• Sonuç bulunamadı

Growth of vertically aligned carbon nanotubes over self-ordered nano-porous alumina films and their surface properties

N/A
N/A
Protected

Academic year: 2021

Share "Growth of vertically aligned carbon nanotubes over self-ordered nano-porous alumina films and their surface properties"

Copied!
6
0
0

Yükleniyor.... (view fulltext now)

Tam metin

(1)

ContentslistsavailableatSciVerseScienceDirect

Applied

Surface

Science

j o ur na l ho me p age :w w w . e l s e v i e r . c o m / l o c a t e / a p s u s c

Growth

of

vertically

aligned

carbon

nanotubes

over

self-ordered

nano-porous

alumina

films

and

their

surface

properties

Kuldeep

Rana

a

,

Gokce

Kucukayan-Dogu

b

,

Erman

Bengu

a,∗

aDepartmentofChemistry,BilkentUniversity,06800Ankara,Turkey

bInstituteofEngineeringandScience,MaterialsScienceandNanotechnologyGraduateProgram,BilkentUniversity,06800Ankara,Turkey

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received27January2012

Receivedinrevisedform31March2012 Accepted2April2012

Available online 6 April 2012

Keywords: Anodization Porousaluminafilm Chemicalvapordeposition Carbonnanotube Contactangle

a

b

s

t

r

a

c

t

Nanoporousanodicaluminumoxide(AAO)withself-organizedarraysofuniformnanoporeshavebeen usedforvariousapplicationsinthefieldsofsensing,storage,separationandtemplate-basedfabricationof metalnanowires,carbonnanotubes,oxidesandpolymers.Theworkpresentedhereinvolvesthe produc-tionanduseofAAOtemplatesforgrowthofalignedmultiwalledcarbonnanotubearrays.AAOtemplates wereformedbyelectrochemicaloxidationofaluminumindifferentelectrolytesolutionscontaining sul-furic,oxalicandphosphoricacid.SEMwasusedfortheanalysisofthesurfacemorphologyoftheAAO films.Theporousstructureswithporesizeintherangeof25–120nmwereobserved.Poresizeswere correlatedwiththetypeofacidicsolutionsusedastheelectrolyte.Finally,AAOsurfaceshavebeenused assubstratesforthegrowthofverticallyalignedcarbonnanotubesthroughchemicalvapordeposition technique,whichshowedsuper-hydrophobicbehaviorasconfirmedbycontactanglemeasurements.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Variousnanostructurebasedmaterialsarealreadyfinding appli-cationsintheindustry,suchaselectronicdevices[1],biosensors [2],photonics[3],materialsforenergystorage[4]andas separa-tionmembranesforbio-materials[5].Anodizedaluminumoxide (AAO)templatebasedsynthesishasbeenemployed[6]asoneofthe well-knownproductiontechniquesenablingcontrolof morphol-ogy,patterningandsizeofnanomaterials.Throughitsporesize, densityanddistribution,AAOtemplateshavesignificantinfluence onthefinalpropertiesofthenanostructuredmaterialsandthusthe variousstructuralpropertiesofnanomaterialscanbeengineeredby these“knobs”[4].

Discoveryofself-orderedAAOmembraneswasfirstreported byMasudaandFukuda[7–9],which,havegrownby electrochemi-caloxidationofaluminum(Al)andusedinnumerousapplications in thefollowingyears [8].Thestructure ofporousaluminacan bedescribedasaclose-packedarrayofcolumnarcells,each con-taining a central pore of which the size and interval can be controlledbychangingthesynthesisconditions[10].AAOwitha hexagonalarrangementstableathightemperaturehasbecomea populartemplatesystemforthesynthesis ofvariousfunctional nanostructures[5,11,12].Furthermore, AAOfilmsfind potential applicationsindiversefieldsashighdensitymagneticstorage[13],

∗ Correspondingauthor.Tel.:+903122902153;fax:+903122664068. E-mailaddress:bengu@fen.bilkent.edu.tr(E.Bengu).

DNAtranslocation[14]andintribologyascoatingswithcontrolled lubricantreleasereservoirs[15].Recently,anodizationofAlfilms depositedonmetalorsemiconductorsubstratesarealsostudiedto fabricatenanostructuresonsubstratesusingtheporousAAOfilm asamask[16].

Thesynthesisofself-organizedorderedstructuresbyanodizing ofAlhasbeenwidelyreportedfromoxalic[7,10,17],phosphoric [5,18]andsulfuricacidsolutions[19,20].Athickandporouslayer ofaluminumoxide(upto200␮m)canbeformedbyanodization inadiluteacidicsolution.Bytheapplicationofapotential differ-encebetweentheelectrodes,hydrogenionsarereducedtoproduce hydrogengasatcathodesurfaceandAlisoxidizedintoAl3+.A

por-tionofthecationsisdissolvedintheelectrolyteandtherestforms anoxidelayeronthemetalsurface.TheporestructureofAAO(size, densityanddistribution)canbecontrolledbychangingthevoltage, currentdensityandacidconcentrationinthebathduringprocess [21].

Some ofthe studieson AAO filmsproduced by themethod outlinedabovearetargetingapplicationsrelatedtotheusageof AAO ordering as template for the growth of carbon nanotube (CNT)arrays[22],nanowiresandpatternedstructures[23].Besides, inducingapattern,AAOtemplateswithCNTsmightbeusedalsoas hybridstructures.SimilarAAO/CNThybridstructureshavebeen showed tohavepotential inthe following applicationssuchas membrane[24],catalystsupport[25],drugdelivery[26–28]and fieldemitters[29].

The mainaimofthepresent workis tocontrol ofpore size anddistributionoverAAOlayersbychangingtheelectrolytebath 0169-4332/$–seefrontmatter © 2012 Elsevier B.V. All rights reserved.

(2)

poresize controlof AAOfilmswhich couldenabletheiruseas suitabletemplatesforcompositeAAO/CNTstructures.

2. Experimentalprocedure

Alfoilsof300␮mthicknesses(99.9%,Merck)werecutin rectan-gles(70mm×15mm)andthenannealedunderinertatmosphere at 450◦C for 5h. The annealed Alfoils werewashed with ace-toneanddoubledistilledwaterinordertoremovedirtandthen driedusingdryairblower.Thebacksurfaceandtheedgesofthe sampleswerecoveredbytheinsulatingtape.Theanodizationof thesesampleswerecarriedoutbyatwo-stepanodization proce-dureunderconstantcellvoltagesof25V,40Vand100Vforthree differentelectrolytesolutionbaths(sulfuric,oxalicand phospho-ricacid,respectively)atthetemperatureof10◦C.Theelectrolyte bathswerekeptovermagneticstirrerforcontinuousstirringof solutiontomaintaintheuniformconcentrationinthebathduring theanodizationstep.After60minoffirstanodization,initial alu-minumoxideformedonAlfilmwasremovedbychemicaletching inamixtureofphosphoric(6wt%)andchromicacid(1.8wt%)at 70◦C.Immediatelyfollowingtheoxideremovalstep,Alfoilwas re-anodizedfor 2hunder identicalconditions usedforthefirst anodizationstep.AnodizationofAldepositedovertheSi(100) sub-stratewasalsocarriedoutinanidenticalmannerasusedforpure Alfoils.

Co–Alcatalystsolution(5mmol/L)waspreparedbydissolving Al(NO3)3·9H2OandCo(NO3)2·6H2Opowdersinethanol(Co–Alat

1:1)forCNTgrowth.ThecatalystlayerwasappliedonAAO sur-faceseitherviadrop-wisemethodorviadippingmethodusingthe preparedcatalystsolution.Inthedrop-wisemethod,20␮L/cm2

ofCo–AlbasedcatalystsolutionhasbeendroppedovertheAAO surfacesandthesurfacesleftforairdrying.Inothercatalyst applica-tionmethod,AAOsurfacesweredippedintothecatalystsolutionat 50◦Cfor15minandleftforairdrying.TheAAOsurfaceswithCo–Al catalystloadedtotheCVDchamberforCNTgrowthprocess.The reductionstepproceededunderH2andAratmospheres(flowrates

20sccmand150sccm,respectively)at600◦Cfor15min.Following thisstep,theCNTgrowthwasperformedatthesametemperature andgasmixtureswithpureethanolasacarbonsourcefor30min. ThealignedCNTshavebeengrownovertheAAOsurfacesbyCVD at600◦Csimilartoourprevioustechnique[32].

ThestructuralcharacterizationofAAOnanostructureswas per-formedbyusingaCarl-ZeissEVO40scanningelectronmicroscope (SEM).Thecontactanglemeasurementshavebeencarriedouton thesesurfaces(DataphysicsOCA 15plus). Thesynthesized car-bonaceousmaterialoverAAOsubstratewascharacterizedbyusing differentcharacterizationtechniquessuchasSEM,contactangle measurementandRamanspectroscopy(HoribaJobin-Jvon-532nm wavelength).

3. Resultsanddiscussion

TheoxidationofAlduringanodizationprocesshasbeen mon-itoredbythemeasuredoxidationcurrentversustimeasshown inFig.1.Themeasuredcurrentbetweenelectrodesishigherat

ofpureAlmetal.ThiscurrentdecreasessharplyfrompointAto

pointB,whichisattributedtotheformationofaluminumoxide

barrier layeronthesurface which alsoindicatestheformation

ofnanopores.Thereisaslightincreaseinthecurrentfrompoint

BtopointCduetothedecreasingthicknessofthebarrierlayer

whichiscausedbytheincreaseinporedepthasshowninFig.1.

BeyondpointC,equilibriumisestablishedbetweenthecompeting processesofoxideformationanddissolution(poregrowth). Real-timeoxidationcurrentvs.timedatacanbeusedtocontrol/tunethe oxidationperiodandconsequentlytoengineerporegeometry,e.g. poredepth.Maincharacteristicsofthisbehaviordonotvarywith thetypeofelectrolytebathused.

Fig.2 shows the SEMimage of top portionof theanodized Alstripspreparedwiththreedifferentelectrolytesused(sulfuric, oxalicandphosphoricacid).Fig.2ashowsSEMimageofAAO syn-thesizedusingphosphoricacidastheelectrolytewhichshowsa uniformporedistributionalloverthesurface.TheimagesfromSEM showtheporedistributionandtheirFastFourierTransforms(FFT) astheinsetsareshown.Theaverageporesizemeasurementshave beencarriedoutonmultipleSEMimagesfromtheAAOsurfacesby employingthe“particle-sizeanalysis”optionontheImageJ soft-ware[31].ForFig.2a,theaverageporediameterisfoundtobe around100±25nm(mean±standarddeviation)seeTable1.The largevariationforporediameterscanbeattributedtothe pres-enceofhighsurfaceenergyregions,suchasmicro-scratcheson thesurfaceofasreceivedsamples,whereanodizationprocessis acceleratedresultinginlargerporediameters.Fig.2bshowsthe SEMmicrographofthetopsurfaceofAAOtemplatepreparedin oxalicacidelectrolytebath.Thetopviewofporestructureafter anodizationshowswell-orderedporestructure andtheaverage porediameterisfoundtobearound40±10nm.Theaveragepore diameterobtainedduetoanodizationinoxalicacidelectrolytebath

Fig.1. Typicalcurrentdensity–timecurveforanodizationprocessunder constant-voltagemodeatavoltageof40Vandina3wt%oxalicacidbath,maintainedat 15◦C.

(3)

Fig.2.SEMmicrographofAAOimageobtainedafteranodizationwithdifferentelectrolytesused:(a)phosphoricacid,(b)oxalicacid,and(c)sulfuricacid.(d)SEMmicrograph ofAAOoverSianodizedinphosphoricacidsolution.

issmallercomparedtothatobtainedusingphosphoricacidbath requiringahighervoltageforporeformation.Fig.2cshowsthe SEMmicrographofthesurfaceafteranodizationusingsulfuric elec-trolyte;anodizationhasbeencarriedoutat20Vforthissample. Theporesaredistributedinaregularhexagonalmannerwithan averageporediameter20±9nmascalculated.Theaveragepore diameterobtainedwithsulfuricacidissmallestamongallthree acidsusedfortheelectrolytebathinthisstudy.

Furthertoensureaconstantporedepthacrossoursample,a 400nmthickAlfilmhasbeendepositedoverSisubstratevia ther-maldepositionmethod.Thisfilmwasthenanodizedinphosphoric electrolytebath.Fig.2dshowstheSEMimageofAAOstructureover Sisubstrate,whichshowsthatAAOfilmwasdeveloped success-fullyandmaximumporedepthcanbecontrolledbycontrollingthe thicknessofdepositedAllayer.Suchfilmswithtunedporedepths canbeusedforelectronicapplication.

Theporeformationoccursduetoelectric-fieldassistedoxide dissolution. Atthis stagethecurrent beginstoincrease, due to decreasein resistanceasoxidelayerthicknessreducesin front oftheinitiatingpores.Thecurrentstableswhenadynamic equi-librium is established between the competing mechanisms of aluminum oxide growth and its partial dissolution leading to pore formation at the surface [33]. Initially an irregular array ofpore structuresformonthesurface astheporesarecreated randomlyonthe sample. However,due tothe repulsiveforces betweenneighboring poresa self-organizedpore array eventu-allyforms.Themechanicalstressassociatedwiththeexpansion oftheAlduringoxideformationiscitedasthecauseofrepulsive forcesbetweenneighboringporeswhichleadstoself-organization [10].

We investigated theself-organization behavior of the pores usingtheFFTimagesprovidedastheinsetsofFig.2.TheFFTimages werecalculatedfromtherespectiveSEMimagesusingImageJ soft-ware[31].Threedifferentpatternsforporesareobservedthrough theexaminationoftheFFTimages.TheFFTimagesofanodized samplesin phosphoric and oxalic acidsshow sixdistinct spots formingahexagon(Fig.2aandb).Thisobservationindicatesa sin-gledomainofwell-ordered,long-rangeperiodic2-Dlatticeformed

bythepores[34].TheFFTimageofanodizedsurfaceinsulfuric acidshows a ring shape form(Fig.2c). Thissuggests the pres-enceofimperfectionsintheperiodicityofthesurfaceandmultiple domainsofordered2-Dlatticeofpores.AsshowninFig.2d,theFFT imageindicatesadiffuseringforthecaseofAAOoverSisample preparedwithphosphoricacidwhichrevealsthepresenceof dis-ordereddomainsonthesurface.Intheliterature,Sulkaetal.[34] concludedthathighstressesonthesurfaceofAlcandestroythe long-rangearrangementofporesandhence,theexactmechanism ofporeorderingisstillopenfordebate.Accordingtothis,multiple domainformationontheanodizedsurfaceusingphosphoricacid mightbeduetothepresenceofnon-homogenousdistributionof stressesintheAlfilmdepositedoverSisubstrate.

Asmentionedearlier,insomecasespreparationof nanostruc-turesusingporousAAOastemplatesinvolvestheintroductionof dissolvedmaterialsintotheporesofthemembranes.Onewayto determinewhetherthedissolvedsolventsaregoingtofillinthe poresistoinvestigatethewettingbehaviorofcommonsolvents on theAAO surfaces.Hence, we investigatedthe contact angle ofwaterontheseAAOsurfaces.Thecontactanglemeasurement showsthatallthreesurfacesarehydrophilicinnaturewith ini-tialcontactanglesare59◦,44◦and57◦respectivelyforAAOsheets anodizedinsulfuric,oxalicandphosphoricacidasshowninFig.3a. Twodifferentvalueofcontactangleshavebeenobservedattwo endsofdroplet,whichshowsthatsurfaceenergyisvaryingregion toregionofAAOsurface.Contactanglevaluedecreaseswithtime andafter5minwemeasured22◦,22.7◦and40◦respectivelyfor sul-furic,oxalicandphosphoricacidsasshowninFig.3b.Thedecrease incontactanglesinallthreecasesafterafewminutesisduetothe seepingofthewaterdropintoporesofAAO.WettingofAAOshas beenexplainedasfollow;ifaliquidisallowedtospreadonthepore wallsofAAOs,firsttheliquidisbroughtintocontactwiththeAAO surfaceslow-energyliquidsspreadrapidlyonhigh-energysurfaces andthedrivingforcesinvolvedinthisprocessaredueto short-rangeaswellaslong-rangepolarinteractionsbetweenthewetting liquidandtheporewalls[35].Afterwettingthewallsofnanoholes, thewaterdispersedrapidlyintotheholeascontactangledecreases veryfastasshowninFig.3b.

(4)

Fig.3.(a)DemonstrationofsurfacewettingabilitybycontactangleofAAOinsulfuric,oxalicandphosphoricacidand(b)thegraphforcontactangleswithtimeontheAAO surfacesareshown.

ThefinalsectionofthestudyinvolvestheapplicationofAAOs asatemplatefortheverticallyalignedCNTgrowth.Thevertically alignedCNTshavebeengrownovertwodifferenttemplates:AAO andAAO/Sisubstratesanodizedinphosphoricacid.Fig.4shows theSEMimagesofCNTsgrownoverAAOsubstrate,inonecasethe catalystlayerwasappliedviadrop-wiseapplicationovertheAAO surface(Fig.4a)whileinothercasetheAAOsubstratedippedinto thecatalystsolutionfor15min.(Fig.4b).SEMimageofCNTsin Fig.4ashowsthatCNTsarenotaligned;insteadtheyaretangled witheachotherasshowninFig.4b.MostoftheCNTsareappeared onthesurfaceandveryfewarecomingfromtheporesofAAOin thedrop-wisecase.Thisshowsthatmostofthecatalysts parti-clesstayedonthetopsurfaceoftheAAOandveryfewpenetrated throughthepores.Fig.4bshowsthealignmentofCNTsgrownon AAOsubstrate inwhich catalysthasbeendepositedbydipping substrateintothevialcontainingthecatalystsolutionat50◦Cfor 15min.Theas-grownCNTsareapparentlystraightandparallelto eachotherformingadensesurfacewithtubeheightabout3␮m measuredfromFig.4b.ThegrowthofdenseCNTs(Fig.4b)indicates thatthecatalyststaysonthesurfaceaswellasitpenetratesinto theporechannelsforthiscase,whichmakesitclearthatthefinal CNTalignmentisaffectedbythemethodofcatalystdeposition.

CNTs were also grown on the well-ordered AAO template formedonSisubstrateandSEMimagesareshowninFig.5attwo differentmagnifications.CNTs areverydense, verticallyaligned

and distributeduniformlyallover theAAOsurface (Fig.5a).To demonstrateabetterviewforthealignmentofCNTsinside the template,across-sectionalSEMimageisshowninFig.5b.CNTsare indeedwellalignedandlengthsareveryclosetoeachotherabout 3␮mlong.TherootsoftheCNTsarelocatedatthebottomofthe poresasshowninFig.5b.Theseresultsconfirmthatbychanging theporedepth(throughcontrollingthethicknessofAllayerover Si),thecatalystsolutioncanpenetrateeasilyinsidetheporeand hencethegrowthofalignedanddenseCNTscanbeachieved.

FirstandsecondorderRamanspectraofCNTsgrownoverAAO andAAO/SisubstrateareshowninFig.6.ThefirstorderRaman spectrashowstwointensepeakswhicharewellknownasGand Dpeak(Fig.6a).TheGmode(TM–tangentialmode)corresponds tothein-planevibrationoftwoatomsinahexagonallattice.In ourstudy,thismodeislocatedaround1578cm−1and1584cm−1 respectivelyforCNTsgrownoverAAO/SiandAAOsubstrate.The D-band(disorderbandislocatedbetween1330and1360cm−1)is expectedtobeobservedinmultiwalledcarbonnanotubes (MWC-NTs), which is 1338cm−1 and 1348cm−1 respectivelyfor CNTs grownoverAAO/SiandAAOsubstrates.FirstorderRamanspectra ofCNTsaresimilarforbothsurfaces.

RamanfeaturesareanalyzedbyusingaLorentzianfittothe DandGpeaks.Theratioof integratedintensityof GtoD-band (IG/ID)givesthedegreeoforderinthecarbonaceousmaterial.IG/ID

ratiofortheCNTsgrownoverAAO/SiandAAOsubstratesare0.85

Fig.4. SEMimagesofCNTsgrownoverAAOsubstratesanodizedinphosphoricacidwherethecatalystlayerwasappliedvia(a)drop-wisetechniqueand(b)dipping technique.

(5)

Fig.5.(a)Topand(b)crosssectionalSEMimagesofCNTsgrownoverAAO/Sisubstratesanodizedinphosphoricacid.Insetof(b)showstheTEMimageofCNTs.

Fig.6.(a)Firstorderand(b)secondorderRamanspectraofCNTsgrownovertwodifferentsubstrates:AAOandAAO/Si.

and0.60,respectively.ThisshowsthatCNTsgrownoverAAO/Si substratearemoreorderedandlessdefectiveascomparedtothe CNTsoverAAOsubstrates.TheCNTsgrownoverAAOsubstratesare entangledtoeachotherandtwistedwhichcreatesmoredefectson CNTsurface,howeverinothercase;CNTsarestraightandparallelto eachotherandhavehigherIG/IDvaluewhichmeansfewerdefects.

SecondorderRamanspectraintheregionbetween2400cm−1and 3400cm−1 areshown inFig.6b,whichshowssharpand strong peakcenteredat2679cm−1and2689cm−1respectivelyforCNTs grownoverAAO/SiandAAOsubstrates.Thesepeakareassigned as2DorG-band(2700cm−1).Thisbandisanintrinsicproperty ofwell-orderedsp2carbons[36]andcloselyrelatedtotheband

structureofgraphenelayersincarbon.Ithasbeenreportedthat 2D-bandfurtherdownshiftsduetodisorderordefectspresencein carbonlattice[36].Theotherbandalmostatsimilarpositionaround

2922cm−1isrelatedtothecombinationofGandD-band(G+D)in carbonaceousmaterials[37].

ThewettingabilityoftheCNTsurfacesisanimportant prop-erty which is governedboth by the surface chemistry and the microstructureofthesurfaceincontactwiththesolvent[38,39]. ThecontactanglewasmeasuredforthetwodifferenttypesofCNTs; alignedforestlikeandentangledCNTsgrownoverAAO/SiandAAO substrates,respectively(Fig.7).TheverticallyalignedCNTsover AAO/Sisubstrateclearlydisplayasuperhydrophobicbehaviorwith acontactangleof180◦(Fig.7aandseeSupplementaryVideo)while theentangledCNTsgrownoverAAOsubstratehavecontactangle around163◦(Fig.7b).SimilarbehaviorwasalsoreportedbyWang etal.[40,41]inwhichthecontactanglevaluesmeasuredagainst waterforalignedCNTsoffewmicrometerslongandentangledCNTs were174◦ and144◦,respectively[42].Thecontactanglevalues

(6)

anassumptionmadebyPaveseetal.[42]whichstatesthat super-hydrophobicbehaviordependsontheactualcontactsurfacearea betweenthewaterdropandCNTs.Thus,inthecaseofvertically alignedCNTs,theactualcontactsurfaceareaisverysmalllimited tothetipsofCNTs.InthecaseoftheentangledCNTs,themeasured valueofcontactangleislower(163◦)becauseofthedisorderinthe alignmentoftheCNTswithrespecttothesubstratesurfaceandthe side-wallsofthemisalignedCNTsincreasingthetotalcontactarea.

4. Conclusions

Inthisstudy,wehavesynthesizedAAOtemplateswith differ-entporesizesusingvariouselectrolytebaths.Tounderstandthe wettability/porefillingbehavior,contactanglemeasurementshave beencarriedoutwhichshowhydrophilicnaturesofthesesurfaces. Thisresulthasa practicalimportanceshowingthatwater solu-blematerialscouldbeeasilyutilizedforfillingtheporousalumina templates. For instance, using ethanol based catalyst precursor solutions wewereable tosuccessfullygrowaligned and dense CNTforestsover both AAO and AAO/Sisubstrates.Such hybrid structurescombiningpatternedconductorandinsulatorarrayscan bepotentiallyappliedintheelectronicsindustryasstructuresfor buildinglightemittingdiodes,solarcellsandsupercapacitors.

Acknowledgements

G. Kucukayan-Dogu thank the Scientific and Technological Research CouncilofTurkey (Tubitak)for financial support.This workwaspartially supportedbyTubitak Projects109T026 and 107T892.

AppendixA. Supplementarydata

Supplementary data associated with this

arti-cle can be found, in the online version, at

http://dx.doi.org/10.1016/j.apsusc.2012.04.008.

References

[1] J.Goldberger,R.He,Y.Zhang,S.Lee,H.Yan,H.-J.Choi,P.Yang,Single-crystal galliumnitridenanotubes,Nature422(2003)599–602.

[2]P.Kohli,M.Wirtz,C.R.Martin,Nanotubemembranebasedbiosensors, Electro-analysis16(2004)9–18.

[3]J.S.King,D.Heineman,E.Graugnard,C.J.Summers,Atomiclayerdepositionin porousstructures:3Dphotoniccrystals,Appl.Surf.Sci.244(2005)511–516. [4]P.Banerjee,I.Perez,L.Henn-Lecordier,S.B.Lee,G.W.Rubloff,Nanotubular

metal–insulator–metalcapacitorarraysforenergystorage,Nat.Nanotechnol. 4(2009)292–296.

[5]S.B. Lee,D.T.Mitchell, L.Trofin,T.K.Nevanen,H.Söderlund, C.R.Martin, Antibody-basedbio-nanotubemembranesforenantiomericdrugseparations, Science296(2002)2198–2200.

[6]B.Nandan,B.K.Kuila,M.Stamm,Supramolecularassembliesofblock copoly-mersastemplatesforfabricationofnanomaterials,Eur.Polym.J.47(2011) 584–599.

[7]H.Masuda,K.Fukuda,Orderedmetalnanoholearraysmadebyatwo-step replicationofhoneycombstructuresofanodicalumina,Science268(1995) 1466–1468.

[8]G.E.Thompson,G.C.Wood,Porousanodicfilmformationonaluminium,Nature 290(1981)230–232.

[9] R.C.Furneaux,W.R.Rigby,A.P.Davidson,Theformationofcontrolled-porosity membranesfromanodicallyoxidizedaluminium,Nature337(1989)147–149.

ananodizedAlalloysurfaceaslubricantreservoir,Curr.Appl.Phys.11(2011) S182–S186.

[16] Y.Kanamori,K.Hane,H.Sai,H.Yugami,100nmperiodsiliconantireflection structuresfabricatedusingaporousaluminamembranemask,Appl.Phys.Lett. 78(2001)142–143.

[17]L.Ba,W.S.Li,Influenceofanodizingconditionsontheorderedporeformation inanodicalumina,J.Phys.D33(2000)2527–2531.

[18]H.Masuda,M.Ohya,K.Nishio,H.Asoh,M.Nakao,M.Nohtomi,A.Yakoo,T. Tamamura,Photonicbandgapinanodicporousaluminawithextremelyhigh aspectratioformedinphosphoricacidsolution,Jpn.J.Phys.Part239(2000) 1039–1041.

[19]W.Y.Zhou,Y.B.Li,Z.Q.Liu,D.S.Tang,X.P.Zou,G.Wang,Self-organized forma-tionofhexagonalnanoporearraysinanodicalumina,Chin.Phys.10(2001) 218–222.

[20] G.C.Wood,J.P.O’Sullivan,Theanodizingofaluminiuminsulphatesolutions, Electrochim.Acta15(1970)1865–1876.

[21]G.D.Sulka,K.G.Parkoa,Anodisingpotentialinfluenceonwell-ordered nanos-tructuresformedbyanodisationofaluminiuminsulphuricacid,ThinSolid Films515(2006)338–345.

[22]J.Li,C.Papadopoulos,J.M.Xu,M.Moskovits, Highly-orderedcarbon nan-otube arrays for electronics applications, Appl. Phys. Lett. 75 (1999) 367–369.

[23] L.Piraux,A.Encinas,L.Vila,S.Matefi-Tempfli,M.Matefi-Tempfli,M.Darques,F. Elhoussine,S.Michotte,Magneticandsuperconductingnanowires,J.Nanosci. Nanotechnol.5(2005)372–389.

[24]Z.Wang,F.Hu,P.K.Shen,Carbonizedporousanodicaluminaaselectrocatalyst supportforalcoholoxidation,Electrochem.Commun.8(2006)1764–1768. [25] S.Sigurdson,V.Sundaramurthy,A.K.Dalai,J.Adjaye,Effectofanodicalumina

porediametervariationontemplate-initiatedsynthesisofcarbonnanotube catalystsupports,J.Mol.Catal.A:Chem.306(2009)23–32.

[26] H.Hillebrenner,F.Buyukserin,J.D.Stewart,C.R.Martin,Templatesynthesized nanotubesforbiomedicaldeliveryapplications,Nanomedicine(Lond.)1(2006) 39–50.

[27]J.L.Perry,R.Martin,J.D.Stewart,Drug-deliverystrategiesbyusing template-synthesizednanotubes,Chem.-Eur.J.17(2011)6296–6302.

[28] S.Kataoka,T.Yamamoto,Y.Inagi,A.Endo,M.Nakaiwa,T.Ohmori, Synthe-sisoforderedmesoporouscarbonthinfilmsatvarioustemperaturesinvapor infiltrationmethod,Carbon46(2008)1358–1360.

[29] G. Che, B.B. Lakshmi, E.R. Fisher, C.R. Martin, Carbon nanotube mem-branesforelectrochemicalenergystorageandproduction,Nature393(1998) 346–349.

[30]C.-S.Li,S.-H.Su,H.-Y.Chi,M.Yokoyama,Applicationofhighlyorderedcarbon nanotubestemplatestofield-emissionorganiclight-emittingdiodes,J.Cryst. Growth311(2009)615–618.

[31]M.D.Abramoff,P.J.Magalhaes,S.J.Ram,ImageprocessingwithImageJ, Biopho-ton.Int.11(2004)36–42.

[32]B.Baykal,V.Ibrahimova,G.Er,E.Bengü,D.Tuncel,Dispersionofmulti-walled carbonnanotubesinanaqueousmediumbywater-dispersibleconjugated polymernanoparticles,Chem.Commun.46(2010)6762–6764.

[33]G.E.Thompson,Porousanodicalumina:fabrication,characterizationand appli-cations,ThinSolidFilms297(1997)192–201.

[34]G.D.Sulka,S.Stroobants,V.V.Moshchalkov,G.Borghs,J.-P.Celis,Effectoftensile stressongrowthofself-organizednanostructuresonanodizedaluminum,J. Electrochem.Soc.151(2004)B260–B264.

[35]R. Redon, A.Vazquez-Olmos,M.E.Mata-Zamora,A. Ordonez-Medrano,F. Rivera-Torres,J.M.Saniger,Contactanglestudiesonanodicporousalumina, J.Colloid.InterfaceSci.287(2005)664–670.

[36]P.C.Eklund,J.M.Holden,R.A.Jishi,Vibrationalmodesofcarbonnanotubes: spectroscopyandtheory,Carbon33(1995)959–972.

[37]H.Maeta,Y.Sato,Ramanspectraofneutron-irradiatedpyrolyticgraphite,Solid StateCommun.23(1997)23–25.

[38]P.Kim,C.M.Lieber,Nanotubenanotweezers,Science286(1999)2148–2150. [39]B.J.Hinds,N.Chopra,T.Rantell,R.Andrews,V.Gavalas,L.G.Bachas,Aligned

multiwalledcarbonnanotubemembranes,Science303(2004)62–65. [40]Z.Wang,L.Ci,L.Chen,S.Nayak,P.M.Ajayan,N.Koratkar,Polarity-dependent

electrochemicallycontrolledtransportofwaterthroughcarbon nanotube membranes,NanoLett.7(2007)697–702.

[41]K.K.S.Lau,J.Bico,K.B.K.Teo,M.Chhowalla,G.A.J.Amaratunga,W.I.Milne,G.H. McKinley,K.K.Gleason,Superhydrophobiccarbonnanotubeforests,NanoLett. 3(2003)1701–1705.

[42] M.Pavese,S.Musso,S.Bianco,M.Giorcelli,N.Pugno,Ananalysisofcarbon nanotubestructurewettabilitybeforeandafteroxidationtreatment,J.Phys. Condens.Matter20(2008)1–7.

Şekil

Fig. 1. Typical current density–time curve for anodization process under constant- constant-voltage mode at a voltage of 40 V and in a 3 wt% oxalic acid bath, maintained at 15 ◦ C.
Fig. 2. SEM micrograph of AAO image obtained after anodization with different electrolytes used: (a) phosphoric acid, (b) oxalic acid, and (c) sulfuric acid
Fig. 3. (a) Demonstration of surface wetting ability by contact angle of AAO in sulfuric, oxalic and phosphoric acid and (b) the graph for contact angles with time on the AAO surfaces are shown.
Fig. 6. (a) First order and (b) second order Raman spectra of CNTs grown over two different substrates: AAO and AAO/Si.

Referanslar

Benzer Belgeler

Since the concept of furniture system developed with the concept of open planning,the development of this type of office planning and the changes in the approach

In partic- ular, as shown in chapter 5, the structural undirected networks in Alzheimer’s patients show abnormal organization that is manifested through changes in the

Although TAT/TDT’s are like task precedence diagrams (TPD’s), we will not call them as TPD to differentiate each other. In this study, for the sake of simplicity we will use the

More specifically, if all motion vectors are forward motion vectors, then the current B frame is a scene cut because the previous frame is significantly irrelevant to the

To the best of our knowledge, previous work in needle steering and planning considered only rigid tissue insertion for both planar(2D) and general(3D) problems as well as

Importantly, beyond the above mentioned h value, some key observations were made, viz., (a) the spectral shift of the minimum that corresponds to the surface wave saturates after

For the effects of crude real oil price shocks on the other sub-components of the current account de ficit, the balancing of the current account, in the long run, is provided by

HDD servo systems is actually infinite dimensional due to the existence of various sources of delays [21], although most of the control algorithms simplified the model with