• Sonuç bulunamadı

TiO2-Al2O3 binary mixed oxide surfaces for photocatalytic NOx abatement

N/A
N/A
Protected

Academic year: 2021

Share "TiO2-Al2O3 binary mixed oxide surfaces for photocatalytic NOx abatement"

Copied!
8
0
0

Yükleniyor.... (view fulltext now)

Tam metin

(1)

ContentslistsavailableatScienceDirect

Applied

Surface

Science

j o u r n a l ho me p ag e :w w w . e l s e v i e r . c o m / l o c a t e / a p s u s c

TiO

2

–Al

2

O

3

binary

mixed

oxide

surfaces

for

photocatalytic

NO

x

abatement

Asli

Melike

Soylu

a

,

Meryem

Polat

a

,

Deniz

Altunoz

Erdogan

a

,

Zafer

Say

a

,

Cansu

Yıldırım

b

,

Özgür

Birer

b,c

,

Emrah

Ozensoy

a,∗

aDepartmentofChemistry,BilkentUniversity,06800Ankara,Turkey

bKUYTAMSurfaceScienceandTechnologyCenter,Koc¸University,34450Istanbul,Turkey cDepartmentofChemistry,Koc¸University,34450Istanbul,Turkey

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received15November2013

Receivedinrevisedform10February2014 Accepted12February2014

Availableonline22February2014 Keywords: TiO2 Al2O3 Photocatalysis NOxabatement DeNOx

a

b

s

t

r

a

c

t

TiO2–Al2O3binaryoxidesurfaceswereutilizedinordertodevelopanalternativephotocatalyticNOx

abatementapproach,whereTiO2siteswereusedforambientphotocatalyticoxidationofNOwithO2and

aluminasiteswereexploitedforNOxstorage.Chemical,crystallographicandelectronicstructureofthe

TiO2–Al2O3binaryoxidesurfaceswerecharacterized(viaBETsurfaceareameasurements,XRD,Raman

spectroscopyandDR-UV-VisSpectroscopy)asafunctionoftheTiO2loadinginthemixtureaswellasthe

calcinationtemperatureusedinthesynthesisprotocol.0.5Ti/Al-900photocatalystshowedremarkable photocatalyticNOxoxidationandstorageperformance,whichwasfoundtobemuchsuperiortothatof

aDegussaP25industrialbenchmarkphotocatalyst(i.e.160%higherNOxstorageand55%lowerNO2(g)

releasetotheatmosphere).OurresultsindicatethattheonsetofthephotocatalyticNOxabatement

activ-ityisconcomitanttotheswitchbetweenamorphoustoacrystallinephasewithanelectronicbandgap within3.05–3.10eV;wherethemostactivephotocatalystrevealedpredominantlyrutilephasetogether andanataseastheminorityphase.

©2014ElsevierB.V.Allrightsreserved.

1. Introduction

Indoorand outdoorair pollutants suchasNOx,SOx,volatile

organic compounds (VOCs) and particulate matter (PM) result insignificantly adverse effects onhumanhealth. Further nega-tiveimplicationsofair pollutioncanalsobeobservedonwater resources,agricultureandbiologicalhabitat[1–6].Amongthese airbornetoxicspecies,particularlynitrogenoxides(NOx)presenta

majorchallengeforairpurification.NOxspecies(i.e.mostlyNO(g),

NO2(g)andN2O(g))aregeneratedduringthefossilfuel

combus-tionprocessesviathehomogenousreactionofnitrogenandoxygen gasesathightemperatureswherethemajorcontributioncomes fromNO(g).NOxabatementcanbeperformedinaveryefficient

mannerusingthermalcatalytictechnologiessuchasselective cat-alyticreduction(SCR)[7–9]andNOxstorageandreduction(NSR)

(whichis alsocalled LeanNOx Traps, LNT)[10–12] atelevated

temperatures(i.e.T>300◦C).Inthesethermallyactivatedcatalytic DeNOx technologiesalthough SCRapproach requires utilization

∗ Correspondingauthor.Tel.:+903122902121;fax:+903122664068. E-mailaddress:ozensoy@fen.bilkent.edu.tr(E.Ozensoy).

URL:http://www.fen.bilkent.edu.tr/ozensoy(E.Ozensoy).

ofureaas anexternal reducing agent,NSR/LNTtechnologycan be used in the absenceof an additional reducing agent. How-ever,animportantchallengeinairpurificationistheabatement of gaseous NOx species under ambientconditions (i.e. atroom

temperatureandunderregularatmosphericconditions). Photocat-alyticsystemsofferpromisingopportunitiesinordertotacklethis importantenvironmentalchallenge,asthesesystemscanbe tail-oredtoefficientlyclean/purifyairunderambientconditionswith thehelpofultraviolet(UV)and/orvisible(VIS)light[13].Among thesesystemsTiO2-basedmaterialsarethemosteffective

photo-catalystsforair/waterpurificationapplications[14,15].Howeverit hasbeenreportedthatcompletephotocatalyticreductionoftoxic NOxspeciesintoharmlessN2occursonlywitharelativelylimited

performanceforthesesystems[13].

Inthecurrentwork,ratherthanattemptingtoperformcomplete photocatalytic reduction of NOx,an alternative NOx abatement

strategy hasbeen demonstrated, which includes photocatalytic oxidationofNOxonaTiO2/Al2O3binaryoxidephotocatalyst

sur-faceanditsstorageinthesolidstateintheformofnitratesand nitrites.Thisalternativestrategywasinspiredbyourrecent stud-ies onNSR technology which is used for thethermal catalytic aftertreatmentofautomotiveNOxemissions[12,16–21].In

cou-pleof theseformer studies,we spectroscopicallydemonstrated

http://dx.doi.org/10.1016/j.apsusc.2014.02.065 0169-4332/©2014ElsevierB.V.Allrightsreserved.

(2)

that[12,16–21]ontheTiO2/Al2O3binaryoxidesurface,oxidized

NOx species suchasNO2(g)canreadilyundergoa thermal

dis-proportionationreactionforming adsorbednitrites and nitrates allowingeffectivesolidstateNOxstorage.HoweverNO(g)hasa

limitedadsorptionenergyonmanymetaloxidesurfacescompared tothatofNO2,hinderingthestorageofNOinthesolid(adsorbed)

state.Thus,forsolidstateNOxstorage,NOshouldbefirstoxidized

toNO2 andthensubsequentlystoredontheavailableadsorption

sitesofthecatalystsurfaceintheformofnitrites/nitrates.Although thiscan bedonereadilyatelevatedtemperaturesusinga plat-inumgroupmetal(PGM)promotedmetaloxidecatalystsuchas Pt/Al2O3,itcannotbeefficientlyachievedunderambient

condi-tions(i.e.atroomtemperature)duetokineticlimitations.However thislimitationcanbeovercomebydesigningacatalytic system includinga photocatalyticNO(g)oxidation componentwhich is coupledtoa NOx storage component. Along theselines, inthe

currentwork,weshowthatTiO2/Al2O3binaryoxidesurfacescan

beexploitedtoperformphotocatalyticNOxoxidationandstorage,

whereTiO2surfacedomainsprovideNOoxidationcapabilityunder

ambientconditions,convertingNO(g)+O2(g)intonitrites/nitrates

whilethehigh-surfaceareaAl2O3componentenablesboththe

dis-persionofthephotocatalyticTiO2domainsaswellasthecreation

ofadditionalstoragesitesforoxidizedNOx.Oncesaturatedwith

NOx,suchaphotocatalyticNOxoxidationandstoragecatalystcan

readilyberegeneratedbytreatmentwithwater,whichcandissolve theadsorbednitrites/nitratesandrestoretheNOxadsorptionsites

[22].

In order to demonstrate this alternative strategy, in the current study, a set of TiO2/Al2O3 binary oxide

photocata-lysts were synthesized and characterized. A sol–gel synthesis method was used to co-precipitate titania with alumina. The influences of the surface structure on the photocatalytic NO oxidation and storage was investigated by modifying the sur-face structure via calcination. Photocatalytic performances of thisnewfamilyofTiO2/Al2O3 binaryoxidephotocatalystswere

alsocomparedwitha commerciallyavailablephotocatalyst(i.e. DegussaP25)inordertodeterminetherelative performanceof theTiO2/Al2O3 system against a widelyused industrial

bench-mark.

2. Experimental

2.1. Samplepreparation

Titanium (IV) isopropoxide (TIP, 97%, Sigma–Aldrich) and aluminum-tri-sec-butoxide(ASB,97%,Sigma–Aldrich)wereused as the main ingredients in the preparation of the TiO2/Al2O3

binaryoxides via sol–gelmethod [16,18].Three series of sam-ples were prepared by varying therelative molar composition of the TiO2 component in the TiO2/Al2O3 binary oxide. These

samples are labeledas “xTi/Al-y”, where x represents theTiO2

to Al2O3 mole ratio (i.e. 0.25, 0.5 and 1.0) and y represents

the calcination temperature (150–1000◦C) of the sample. In thesynthesis,dependingonthecorrespondingTiO2–Al2O3mole

ratio, an appropriate amount of ASB was mixed with propan-2-ol(99.5%,Sigma–Aldrich)andacetylacetone(99.3%,Fluka)for 30min. Subsequently, TIP was added in a drop wise fashion to the mixture over the course of another 30min. All of the synthesis steps were carried out at room temperature under vigorous stirring. The co-precipitation of the obtained hydrox-ides was accomplished after the gradual addition of 0.5M HNO3(aq) to the solution which led to the formation of a

gel. The resulting yellow gel was aged under ambient condi-tions for 2 days and the dried sample was ground to form a fine powder. Next, synthesized TiO2/Al2O3 binary oxides were

calcinedinairfor2hatvarioustemperaturesrangingfrom150 to1000◦C.

2.2. Structuralcharacterizationmeasurements

Determinationofthecrystalstructureofthesynthesized mate-rialswerecarriedoutwithaRigakuMiniflexX-raydiffractometer (XRD)equippedwithCuK␣radiationoperatedat30kV,15mA, and 1.54 ˚A (wavelengthof copper X-raysource). The XRD pat-ternswererecordedinthe2rangeof10–60◦withastepwidth of0.02s−1.Ramanspectraofthesampleswerecollectedin the rangeof200–1500cm−1witharesolutionof4cm−1usingaHoriba JobinYvonLabRAMHR800spectrometerequippedwithaconfocal RamanBX41microscope.TheRamanspectrometerwasequipped witha Nd:YAGlaser (=532.1nm)where thelaser powerwas 20mW. Thespecific surfacearea(SSA) valuesof theTiO2

sam-plesweredeterminedbyconventionalBrunauer–Emmett–Teller (BET)N2 adsorptionmethodusinga MicromeriticsTristar 3000

surface areaand pore sizeanalyzer. Priorto theBET measure-ments,all ofthe sampleswereoutgassed in vacuumfor 2hat 150◦C.DiffuseReflectanceUV–vis(DR-UV–vis)spectrawere uti-lizedinordertoobtainelectronicbandgapvalues.Thesespectra wererecordedwithaShimadzuUV-3600UV-Vis-NIR spectropho-tometerusingtheISR-3100integratingsphereattachmentinthe specularreflection(8◦)mode.Bariumsulfate(BaSO4)wasusedas

thereferencematerialintheDR-UV–vismeasurements.Obtained DR-UV–visspectrawerefinallycorrectedusingtheKubelka-Munk transformation.

2.3. Photocatalyticactivitymeasurements

The custom-designed photocatalytic flow reactor system (Scheme1)wasusedtomeasure thephotocatalyticNOx

oxida-tionandstorageperformancesofTiO2/Al2O3binaryoxidesunder

UVA excitation. The photocatalytic flow reactor system mainly consistedofa gasmanifoldsystem,a samplecompartmentand a chemiluminiscenceNOx analyzer(Horiba APNA-370).The gas

manifoldsystemwasconnectedtogascylinderscontainingN2(g)

(99.998%,LindeGmbH),O2(g)(99.998%,LindeGmbH)and100ppm

NO diluted in N2 (Linde GmbH). Mass flow controllers (MFCs,

MKS 1479A)wereused tocontrolthe volumetric flowrates of gasesandacapacitancepressuregauge(MKSBaratron)wasused tomeasure total pressure of theflowing gaswhich wasset to 1atm. The following flow rates were used to prepare the gas mixture,0.750SLM(standardlitersperminute)forN2(g),0.250

SLM for O2(g),and 0.010SLM for NO(g) witha total gas flow

rate of 1.010 SLM. Prior to mixing, N2(g) and O2(g) were also

bubbledthroughahumidifier.Therelativehumidityofthetotal gas mixture was 70% RH which was measured with a Hanna HI 9565 humidity analyzerat the sample position in the pho-tocatalyticflow reactor.Thisgasmixturerepresentsasynthetic polluted air sample. Before the performance tests, synthesized powdersampleswereplacedona2mm×40mm×40mm poly-methyl methacrylate (PMMA) sample holder and subsequently irradiated with UVA (350nm) light bulbs (F8W/T5/BL350, Syl-vania/Germany) under ambientconditions for 18houtside the flow reactor in order to remove the surface contaminations and toactivatethephotocatalysts. For each measurement, typ-ically a 950mg activatedphotocatalyst samplewasplaced into the flow reactor. The photocatalytic flow reactor was illumi-nated with8W UVA lamps (F8W/T5/BL350, Sylvania/Germany) whoseemissionwavelengthwas350nm.ConcentrationsofNO(g), NO2(g)andtotalNOx(g)speciesinthephotocatalyticreactorwere

quantitativelymeasuredonlinewiththechemiluminiscenceNOx

(3)

Scheme1. Descriptionofthecustom-designedphotocatalyticflowreactorsystem.

Gasphasephotocatalyticactivitymeasurementsarereportedin termsofpercentphotonicefficiencies(%)asdescribedinEqs.(1) and(2).

%= nNOx

nphoton×

100 (1)

wherenNOx correspondstoeitherthedecreaseinthetotal

num-berofmolesofallgaseousNOxspeciesorthenumberofmoles

ofNO2(g)generatedina 60min(i.e.3600s)photocatalytic

per-formancetest.Ontheotherhand,nphotoncorrespondstothetotal

numberofincidentUVAphotonsimpingingonthecatalystsurface in3600s,whichcanbecalculatedthroughEq.(2)as:

nphoton=ISt

Nhc (2)

whereIrepresentsthephotonpowerdensity oftheUVAlamp, experimentally measuredat the sample positionin the photo-catalytic reactor (typically, 7.5Wm−2),  is the representative emissionwavelengthoftheUVAlamp(i.e.350nm),Sisthe sur-faceareaofthephotocatalystsampleholderinthereactorthatis exposedtotheUVAirradiation(i.e.40mm×40mm=1600mm2);

tisthedurationoftheperformancetest(i.e.3600s),Nisthe Avo-gadro’snumber,hisPlanck’sconstantandcisthespeedoflight.

3. Resultsanddiscussion

3.1. Specificsurfaceareameasurements

Thermal evolution and the structural variations of the TiO2/Al2O3binaryoxidesampleswithvaryingmolarcompositions

wereinvestigatedaftercalcinationstepsatdifferenttemperatures (Fig.1).Fig.1revealsthatTiO2/Al2O3 samplespossesseda

rela-tivelyhighsurfaceareaafterpreparationandcalcinationatlow temperatures(e.g.≥420m2/g).ThesehighSSAvalueswere

pre-servedtoalargeextentupto600◦C.Thisobservationisinverygood accordancewiththecurrentXRDandRamanresults(Figs.2and3) suggestingapredominantlyamorphousstructureforallTiO2/Al2O3

binaryoxidesamplesbelow600◦C.Athighertemperatures,a dras-ticand a monotonic decreasein theSSA values wereobserved in line withthe enhanced crystallinity and structural ordering ofthesamplesatelevatedtemperatureswhicharealsoevident in the current XRD and Ramanmeasurements (Figs. 2 and 3). Itisworthmentioningthatuponcalcinationat900◦C, SSA val-uesfor0.25Ti/Al-900,0.5Ti/Al-900,1.0Ti/Al-900samplesdecreased to108,64and25m2/g,respectively.Theseparticularvaluesare

ratherclosetotheSSAofthecommercialDegussaP25catalyst(i.e. 55m2/g)whichisusedasthebenchmarkphotocatalystinthe

cur-rentstudy.Athighercalcinationtemperaturessuchas1000◦C,SSA valuesforalloftheTiO2/Al2O3 binaryoxidesamplesdrastically

decreasetoc.a.9–17m2/gwhichisinperfectagreementwiththe

increasedcrystallinityandtheformationofthelowsurfacearea phasessuchasrutileand␣-Al2O3(corundum)observedintheXRD

andRamanexperiments(Figs.2and3). 3.2. XRDandRamanspectroscopyexperiments

Fig.2presentsXRDprofilesobtainedfortheTiO2/Al2O3samples

withdifferentmolarcompositionsthatwerecalcinedatvarious temperatureswithin150–1000◦C.Itisapparentthatforall sam-ples,calcinationattemperatureslessthanorequalto600◦Cyields amorphous structures. Calcination at 800◦C resultsin the first discernibleindicationsofcrystallinity,where␥-Al2O3(JCPDS

29-0063)phasestartstobevisiblefor0.25Ti/Aland0.5Ti/Alsamples. Forthe1.0Ti/Alsample,inadditiontothe␥-Al2O3phase,

forma-tionofanatase(JCPDS21-1272)andrutile(JCPDS04-0551)phases ofTiO2alsobecomesvisible.ItisclearthatwithincreasingTiO2to

Al2O3moleratiointhephotocatalystcomposition,crystallinityof

300 400 500 600 700 800 900 1000 1100 0 100 200 300 400 500 600 a er A ec afr u S cifi c e p S (m 2 /g ) Temperature (oC) 0.25 Ti/Al 0.5 Ti/Al 1.0 Ti/Al 470487 285 256 108 17 424 393 131 64 9 390 86 25 9

Fig.1. SpecificsurfaceareavaluesfortheTiO2/Al2O3binaryoxidesampleswith

differentmolarcompositionsthatwerecalcinedatvarioustemperatureswithin 150–1000◦Cinair.

(4)

Fig.2. XRDpatternsfortheTiO2/Al2O3binaryoxidesampleswithdifferentmolarcompositionsthatwerecalcinedatvarioustemperatureswithin150–1000◦Cinair.

theobservedphasesincreases.Thisisinlinewiththefactthatpure (bulk)TiO2hasmuchlowerphasetransitiontemperaturesbetween

amorphous,anataseandrutilephasesthantheTiO2 domainson

theTiO2/Al2O3 surface[16,18].Thus atlowTiO2 toAl2O3 mole

ratios,thereexistsastronginteractionbetweentheTiO2

minor-itydomainsandtheAl2O3majoritydomains,whichisdecreasing

thesurfacemobilityoftheTiO2domainsandhinderingthe

nuclea-tionandgrowthofanataseandrutilephasesatlowtemperatures. HoweverathigherTiO2toAl2O3moleratios,interactionbetween

theTiO2andAl2O3domainsweakenstoacertainextentasTiO2

convergestoa morebulk-like configuration,pushingthephase transitiontemperaturestolower(bulk-like)values.

(5)

Uponcalcinationat900◦C,although␥-Al2O3seemstobethe

onlydiscerniblecrystallinephaseonthe0.25Ti/Alsurface(where TiO2isstillinamorphousstate),anataseandrutilephasesbecome

clearlyvisibleonthe0.5 Ti/Aland1.0 Ti/Alsurfaceswherethe crystallinityofthelatterissignificantlygreater.Thisisinperfect agreementwiththeSSAvalues presentedinFig.1,suggestinga muchlowerSSAfor the1.0 Ti/Al-900samplecompared to0.25 Ti/Al-900and0.5Ti/Al-900samples.Itisalsoworthmentioning thatalthough␣-Al2O3(JCPDS10-0173)phaseisnotsignificantly

visibleat900◦CforlowerTiO2toAl2O3moleratios;thisphaseis

noticeablydiscernibleforthe1.0Ti/Al-900sample.Furthermore, ␣-Al2O3(corundum)phasestartstoappearduringtheanataseto

rutilephasetransition.Asdiscussedinoneofourformerreports

[16],this canbeexplained bytheformationof asolid solution betweenanataseand alumina.In this solid solution,when the anatasephase isconvertedintorutileatelevatedtemperatures, aphasesegregationoccurswhichtriggersaphasetransitioninthe aluminacomponentfrom␥to␣-phase.Finally,aftercalcinationat 1000◦C,allsamplesseemtobehighlyordered,wherecorundum andrutilearetheonlyvisiblecrystallinephases,inverygood har-monywiththedrasticSSAdecreasesobservedforthesesamplesin

Fig.1.

Raman spectra of the synthesized TiO2/Al2O3 binary oxide

sampleswithdifferentmolarcompositionsthatwerecalcinedat varioustemperatureswithin150–1000◦CaregiveninFig.3.These Ramanspectralfeaturescanbereadilyexplainedinthelightofthe XRDresultsgiveninFig.2,aswellastheformerRaman spectro-scopicstudiesintheliterature[16,18,23,24].Itisknownthatthe RamanspectrumofanatasephaseshowssixRamanfeatures(1A1g,

2B1g,and3Eg)at144(Eg),197(Eg),399(B1g),516(A1g+B1g),639

(Eg)and796cm−1 (Eg)[23].Ontheotherhand,therutilephase

canbecharacterizedbyaRamanspectrumwithfourmajorRaman activefeatures(A1g+B1g+B2g+Eg)at143(B1g),447(Eg),612(A1g),

826cm−1(B2g)andalsoatwo-phononscatteringbandat236cm−1

[24].InverygoodagreementwiththeXRDresultsgiveninFig.2,up to600◦C,allsamplesrevealanamorphousstructurewithnosharp Ramanfeatures.Itisworthmentioningthatsample1.0Ti/Al-600 revealsverybroadandconvolutedRamansignalscorresponding tosmallandpoorlycrystallineanataseandrutiledomainswhich seemtobeelusivetodetectinXRD(Fig.2c).Atcalcination temper-atureshigherthan600◦C,anatasephaseappearsasthedominant phasetogetherwithaminorcontributionfromrutile.With increas-ingtemperature,anatasetorutileratiointhesamplesdecreases whereat900◦Crutilebecomesthepredominantphasedetectedin theRamanspectra.Forthe0.5Ti/Al-900sample,anatasephaseis stillvisibleintheRamanspectra(Fig.3b),althoughrutileis defi-nitelythemajorityphase.InperfectharmonywiththeXRDresults (Fig.2),RamanspectrainFig.3alsosuggestthatincreasingTiO2

toAl2O3moleratioenhancesthecrystallinityofthephasesonthe

TiO2/Al2O3binaryoxidesurfaceswhichisevidentbythesharper

andstrongerRamanscatteringfeatures. 3.3. Photocatalyticperformanceexperiments

Fig.4shows atypicalconcentrationversustime plotthat is obtainedduringaphotocatalyticperformancetest.InFig.4,the totalNOxconcentration(i.e.sumoftheconcentrationsofallofthe

NOxspeciesexistinginthereactor,i.e.bluecurve)aswellas

sep-arateNO(g)(blackcurve)andNO2(g)(redcurve)concentrations

inthephotocatalyticreactormeasuredbythechemiluminiscence NOxanalyzerarepresented.Duringtheinitialc.a.20minofthe

analysis,asyntheticpollutedairgasmixturecomprisedofN2(g),

O2(g),H2O(g) aswell as 1ppm NO(g) is fed to the

photocata-lystsurfaceunderdarkconditionswheretheUVAlampisoffand anybackgroundexposuretosunlightisprevented. Underthese conditions(i.e.inthefirst15min), aminortransientfallinthe

0 20 40 60 80 0.0 0.2 0.4 0.6 0.8 1.0

0.5 Ti/Al-900

Concentration (ppm) Time(min) Light-on Light-off Thermal Adsorpon NOx(g) NO(g) NO2 (g)

Fig.4.Concentrationversustimeplotforthephotocatalyticperformancetestofthe 0.5Ti/Al-900sample.Blue,blackandredcurvescorrespondtotheconcentrationsof totalNOx(g),NO(g)andNO2(g),respectively(seetextfordetails).(Forinterpretation

ofthereferencestocolorinthisfigurelegend,thereaderisreferredtotheweb versionofthisarticle.)

totalNOx(g)andNO(g)concentrationswasobserved.Thiscanbe

attributedtothedilutionofthegasinthereactorpipelineandthe thermaladsorptionofNOxspeciesonthegaslines,reactorwallsas

wellasadsorptiononthephotocatalystsurface.Sincethereactor iskeptincompletedarknessundertheseconditions,no photocat-alyticactivityisobservedduringthisinitialstageevidentbythe presenceofaminoramountofNO2(g)productionduetothermal

catalytic disproportionation processesoccurring onthecatalyst surface.Followingthisinitialtransientperiod,reactorwallsandthe photocatalystsurfacearesaturatedwithNOx,afterwhichNOx(g)

andNO(g)tracesquicklyreturntotheoriginalinletconcentration valueofc.a.1ppm,signifyingtheendofthermalcatalyticactivity. Afterthispreliminarytransientperiod,UVAexcitationsource isturnedonandthephotocatalyticreactionisstarted.UponUVA illumination,adrasticandapermanentfallintheNO(g)andtotal NOx(g)concentrationsconcomitanttoaquickandsignificantjump

in theNO2(g)level, were observed.This behavior suggeststhe

conversionofNO(g)intoNO2(g)viaphotocatalyticoxidation.

Fur-thermore,producedNO2(g)canadsorbonthephotocatalystsurface

intheformofchemisorbedNO2,nitritesandnitrates[16,18]and

storedin thesolidstate,resultingin afurtherfallintheNO(g) and total NOx signals. It is worth mentioning that, fall in the

NO(g)concentrationmightalsohavesomecontributionfromthe directphotocatalyticdecompositionandphoto-reductionofNO(g) formingN2(g)and/orN2O(g)[25].However,sincethedirect

photo-catalyticreductionisknowntobearelativelyinefficientpathway, thisreactionchannelmaybeexpectedtobeaminor photochem-icalroute.Consequently,thetotalNOxconcentration(blue)curve

(whichismostlycomprisedofthesumofNO(g)andNO2(g)signals)

inFig.4remains mostlybelow1ppmduringtheUVA-activated regime,illustratingthecontinuousphotocatalyticactivityandNOx

storageinthesolidstate.

Photochemical NO oxidation and storage performance tests wereperformedforallofthesynthesizedsamplesandthe sum-maryoftheseperformancetestswerepresentedintermsofpercent photonicefficienciesinFig.5,alongwiththecorrespondingdatafor theDegussaP25industrialbenchmark.Inthehistogramgivenin

Fig.5,blueandredbarsrepresentthepercentphotonic efficien-ciesfortotalNOx(g)decreaseandNO2(g)production,respectively.

Thesevalueswereobtainedbyintegratingthecorrespondingareas undertheconcentrationversustimecurvesforthedatasimilarto theonesgiveninFig.4.

(6)

It is worth mentioning that for an ideal catalyst with an utmostphotocatalyticDeNOxperformance,bluebars(i.e.NOx(g)

storage/conversion) should be maximized; while red bars are simultaneouslyminimized(i.e.minimumslipoftoxicNO2(g)into

theatmosphere).WhenthebehavioroftheDegussaP25 indus-trialbenchmarkphotocatalystgiveninFig.5isinvestigated,itis immediatelyseenthatthisindustrialphotocatalysthasaveryhigh NO(g)photo-oxidation capabilitygeneratinga largequantityof NO2(g),whilethesamecatalyst hasa verylimited NOxstorage

capability(bluebar).ConsideringthefactthatNO2(g)isamuch

moretoxicpollutantthanNO(g),althoughDegussaP25industrial benchmarksystemisveryactiveinphoto-oxidation,thismaterial doesnotqualifytobeaveryefficientphotocatalyticDeNOx

sys-temforNOxabatement.Anotherbenchmarksampleusedinthe

controlexperimentswas␥-Al2O3.Fig.5unambiguouslyindicates

that,␥-Al2O3hasneithersignificantphotocatalyticNOxstoragenor

photocatalyticNO2(g)productioncapabilities.

Ontheotherhand,whenthephotocatalyticperformancedata fortheTiO2/Al2O3 binaryoxidesamplesare examined,onecan

immediatelynotetheremarkableimprovementinthe photocat-alyticDeNOxperformancecomparedtotheDegussaP25industrial

benchmark.InFig.5,performanceresultsfortheTiO2/Al2O3binary

oxidesamplesareassembledinthreegroupsbasedonTiO2toAl2O3

moleratio(i.e.0.25,0.5and1.0)inthephotocatalyststructure.It isvisiblethatforthe0.25Ti/Alsamplescalcinedatvarious tem-peratures,catalystscalcinedbelow900◦CrevealverylowDeNOx

performance,wheretheperformancereachesanoptimumvalue between900and950◦Candstartstofallat1000◦C.

Asimilarperformancetrendisobservedfor0.5Ti/Alcatalysts calcinedatvarious temperatures(Fig.5).For thisfamily of cat-alysts,althoughnosignificantactivityisobservedatcalcination temperatureslessthan900◦C,photocatalyticDeNOxperformance

presentsaveryradicalenhancementat900◦C, revealingvalues thataremuchbetterthananyofthephotocatalystsinthe0.25Ti/Al family.Itisworthmentioningthatafurtherincreaseinthe calci-nationtemperatureto1000◦CresultsinthephotocatalyticDeNOx

performanceofthe0.5Ti/Alsystem.

Fig.5indicatesthatforthe1.0Ti/Alphotocatalystfamily,no significantphotocatalyticactivityisdetectedupto800◦C,whileat thiscalcinationtemperaturearemarkableincrease inthe activ-ity is observed, though this catalyst is not as effective as the 05 Ti/Al-900 catalyst in total NOx abatement, due to the

significantNO2(g)generationoftheformer.ItcanbeseeninFig.5

that for calcinationtemperaturesabove 800◦C, NOx abatement

startstofall,evidentbytheincreasedNO2(g)slipintothe

atmo-sphereaswellasdecreasingNOxstorageinthesolidstate.Thus,

ageneralanalysisoftheperformanceresultspresentedinFig.5

revealsthat,0.5Ti/Al-900binaryoxidecatalystshowsthehighest NOxabatementperformanceamongalloftheanalyzed

photocata-lysts,whereitperforms160%higherNOxstorageand55%lower

NO2(g)releasetotheatmospherecompared totheDegussaP25

industrialbenchmark.

PhotocatalyticperformanceoftheTiO2/Al2O3binaryoxide

sam-plescanbereadilyinterpretedinthelightofcurrentstructural characterization experiments (Figs. 1–3) which reveal valuable insightregardingthespecificsurfaceareasaswellasthe crystal-lographicphasesthatarepresentontheTi/Alsamples.Firstly,itis apparentinFig.5thatforthebestperformingphotocatalystfamily (i.e.0.5Ti/Al),onsetofactivityisobservedinaverydrasticmanner asthecalcinationtemperatureisincreasedfrom800◦Cto900◦C. BET,XRDandRamanmeasurementsgiveninFigs.1–3suggests thatthis thermalwindowdirectlyoverlapswiththe crystalliza-tionoftheamorphousTiO2toformamixtureofanataseandrutile

phaseswherethelatteristhedominantphase.Inotherwords,itis apparentthatinordertoachievethebestphotocatalyticNOx

abate-mentperformance,auniquecrystallographicmixtureofanatase andrutilephaseshastobeobtained.

Secondly,Fig.5alsosuggeststhatforTi/Alfamilieswithdifferent TiO2loadings,ultimateperformanceisobservedforthe

interme-diateloadingandtheperformancewasseentodecreaseforvery loworveryhighTiO2loadings.Thiscanbeexplainedbythefact

thatatlowTiO2loadings,itislikelythatTiO2loadingisnothigh

enoughtobedispersedonalloftheAl2O3 surface.Thusnot all

oftheNOxadsorption/storage(i.e.Al2O3)sitescanbeutilizeddue

tolimitedphoto-oxidationcapabilityoftheinadequatenumberof TiO2oxidationsitesonthesurface.Ontheotherhand,atveryhigh

TiO2loadings,TiO2coversmostoftheAl2O3surfaceandupon

cal-cinationabove800◦C,SSAofthecatalystsamplefallsdrastically togetherwiththeformationofcrystallineanataseandrutile mix-ture;limitingtheavailablenumberofNOxstoragesitesthatare

availableafterphoto-oxidation.

Thirdly, Fig.5 indicates that onset of photocatalytic activity is observed in a rather sharp manner at 950, 900 and 800◦C for the0.25Ti/Al, 0.5Ti/Al and 1.0Ti/Al samples,respectively. In

Fig.5.PhotocatalyticDeNOxperformanceresultsfortheTiO2/Al2O3binaryoxidesampleswithdifferentmolarcompositionsthatwerecalcinedatvarioustemperatures

(7)

Fig.6. ElectronicbandgapvaluesderivedfromDR-UV–visspectroscopicresultsfortheTiO2/Al2O3binaryoxidesampleswithdifferentmolarcompositionsthatwere

calcinedatvarioustemperatureswithin150–1000◦Cinair.

otherwords,astherelativeTiO2loadingintheTiO2/Al2O3binary

oxidesamplesincreases,onsettemperatureforthephotocatalytic activityshiftstolowertemperatures.Thiscanalsobeexplained bytheonsettemperatureforthecrystallizationofTi/Alsamples (and hence the formation of photo-active TiO2 sites) observed

inXRDandRamanmeasurements(Figs.2and3)whichsuggest thatincreasingTiO2 loadingincreasesthetemperaturerequired

to switch form an amorphous TiO2 structure to a crystalline

structure.

3.4. DR-UV–vismeasurementsandelectronicbandgap

Inordertoinvestigatetherelationshipbetweentheelectronic structure and the photocatalytic NOx abatement performance,

electronicband gap values were calculated from the currently performed(notshown)DR-UV–visspectroscopicmeasurements. ThesebandgapvaluesarepresentedinFig.6.Inverygood agree-mentwiththediscussiongivenabove,electronicbandgapvalues fortherelativelyinactiveamorphousTi/Alsampleswhichare cal-cinedatlowertemperatures,revealacharacteristicallyhighvalue within3.4–3.6eV.Ontheotherhand,withtheonsetofthe pho-tocatalyticactivity,a very sharpfallin theelectronicbandgap valueswereobserved,where thebandgapdecreasestoa typi-calvalueof3.05–3.10eV,in linewiththeformationof ordered anataseandrutilephases.Typicalbandgapvaluesforbulkanatase andrutilephasesarec.a.3.2and3.0eV,respectively[26].Thus,for theactivephotocatalystsamples,thebandgapvalueisinbetween thatofanataseandrutile,beingclosertothelatter,inaccordance withthefactthatin themostactivephotocatalyst,rutileexists asthepredominantphasetogetherwithanataseastheminority phase.

Itisalsoworthnotingthatalthoughonsetofthephotocatalytic activityasafunctionofcalcinationtemperaturecanbefollowed withtheelectronicbandgapvalues,electronicbandgapcannot beusedasasoleindicatorfortheestimationofthephotocatalytic activitytrends.Thisisduetothefactthatoncethe photocatalyt-icallyactivestructureisobtainedleadingtoadrasticdecreasein theelectronicbandgap,bandgapvaluesceasetochangeathigher calcinationtemperaturesalthoughphotocatalyticactivitystartsto decline.

4. Conclusions

TiO2–Al2O3 binary oxide surfaces were utilized in order to

develop analternative photocatalyticNOx abatement approach,

where TiO2 sites were used for ambient photocatalytic

oxida-tion of NO with O2 and alumina sites wereexploited for NOx

storage.Chemical,crystallographicandelectronicstructureofthe TiO2–Al2O3 binaryoxidesurfaceswerecharacterizedasa

func-tionoftheTiO2loadinginthemixtureaswellasthecalcination

temperatureusedinthesynthesisprotocol.0.5Ti/Al-900 photocat-alystshowedremarkablephotocatalyticNOxoxidationandstorage

performancewhichwasfoundtobemuchsuperiortothatofa DegussaP25industrialbenchmarkphotocatalyst(i.e.160%higher NOx storageand 55%lower NO2(g)release totheatmosphere).

OurresultsindicatethattheonsetofthephotocatalyticforNOx

abatementactivityisconcomitanttotheswitchbetween amor-phoustoacrystallinephase withanelectronicbandgapwithin 3.05–3.10eVwherethemostactivephotocatalystrevealed pre-dominantly rutile phase together withanatase as theminority phase.

Acknowledgments

AuthorsacknowledgeZaferSayforperformingBET measure-ments. E.O. also acknowledges financial support from Turkish AcademyofSciencesthroughthe“TUBA-GEBIPOutstandingYoung Scientist Prize” and from Fevzi Akkaya Science Fund (FABED) throughEserTümenScientificAchievementAwardaswellasthe Scientific and Technical Research Council of Turkey (TUBITAK) (ProjectCode:109M713).

References

[1]O.Carp,C.L.Huisman,A.Reller,Photoinducedreactivityoftitaniumdioxide, Prog.SolidStateChem.32(2004)33–177.

[2]A.K.Gupta,K.Karar,S.Ayoob,K.John,Spatio-temporalcharacteristicsof gaseousandparticulatepollutantsinanurbanregionofKolkata,India,Atmos. Res.87(2008)103–115.

[3]S.Ishii,J.N.B.Bell,F.M.Marshall,Phytotoxicriskassessmentofambientair pollutiononagriculturalcropsinSelangorState,Malaysia,Environ.Pollut.150 (2007)267–279.

(8)

[4]R.Chen,B.Zhou,H.Kan,B.Zhao,Associationsofparticulateairpollution anddailymortalityin16Chinesecities:animprovedeffectestimateafter accountingfortheindoorexposuretoparticlesofoutdoororigin,Environ. Pollut.182(2013)278–282.

[5]AirQualityGuidelinesforEurope,2nded.,WorldHealthOrganizationRegional OfficeforEurope(WHORegionalPublications,EuropeanSeries,No.91), Copen-hagen,2000.

[6]Airqualityandhealth,WorldHealthOrganization,FactSheetNo:313,Updated September2011.

[7]R.M.Heck,Catalyticabatementofnitrogenoxides—stationaryapplications, Catal.Today53(1999)519–523.

[8]Y.Traa,B.Burger,J.Weitkamp,Zeolite-basedmaterialsfortheselective cat-alyticreductionofNOxwithhydrocarbons,MicroporousMesoporousMater.

30(1998)3–41.

[9]G.Busca,L.Lietti,G.Ramis,F.Berti,Chemicalandmechanisticaspectsofthe selectivecatalyticreductionofNOxbyammoniaoveroxidecatalysts:areview,

Appl.Catal.B:Environ.18(1998)1–36.

[10]W.S.Epling,L.E.Campbell,A.Yezerets,N.W.Currier,J.E.ParksII,Overviewofthe fundamentalreactionsanddegradationmechanismsofNOxstorage/reduction,

Catal.Rev.Sci.Eng.46(2004)163–245.

[11]S.Roy,A.Baiker,NOxstorage-reductioncatalysis:frommechanismand

mate-rialspropertiesto storage-reductionperformance,Chem.Rev. 109(2009) 4054–4091.

[12]E. Ozensoy, J. Szanyi, C.H.F. Peden, Model NOx storagesystems: storage

capacityandthermalagingofBaO/␪-Al2O3/NiAl(100),J.Catal.243(2006)

149–157.

[13]J.Lasek,Y.H.Yu,J.C.S.Wu,RemovalofNOxbyphotocatalyticprocesses,J.

Pho-tochem.Photobiol.C:Photochem.Rev.14(2013)29–52.

[14]V.Loddo,G.Marci,C.Martin,L.Palmisano,V.Rives,A.Sclafani,Preparation and characterisation of TiO2 (anatase) supported on TiO2 (rutile)

cata-lystsemployedfor4-nitrophenolphotodegradationinaqueousmediumand comparisonwithTiO2(anatase)supportedonAl2O3,Appl.Catal.B:Environ.20

(1999)29–45.

[15]A.Mitsionis,T.Vaimakis,C.Trapalis,N.Todorova,D.Bahnemann,R.Dillert, Hydroxyapatite/titaniumdioxidenanocompositeforcontrolledphotocatalytic NOxoxidation,Appl.Catal.B:Environ.106(2011)398–404.

[16]S.M.Andonova,G.S.Senturk,E.Kayhan,E.Ozensoy,NatureoftheTi–Ba inter-actionsontheBaO/TiO2/Al2O3NOxstoragesystem,J.Phys.Chem.C113(2009)

11014–11026.

[17]E.Kayhan,S.M.Andonova,G.S.Senturk,C.C.Chusuei,E.Ozensoy,Fepromoted NOxstoragematerials:structuralpropertiesandNOxuptake,J.Phys.Chem.C

114(2010)357–369.

[18]S.M.Andonova,G.S.Senturk,E.Ozensoy,Fine-tuningthedispersionandthe mobilityofBaOdomainsonNOxstoragematerialsviaTiO2anchoringsites,J.

Phys.Chem.C114(2010)17003–17016.

[19]E.Emmez,E.I.Vovk,V.I.Bukhtiyarov, E.Ozensoy,Directevidenceforthe instabilityanddeactivationofmixed-oxidesystems:influenceofsurface seg-regationandsubsurfacediffusion,J.Phys.Chem.C115(2011)22438–22443. [20]E.I.Vovk,E.Emmez,M.Erbudak,V.I.Bukhtiyarov,E.Ozensoy,Roleofthe

exposedPtactivesitesandBaO2formationinNOx storagereduction

sys-tems:amodelcatalyststudyonBaOx/Pt(111),J.Phys.Chem.C115(2011)

24256–24266.

[21]G.S.Senturk,E.I.Vovk,V.I.Zaikovskii,Z.Say,A.M.Soylu,V.I.Bukhtiyarov,E. Ozensoy,SOxuptakeandreleasepropertiesofTiO2/Al2O3andBaO/TiO2/Al2O3

mixedoxide,systemsasNOxstoragematerials,Catal.Today184(2012)54–71.

[22]Soylu,Polat,Ozensoymanuscript,inpreparation.

[23]T.Ohsaka,F.Izumi,Y.Fujiki,RamanspectrumofanataseTiO2,J.Raman

Spec-trosc.7(1978)321–324.

[24]H.L.Ma,J.Y.Yang,Y.Dai,Y.B.Zhang,B.Lu,G.H.Ma,Ramanstudyofphase transformationofTiO2rutilesinglecrystalirradiatedbyinfraredfemtosecond

laser,Appl.Surf.Sci.253(2007)7497–7500.

[25]O.Carp,C.L.Huisman,A.Reller,Photoinducedreactivityoftitaniumdioxide, Prog.SolidStateChem.32(2004)33–177.

[26]D.A.H.Hanaor,C.C.Sorrell,Reviewoftheanatasetorutilephasetransformation, J.Mater.Sci.46(2011)855–874.

Referanslar

Benzer Belgeler

Night-fighting and all-weather capability: Many warplanes are tolerably effective in bad weather and at night against quite a variety of air and ground targets. Yet, not

Salisilaldehit ve 2-aminopiridinin reaksiyonu sonucu oluşan prmp (imin) bileşiği reaksiyon başlangıcı background tanımlama yöntemi kullanılarak FT-IR sıvı hücresinde

Bu çalışmada Lamiaceae familyasından bazı Salvia (Salvia macrochlamys BOISS. ET KOTSCHY, Salvia huberi HEDGE. ve Salvia kronenburgeii RECH.FIL) türlerinin ekstraktlarındaki

A replenishment order of Q units was placed when the inventory level drops to r as in Embedded Cycle 1, however the items reach their effective shelf lives during the lead time

Cikan sonuplar uyannca, genel olarak gu s6ylenebilir: Eger genlik bilgisi bi- linen kesir dgerleri arasindaki fark l'e yakm ise, ki tam 1 oldugunda

In the second part of the study, D3 and NIS expression levels were studied in the MP in the 49 term pregnant women (NIS gene expression was below our detection limit in two cases),

Timetraces of signal from cavity floor transducer (thin line) and of NN emulator response (thick line) of Mach 0.35 flow: (a) without forcing (top); (b) with OpFF sinusoidal forcing

2Modern literary theory disti11guishes betwc.-en an author's intended meaning and whatever signijica.nc1:s ,l reader finds in the text. Not all patterns and relationships