C o m m u n ic a tio n s d e la Fa c u lté d e s S c ie n c e s d e l’U n ive rs ité d ’A n ka ra . S é rie s A 1 . M a th e m a t ic s a n d S t a tis t ic s .

(2)

is …nite, where a (i) is non-increasing rearrangement of fkaikg (We can

inter-pret that the decreasing rearrangement a (i) is obtained by rearranging fkaikg

in decreasing order). This space was introduced by Miyazaki in [9] and examined comprehensively by Kato in [3] (see also [6; 7]):

A weight sequence v = fv(i)g is a positive decreasing sequence such that v(1) = 1; limi!1v(i) = 0 and limi!1V (i) = 1; where V (i) =

i

P

n=1v(n) for every i 2 N:

Popa [12] de…ned the generalized Lorentz sequence space d(v; p) for 0 < p < 1 as follows d(v; p) = 8 < :x = fxig 2 w : kxkv;p= sup 1 X i=1 x (i) p v(i) !1=p < 1 9 = ;; where ranges over all permutations of the positive integers and v = fv(i)g is a weight sequence. It is know that d(v; p) c0 and hence for each x 2 d(v; p) there

exists a non-increasing rearrangement fx g = fxig of x and

kxkv;p= 1 X n=1 jxij p v(i) !1 p (see [10; 12]).

Let (X; k k) be a Banach space and v = fv(k)g be a weight sequence. We introduce the vector-valued Cesáro summable generalized Lorentz sequence space C1[d(v; p)] for 0 < p < 1. The space C1[d(v; p)] is the collection of all X valued

0 sequences fxng (fxng 2 c0fXg) such that 1 X k=1 " 1 k k X n=1 x (n) #p v(k) !1 p

is …nite, where x (n) is non-increasing rearrangement of fkxnkg.

We shall need the following lemmas.

Lemma 1. (Hardy, Littlewood and Pólya [2]). Let faig1 i n and fbig1 i n be two

sequences of positive numbers. Then we have X i ai bi X i ai bi X i ai bi;

where faig is the non-increasing rearrangements of sequence faig1 i n and fbig

and f big are the non-increasing and non-decreasing rearrangements of sequence

fbig1 i n, respectively.

Lemma 2. (Kato [3]) Let nx( )i o be an X valued double sequence such that limi!1x( )i = 0 for each 2 N and let fxig be an X valued sequence such that

(3)

lim !1x( )i = xi (uniformly in i). Then limi!1xi= 0 and for each i 2 N

x (i) lim

!1 x

( )

(i) ;

where x (i) and

n

x( )(i) o

i are the non-increasing rearrangements of fkxikg

andn x( )i o

i, respectively.

2. MAIN RESULTS

Theorem 1. The space C1[d(v; p)] for 0 < p < 1 is a linear space over the …eld

K = R or C:

Proof. Let x; y 2 C1[d(v; p)]. Since v is non-increasing, the non-increasing

re-arrangements of v is itself. Thus, using the inequality P

i ai bi P i ai bi from Lemma 1, we have 1 X k=1 " 1 k k X n=1 x (n)+ y (n) #p v(k) 1 X k=1 " 1 k k X n=1 x (n) + y (n) #p v(k) D 1 X k=1 " 1 k k X n=1 x (n) #p v(k) +D 1 X k=1 " 1 k k X n=1 y (n) #p v(k) D 1 X k=1 " 1 k k X n=1 x (n) #p v(k) +D 1 X k=1 " 1 k k X n=1 y (n) #p v(k) < 1;

where D = max 1; 2p 1 . Here x (n) ; y (n) and x (n)+ y (n)

denote the non-increasing rearrangements of the sequences fkxnkg ; fkynkg and

fkxn+ ynkg, respectively. Let 2 K: Hence we get 1 X k=1 " 1 k k X n=1 x (n) #p v(k) = 1 X k=1 " j j k k X n=1 x (n) #p v(k) = j jp 1 X k=1 " 1 k k X n=1 x (n) #p v(k) < 1:

(4)

This shows that x + y 2 C1[d(v; p)] ; x 2 C1[d(v; p)] and so C1[d(v; p)] is a

linear space.

Theorem 2. The space C1[d(v; p)] for 1 p < 1 is normed space with the norm

kxkC;v;p= 1 X k=1 " 1 k k X n=1 x (n) #p v(k) !1 p ;

where x (n) denotes the non-increasing rearrangements of fkxnkg.

Proof. It is clear that k0kC;v;p= 0. Let kxkC;v;p = 0. Then we have1k k

P

n=1

x (n) =

0 for all k 2 N: Hence we get x (n) = 0 for all n 2 N and so x = 0:

Let x; y 2 C1[d(v; p)] : Since weight sequence v is decreasing, the non-increasing

rearrangements of v is itself. Thus, using the inequality P

i ai bi P i ai bi from Lemma 1, we have kx + ykC;v;p = 1 X k=1 " 1 k k X n=1 x (n)+ y (n) #p v(k) !1 p 1 X k=1 " 1 k k X n=1 x (n) #p v(k) !1 p + 1 X k=1 " 1 k k X n=1 y (n) #p v(k) !1 p 1 X k=1 " 1 k k X n=1 x (n) #p v(k) !1 p + 1 X k=1 " 1 k k X n=1 y (n) #p v(k) !1 p = kxkC;v;p+ kykC;v;p ;

where x (n) ; y (n) and x (n)+ y (n) denote the non-increasing

re-arrangements of fkxnkg ; fkynkg and fkxn+ ynkg, respectively.

Let be an element in K and let x be a vector in C1[d(v; p)] : Hence we have

k xkC;v;p = 1 X k=1 " 1 k k X n=1 x (n) #p v(k) !1 p = j j 1 X k=1 " 1 k k X n=1 x (n) #p v(k) !1 p = j j kxkC;v;p:

Theorem 3. The space C1[d(v; p)] for 1 p < 1 is complete with respect to its

(5)

Proof. Let x(s) be an arbitrary Cauchy sequence in C

1[d(v; p)] with x(s) =

n x(s)n

o1

n=1for all s 2 N: Then we have

lim s;t!1 x (s) x(t) C;v;p= lims;t!1 1 X k=1 " 1 k k X n=1 x(s) s;t(n) x (t) s;t(n) #p v(k) !1 p = 0; (1) where n x(s) s;t(n) x (t) s;t(n) o

denotes the non-increasing rearrangement of n

x(s)n x(t)n

o

. Hence we obtain lims;t!1 x(s)s;t(n) x (t) s;t(n) = 0 for each n 2 N and so n x(s)n o

; for a …xed n 2 N; is a Cauchy sequence in X:

Then, there exists xn2 X such that x(s)n ! xn as s ! 1. Let x = fxng :

Since limn!1x(s)n = 0 for each s 2 N, by Lemma 2 we have limn!1xn = 0:

Therefore we can choose the non-increasing rearrangement n x t(n) x (t) t(n) o n of n xn x(t)n o

n: Also, for an arbitrary " > 0 there exists N 2 N such that

1 X k=1 " 1 k k X n=1 x(s) s;t(n) x (t) s;t(n) #p v(k) !1 p < " (2)

for s; t > N . Let t be an arbitrary positive integer with t > N and …xed. If we put yn(s)= x(s)n x(t)n and yn= xn x(t)n ,

then we have lim

n!1y

(s)

n = 0 for each s 2 N and slim

!1y

(s)

n = yn (uniformly in n).

Thus by Lemma 2 we get

y (n) lim

s!1 y

(s) s(n)

for each n 2 N; that is, x t(n) x (t) t(n) slim!1 x (s) s;t(n) x (t) s;t(n) (3)

(6)

for each n 2 N. Hence, by (2); (3) we get x x(t) C;v;p = 1 X k=1 " 1 k k X n=1 x t(n) x (t) t(n) #p v(k) !1 p 1 X k=1 " 1 k k X n=1 lim s!1 x (s) s;t(n) x (t) s;t(n) #p v(k) !1 p = lim s!1 1 X k=1 " 1 k k X n=1 x(s) s;t(n) x (t) s;t(n) #p v(k) !1 p < ":

Also, since C1[d(v; p)] is a linear space we have fxng =

n xn x(N )n o +nx(N )n o 2 C1[d(v; p)] : Hence the space C1[d(v; p)] is complete with respect to its norm.

Theorem 4. Let 1 < p < 1: Then, the inclusion d(v; p) C1[d(v; p)] holds.

Proof. Let x 2 d(v; p). Then there exists T > 0 such that lim m!1 m X n=1 x (n) p v(n) !1 p = 1 X n=1 x (n) p v(n) !1 p T < 1;

where x (n) denotes the non-increasing rearrangements of fkxnkg. Since 1

P

k=1 1

kp < 1 for 1 < p < 1 and v is decreasing; we get

1 X k=1 " 1 k k X n=1 x (n) #p v(k) = 1 X k=1 1 kp " k X n=1 x (n) #p v(k) max 1; 2p 1 1 X k=1 1 kp " k X n=1 x (n) p v(n) # T max 1; 2p 1 1 X k=1 1 kp < 1: This completes the proof.

(7)

Proof. Let x 2 C1[d(v; p)] and let x (n) denotes the non-increasing

rearrange-ment of fkxnkg. Since v(k) is decreasing we have 1 X k=1 " 1 k k X n=1 x (n) #p v(k) !1 p m X k=1 " 1 k k X n=1 x (n) #p v(k) !1 p x (m) m X k=1 v(k) !1 p x (m) (v(m)) 1 pmp1

for every m 2 N: Hence we get

x (m) (v(m)) 1 pm 1p 1 X k=1 " 1 k k X n=1 x (n) #p v(k) !1 p (v(m)) p1kxk C;v;p

for every m 2 N: Thus

1 X k=1 " 1 k k X n=1 x (n) #q v(k) = 1 X k=1 " 1 k k X n=1 x (n) #q p" 1 k k X n=1 x (n) #p v(k) 1 X k=1 " 1 k k X n=1 (v(n)) 1pkxk C;v;p #q p" 1 k k X n=1 x (n) #p v(k) (v(n)) p1kxk C;v;p q p 1X k=1 " 1 k k X n=1 x (n) #p v(k) < 1:

This implies that x 2 C1[d(v; q)] :

Comment. If we put 4mx instead of x, where m 2 N and 40x

k = fxkg ; 4xk=

xk xk+1; 4mxk = 4m 1xk 4m 1xk+1= m

P

v=1

( 1)v mv xk+v for all k 2 N in the

de…nition of C1[d(v; p)], we obtain Cesàro summable generalized Lorentz di¤erence

sequence space C1[d(v; 4m; p)] of order m: It can be shown that the sequence space

C1[d(v; 4m; p)] is a Banach space with norm

kxkC;v;4m;p= m X k=1 x (k) + 1 X k=1 " 1 k k X n=1 4mx (n) #p v(k) !1 p ; where 4mx

(n) denotes the non-increasing rearrangements of fk4mxnkg, and

(8)

References

[1] Cui Y. A., Hudzik H., Some Geometric Properties Related to Fixed Point Theory in Cesàro Spaces, Collect. Math., 50 (3) (1999), 277-288.

[2] Hardy G. H., Littlewood J. E., Pólya G., Inequalities, Cambridge Univ. Press, 1967. [3] Kato M., On Lorentz Spaces lp;qfEg, Hiroshima Math. J., 6 (1976), 73-93

[4] K¬zmaz H., On Certain Sequence Spaces, Canad. Math. Bull., Vol. 24 (2), 1981. [5] Lee P. Y., Cesàro Sequence Space, Math. Chronicle, 13 (1984),29-45.

[6] Lorentz G. G., Some New Functional Spaces, Ann. Math., 51 (1950), 37-55. [7] Lorentz G. G., On the Theory of Spaces , Pasi…c J. Math., 1 (1951), 411-429. [8] Maddox I. J., Elements of Functional Analysis, Cambridge Univ. Press, 1970.

[9] Miyazaki K., (p; q) Nuclear and (p; q) Integral Operators, Hiroshima Math. J., 4(1974), 99-132.

[10] Nawrocki M., Ortynski A., The Mackey Topology and Complemented Subspaces of Lorentz Sequence Spaces d(w; p) for 0 < p < 1, Trans. Amer. Math. Soc., 287 (1985).

[11] Petrot N., Suantai S., On Uniform Kadec-Klee Properties and Rodundity in Generalized Cesàro Sequence Spaces, Internat. J. Math. Sci., 2 (2004), 91-97.

[12] Popa N., Basic Sequences and Subspaces in Lorentz Sequence Spaces Without Local Convex-ity, Trans. Amer. Math. Soc., 263 (1981), 431-456.

[13] Sanhan W., Suantai S., On k nearly Uniform Convex Properties in Generalized Cesàro Sequence Spaces, Internat. J. Math. Sci., 57 (2003), 3599-3607.

[14] Shiue J. S., On the Cesàro Sequence Spaces, Tamkang J. Math., 1 (1970), 19-25.

Current address : O. O¼gur: Giresun University, Art and Science Faculty, Department of Math-ematics, Güre, Giresun, TURKEY

E-mail address : [email protected]

Current address : B. Sa¼g¬r: Ondokuz May¬s University, Art and Science Faculty, Department of Mathematics, Kurupelit campus, Samsun, TURKEY

Referanslar

Benzer Belgeler

A group of people, on the other hand, laid down principles in t h e science of the heavenly bodies and claimed to be in possession of a vast know- ledge and wisdom in

Bu elbiseler üzerine yine aynı kumaştan ve aynı tarzda işlemeli salta veya dizlere kadar uzun sırmalı kap (uzun salta) giyilir.. İki Etek Entariler.— Üç eteklerden

54: Also at Budker Institute of Nuclear Physics, Novosibirsk, Russia 55: Also at Faculty of Physics, University of Belgrade, Belgrade, Serbia. 56: Also at Trincomalee Campus,

1) The GCP will directly transport the Gulf oil to the Mediterranean. 2) The GCP is already in operation both between Kirkuk and Ceyhan and Kirkuk- Southern Iraq. If it is extended

Đhmali davranışla kasten öldürme suçu, 5237 sayılı Türk Ceza Kanunu’nun özel hü- kümler kitabında, kişilere karşı suçlara ilişkin ikinci kısmının hayata

Ek olarak, tadım sonrası Americano ve filtre kahve arasında algılanan beğeni farkı ile kahve bilgisi arasındaki ilişki incelendiğinde, Americano ve filtre kahve içenlerde

seviyesine gerilemişti (Kimse halka arz fiyatının üstünde bir değer ile hisse senedi almak istememektedir). Yine bir özelleştirme fiyaskosu da Tüpraş ihalesinde yaşanmış,

İşletmenin stratejisiyle uygun yönetilmesi açõsõndan performans ölçütleri doğru, zamanõnda anlaşõlabilir ve güvenilir veri sağlar iken, sürekli iyileştirme