• Sonuç bulunamadı

On the recursive sequence x_{n+1}=((x_{n-11})/(1+x_{n-1}x_{n-3}x_{n-5}x_{n-7}x_{n-9}))

N/A
N/A
Protected

Academic year: 2021

Share "On the recursive sequence x_{n+1}=((x_{n-11})/(1+x_{n-1}x_{n-3}x_{n-5}x_{n-7}x_{n-9}))"

Copied!
12
0
0

Yükleniyor.... (view fulltext now)

Tam metin

(1)

Selçuk J. Appl. Math. Selçuk Journal of Vol. 8. No.1. pp. 15-26 , 2007 Applied Mathematics

On The Recursive Sequence+1= 1+ −11

−1−3−5−7−9

Dagistan ¸Sim¸sek

Selcuk University, Engineering-Architecture Faculty, Department of Industrial Engi-neering, 42075 Campus / Konya, Turkey.

e-mail:dsim sek@ selcuk.edu.tr

Received : December 18, 2006

Summary. In this paper a solution of the following difference equation was investigated +1= −11 1 + −1−3−5−7−9   = 0 1 2  where −11 −10  −2 −1 0∈ (0 ∞)

Key words:Difference equation, period twelve solution. 1. Introduction

Recently there has been a lot of interest in studying the periodic nature of nonlinear difference equations. For some recent results concerning among other problems, the periodic nature of scalar nonlinear difference equations see, for examples [1,2,4,5].

In [3] the following problem was posed. There is a solution of the following difference equation

+1=

−1

 + 

for  = 0 1 2  where −1 0∈ (0 ∞),   0 such that → 0 as  → ∞.

In [6] Stevic assumed that  = 1 and solved the following problem

+1=

−1

1 + 

for  = 0 1 2 

where −1 0∈ (0 ∞). Also, this result was generalized to the equation of the

(2)

+1=

−1

()

for  = 0 1 2  where −1 0∈ (0 ∞)

In this paper we investigated the following nonlinear difference equation

(1) +1= −11 1 + −1−3−5−7−9 for  = 0 1 2  where −11 −10  −2 −1 0∈ (0 ∞) 2. Main Result

Teorem 1Consider the difference equation (1). Then the following statements are true.

a)The sequences (12−11) (12−10) (12−9) (12−8) (12−7) (12−6)

(12−5) (12−4) (12−3) (12−2) (12−1) and (12) are decreasing

and there exist

1 2 3 4 5 6 7 8 9 10 11 12> 0 such that

lim

→∞12−11= 1 lim→∞12−10 = 2 lim→∞12−9= 3 lim→∞12−8= 4

lim

→∞12−7= 5 lim→∞12−6 = 6 lim→∞12−5= 7 lim→∞12−4= 8

lim

→∞12−3= 9 lim→∞12−2= 10 lim→∞12−1 = 11 lim→∞12 = 12

b) (1 2 3 4 5 6 7 8 9 10 11 12

1 2 3 4 5 6 7 8 9 10 11 12 ) is a solution of equation (1) of

period twelve.

c)1357911= 0, 24681012= 0

d) If there exists 0∈  such that

−1−3−5−7−9 ≥ +1−1−3−5−7

for all > 0, then

lim

→∞ = 0

e)The following formulas

12+1= −11(1− −1−3−5−7−9 1 + −1−3−5−7−9  X =0 6 Y =1 1 1 + 2−92−72−52−32−1 )

(3)

12+2 = −10(1 − 0−2−4−6−8 1 + 0−2−4−6−8  X =0 6 Y =1 1 1 + 2−82−62−42−22 ) 12+3= −9(1− −1−3−5−7−11 1 + −1−3−5−7−9  X =0 6+1Y =1 1 1 + 2−92−72−52−32−1 ) 12+4= −8(1 − 0−2−4−6−10 1 + 0−2−4−6−8  X =0 6+1Y =1 1 1 + 2−82−62−42−22 ) 12+5= −7(1− −1−3−5−9−11 1 + −1−3−5−7−9  X =0 6+2Y =1 1 1 + 2−92−72−52−32−1 ) 12+6= −6(1 − 0−2−4−8−10 1 + 0−2−4−6−8  X =0 6+2Y =1 1 1 + 2−82−62−42−22 ) 12+7= −5(1− −1−3−7−9−11 1 + −1−3−5−7−9  X =0 6+3Y =1 1 1 + 2−92−72−52−32−1 ) 12+8= −4(1 − 0−2−6−8−10 1 + 0−2−4−6−8  X =0 6+3Y =1 1 1 + 2−82−62−42−22 ) 12+9= −3(1− −1−5−7−9−11 1 + −1−3−5−7−9  X =0 6+4Y =1 1 1 + 2−92−72−52−32−1 ) 12+10= −2(1 − 0−4−6−8−10 1 + 0−2−4−6−8  X =0 6+4Y =1 1 1 + 2−82−62−42−22 ) 12+11 = −1(1− −3−5−7−9−11 1 + −1−3−5−7−9  X =0 6+5Y =1 1 1 + 2−92−72−52−32−1 )

(4)

12+12 = 0(1 − −2−4−6−8−10 1 + 0−2−4−6−8  X =0 6+5Y =1 1 1 + 2−82−62−42−22 ) hold. f )If 12+1 → 16= 0 , 12+3→ 36= 0 , 12+5→ 56= 0 , 12+7→ 76= 0 and 12+9→ 96= 0 then 12+11→ 0 as  → ∞. If 12+2 → 26= 0 , 12+4→ 4 6= 0 , 12+6→ 66= 0 , 12+8→ 8 6= 0 and 12+10→ 106= 0 then 12+12→ 0 as  → ∞.

Proof 1 a)Firstly, we consider equation (1). From this equation, we obtain +1(1 + −1−3−5−7−9) = −11

If −1 −3 −5 −7 −9 ∈ (0 +∞), then (1+−1−3−5−7−9) ∈

(1 +∞). Since +1 −11  ∈ , we obtain that there exist

lim

→∞12−11= 1 lim→∞12−10= 2 lim→∞12−9= 3 lim→∞12−8= 4

lim

→∞12−7= 5 lim→∞12−6 = 6 lim→∞12−5= 7 lim→∞12−4= 8

lim

→∞12−3= 9 lim→∞12−2 = 10 lim→∞12−1= 11 lim→∞12= 12

b) (1 2 3 4 5 6 7 8 9 10 11 12

1 2 3 4 5 6 7 8 9 10 11 12 ) is a solution of equation (1) of

period twelve.

c) In view of equation (1), we obtain 12+1=

12−11

1 + 12−112−312−512−712−9

 Take the limits on both sides of the above equality

1= 1 1 + 119753 ⇒ 1 +1197531= 1⇒ 1357911= 0 Also, we obtain 12+2 = 12−10 1 + 1212−212−412−612−8  Take the limits on both sides of the above equality

2=

2

1 + 1210864 ⇒ 2

+12108642= 2⇒ 24681012= 0

d) If there exists 0∈  such that

(5)

for all > 0, then 1≤ 3 ≤ 5≤ 7 ≤ 9 ≤ 11 ≤ 1 and 2 ≤ 4 ≤ 6 ≤

8≤ 10≤ 12≤ 2

Since 1357911= 0 and 24681012= 0 we obtain the result.

e)Subracting −11from the left and right-hand sides of equation (1) we obtain

+1− −11=

1

1 + −1−3−5−7−9

(−1− −13)

and the following formula (2)   > 2 ⎧ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎩ 2−3− 2−15= (1− −11) Y−2 =1 1 1+2−92−72−52−32−1 2−2− 2−14= (2− −10) Y−2 =1 1 1+2−82−62−42−22

holds. Replacing  by 6 in (2) and summing from  = 0 to  = , we obtain (3) 12+1−−11= (1−−11)  X =0 6 Y =1 1 1 + 2−92−72−52−32−1 ( = 0 1 2 ) and (4) 12+2−−10= (2−−10)  X =0 6 Y =1 1 1 + 2−82−62−42−22 ( = 0 1 2 )

Also, replacing  by 6 + 1 in (2) and summing from  = 0 to  = , we obtain (5) 12+3−−9= (1−−11)  X =0 6+1Y =1 1 1 + 2−92−72−52−32−1 ( = 0 1 2 ) and (6) 12+4−−8 = (2−−10)  X =0 6+1Y =1 1 1 + 2−82−62−42−22 ( = 0 1 2 )

Also, replacing  by 6 + 2 in (2) and summing from  = 0 to  = , we obtain (7) 12+5−−7= (1−−11)  X =0 6+2Y =1 1 1 + 2−92−72−52−32−1 ( = 0 1 2 )

(6)

and (8) 12+6−−6 = (2−−10)  X =0 6+2Y =1 1 1 + 2−82−62−42−22 ( = 0 1 2 )

Also, replacing  by 6 + 3 in (2) and summing from  = 0 to  = , we obtain (9) 12+7−−5= (1−−11)  X =0 6+3Y =1 1 1 + 2−92−72−52−32−1 ( = 0 1 2 ) and (10) 12+8−−4 = (2−−10)  X =0 6+3Y =1 1 1 + 2−82−62−42−22 ( = 0 1 2 )

Also, replacing  by 6 + 4 in (2) and summing from  = 0 to  = , we obtain (11) 12+9−−3= (1−−11)  X =0 6+4Y =1 1 1 + 2−92−72−52−32−1 ( = 0 1 2 ) and (12) 12+10−−2 = (2−−10)  X =0 6+4Y =1 1 1 + 2−82−62−42−22 ( = 0 1 2 )

Also, replacing  by 6 + 5 in (2) and summing from  = 0 to  = , we obtain (13) 12+11−−1 = (1−−11)  X =0 6+5Y =1 1 1 + 2−92−72−52−32−1 ( = 0 1 2 ) and (14) 12+12−0= (2−−10)  X =0 6+5Y =1 1 1 + 2−82−62−42−22 ( = 0 1 2 )

(7)

12+1= −11(1− −1−3−5−7−9 1 + −1−3−5−7−9  X =0 6 Y =1 1 1 + 2−92−72−52−32−1 ) 12+2 = −10(1 − 0−2−4−6−8 1 + 0−2−4−6−8  X =0 6 Y =1 1 1 + 2−82−62−42−22 ) 12+3= −9(1− −1−3−5−7−11 1 + −1−3−5−7−9  X =0 6+1Y =1 1 1 + 2−92−72−52−32−1 ) 12+4= −8(1 − 0−2−4−6−10 1 + 0−2−4−6−8  X =0 6+1Y =1 1 1 + 2−82−62−42−22 ) 12+5= −7(1− −1−3−5−9−11 1 + −1−3−5−7−9  X =0 6+2Y =1 1 1 + 2−92−72−52−32−1 ) 12+6= −6(1 − 0−2−4−8−10 1 + 0−2−4−6−8  X =0 6+2Y =1 1 1 + 2−82−62−42−22 ) 12+7= −5(1− −1−3−7−9−11 1 + −1−3−5−7−9  X =0 6+3Y =1 1 1 + 2−92−72−52−32−1 ) 12+8= −4(1 − 0−2−6−8−10 1 + 0−2−4−6−8  X =0 6+3Y =1 1 1 + 2−82−62−42−22 ) 12+9= −3(1− −1−5−7−9−11 1 + −1−3−5−7−9  X =0 6+4Y =1 1 1 + 2−92−72−52−32−1 ) 12+10= −2(1 − 0−4−6−8−10 1 + 0−2−4−6−8  X =0 6+4Y =1 1 1 + 2−82−62−42−22 )

(8)

12+11 = −1(1− −3−5−7−9−11 1 + −1−3−5−7−9  X =0 6+5Y =1 1 1 + 2−92−72−52−32−1 ) 12+12 = 0(1 − −2−4−6−8−10 1 + 0−2−4−6−8  X =0 6+5Y =1 1 1 + 2−82−62−42−22 )

f) Suppose that 1= 3= 5= 7= 9= 11= 0. By (e), we have

lim →∞12+1 = lim→∞−11(1 − −1−3−5−7−9 1 + −1−3−5−7−9  X =0 6 Y =1 1 1 + 2−92−72−52−32−1 ) 1= −11(1 − −1−3−5−7−9 1 + −1−3−5−7−9 ∞ X =0 6 Y =1 1 1 + 2−92−72−52−32−1 ) (15) 1= 0 ⇒ 1 + −1−3−5−7−9−1−3−5−7−9 = ∞ X =0 6 Y =1 1 1 + 2−92−72−52−32−1  and, 3= −9(1 − −1−3−5−7−11 1 + −1−3−5−7−9 ∞ X =0 6+1Y =1 1 1 + 2−92−72−52−32−1 ) (16) 3= 0 ⇒ 1 + −1−3−5−7−9−1−3−5−7−11 = ∞ X =0 6+1Y =1 1 1 + 2−92−72−52−32−1  Similarly, we write 5= −7(1 − −1−3−5−9−11 1 + −1−3−5−7−9 ∞ X =0 6+2Y =1 1 1 + 2−92−72−52−32−1 ) (17) 5= 0 ⇒ 1 + −1−3−5−7−9−1−3−5−9−11 = ∞ X =0 6+2Y =1 1 1 + 2−92−72−52−32−1 

(9)

Then, 7= −5(1 − −1−3−7−9−11 1 + −1−3−5−7−9 ∞ X =0 6+3 Y =1 1 1 + 2−92−72−52−32−1 ) (18) 7= 0 ⇒ 1 + −1−3−5−7−9−1−3−7−9−11 = ∞ X =0 6+3Y =1 1 1 + 2−92−72−52−32−1 

In the same manner, we obrain

9= −3(1 − −1−5−7−9−11 1 + −1−3−5−7−9 ∞ X =0 6+4Y =1 1 1 + 2−92−72−52−32−1 ) (19) 9= 0 ⇒ 1 + −1−3−5−7−9−1−5−7−9−11 = ∞ X =0 6+4Y =1 1 1 + 2−92−72−52−32−1  Finally, 11= −1(1 − −3−5−7−9−11 1 + −1−3−5−7−9 ∞ X =0 6+5Y =1 1 1 + 2−92−72−52−32−1 ) (20) 11= 0 ⇒ 1 + −1−3−5−7−9−3−5−7−9−11 = ∞ X =0 6+5 Y =1 1 1 + 2−92−72−52−32−1 

From equation (15) and (16), we obtain

1 + −1−3−5−7−9−1−3−5−7−9 = ∞ X =0 6 Y =1 1 1 + 2−92−72−52−32−1  (21) 1 + −1−3−5−7−9−1−3−5−7−11 = ∞ X =0 6+1Y =1 1 1 + 2−92−72−52−32−1 thus, −11 −9

(10)

1 + −1−3−5−7−9−1−3−5−7−11 = ∞ X =0 6+1Y =1 1 1 + 2−92−72−52−32−1  (22) 1 + −1−3−5−7−9−1−3−5−9−11 = ∞ X =0 6+2Y =1 1 1 + 2−92−72−52−32−1 thus, −9 −7

From equation (17) and (18), we obtain

1 + −1−3−5−7−9−1−3−5−9−11 = ∞ X =0 6+2Y =1 1 1 + 2−92−72−52−32−1  (23) 1 + −1−3−5−7−9−1−3−7−9−11 = ∞ X =0 6+3Y =1 1 1 + 2−92−72−52−32−1 thus, −7 −5

From equation (18) and (19), we obtain

1 + −1−3−5−7−9−1−3−7−9−11 = ∞ X =0 6+3Y =1 1 1 + 2−92−72−52−32−1  (24) 1 + −1−3−5−7−9−1−5−7−9−11 = ∞ X =0 6+4Y =1 1 1 + 2−92−72−52−32−1 thus, −5 −3

From equation (19) and (20), we obtain

1 + −1−3−5−7−9−1−5−7−9−11 = ∞ X =0 6+4Y =1 1 1 + 2−92−72−52−32−1  (25) 1 + −1−3−5−7−9−3−5−7−9−11 = ∞ X =0 6+5Y =1 1 1 + 2−92−72−52−32−1 thus, −3 −1

We, therefore, here −11  −9  −7  −5  −3  −1We arrive at a conradiction.

Suppose that 2= 4= 6= 8 = 10= 12= 0 . From that equation (26) in

(e) follows. It is noted that since proof of equation (21) is similar, it is omitted here.

(11)

1 + 0−2−4−6−8 0−2−4−6−8 = ∞ X =0 6 Y =1 1 1 + 2−82−62−42−22  (26) 1 + 0−2−4−6−8 0−2−4−6−10 = ∞ X =0 6+1Y =1 1 1 + 2−82−62−42−22 thus, −10 −8

From that equation (27) in (e) follows. Proof of equation (22) is similar and will be omitted. 1 + 0−2−4−6−8 0−2−4−6−10 = ∞ X =0 6+1Y =1 1 1 + 2−82−62−42−22  (27) 1 + 0−2−4−6−8 0−2−4−8−10 = ∞ X =0 6+2Y =1 1 1 + 2−82−62−42−22 thus, −8 −6

From that equation (28) in (e) follows. Proof of equation (23) is similar and will be omitted. 1 + 0−2−4−6−8 0−2−4−8−10 = ∞ X =0 6+2Y =1 1 1 + 2−82−62−42−22  (28) 1 + 0−2−4−6−8 0−2−6−8−10 = ∞ X =0 6+3Y =1 1 1 + 2−82−62−42−22 thus, −6 −4

From that equation (29) in (e) follows. Proof of equation (24) is similar and will be omitted. 1 + 0−2−4−6−8 0−2−6−8−10 = ∞ X =0 6+3Y =1 1 1 + 2−82−62−42−22  (29) 1 + 0−2−4−6−8 0−4−6−8−10 = ∞ X =0 6+4Y =1 1 1 + 2−82−62−42−22 thus, −4 −2

From that equation (30) in (e) follows. Proof of equation (25) is similar and will be omitted.

(12)

1 + 0−2−4−6−8 0−4−6−8−10 = ∞ X =0 6+4Y =1 1 1 + 2−82−62−42−22  (30) 1 + 0−2−4−6−8 −2−4−6−8−10 = ∞ X =0 6+5Y =1 1 1 + 2−82−62−42−22 thus, −2 0

We obtain here −10  −8  −6 −4 −2 0We arrive at a

conradic-tion which completes the proof of the theorem. References

1.A. M. Amleh, E. A. Grove, G. Ladas and D. A. Georgiou, On the recursive sequence

+1=  + −1 J. Math. Anal. Appl. 233,(1999) 790-798.

2. R. De Vault, G. Ladas and S. W. Schultz, On the recursive sequence +1 = 

 +

1

−2Proc. Amer. Math. Soc.126 (11)(1998), 3257-61

3. C. H. Gibbons, M. R. S. Kulenovic, and G. Ladas, On the recursive sequence

+1=++−1 Math. Sci. Res. Hot-Line 4 (2), (2000), 1-11.

4. M. R. S. Kulenovic, G. Ladas and W. Sizer, On the recursive sequence +1 = +−1

+−1Math. Sci. Res. Hot-Line 2 (5), (1996), 1-16.

5.S. Stevic, On the recursive sequence+1= ( −1)( + )Appl. Math.

Lett. (to appear).

6. S. Stevic, On the recursive sequence+1= −1()Taiwanese J. Math. 6

Referanslar

Benzer Belgeler

[r]

[r]

[r]

Problemdeki hesaplardan da yararlanarak, Pappus’ ¨ un Teoremi ile de bulun-

Verilen alan d¬¸ s¬nda yaz¬lan yaz¬lar cevap olarak puanlamada dikkate al¬nmayacakt¬r.. A¸ sa¼ g¬da verilen (i),(ii) ve (iii) önermelerini

Ba¸ ska yerlere veya ka¼ g¬tlara yaz¬lan cevaplar kesinlikle okunmayacakt¬r... olmayan ve

(i) (1) sisteminin N periyotlu periyodik bir çözüme sahip olmas¬için gerek ve yeter ko¸ sul bir Floquet çarpan¬n¬n 1 olmas¬d¬r. (ii) (1) sisteminin 2N periyotlu periyodik

(2) homogen sisteminin s¬f¬r çözümü düzgün asimptotik kararl¬ise, bu durumda lineer olmayan (1) sisteminin s¬f¬r çözümü