• Sonuç bulunamadı

Investigating the influence of built-up edge on forces and surface roughness in micro scale orthogonal machining of titanium alloy Ti6Al4V

N/A
N/A
Protected

Academic year: 2021

Share "Investigating the influence of built-up edge on forces and surface roughness in micro scale orthogonal machining of titanium alloy Ti6Al4V"

Copied!
13
0
0

Yükleniyor.... (view fulltext now)

Tam metin

(1)

JournalofMaterialsProcessingTechnology235(2016)28–40

ContentslistsavailableatScienceDirect

Journal

of

Materials

Processing

Technology

j ou rn a l h o m epa ge :w w w . e l s e v i e r . c o m / l o c a t e / j m a t p r o t e c

Investigating

the

influence

of

built-up

edge

on

forces

and

surface

roughness

in

micro

scale

orthogonal

machining

of

titanium

alloy

Ti6Al4V

Samad

Nadimi

Bavil

Oliaei

a

,

Yi˘git

Karpat

a,b,∗

aBilkentUniversity,DepartmentofMechanicalEngineering,MicroSystemDesignandManufacturingCenter,Bilkent,Ankara,Turkey bBilkentUniversity,DepartmentofIndustrialEngineering,Bilkent,Ankara,Turkey

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received3November2015

Receivedinrevisedform14March2016 Accepted7April2016

Availableonline11April2016 Keywords: Cutting Micromachining Built-upedge Titaniumalloy

a

b

s

t

r

a

c

t

The edge geometry of cutting tools directly influences the chip formation mechanismin

micro-mechanicalmachining, wheretheedge radiusand uncutchip thicknessarein thesame orderof

magnitude.Anuncutchipthicknessthatissmallerthanthecuttingedgeradiusresultsinalargenegative

rakeangleduringmachining,andbuilt-upedgeformationthenaffectsthemechanicsoftheprocess.In

thisstudy,micro-scaleorthogonalcuttingtestsontitaniumalloyTi6Al4Vwereconductedto

investi-gatetheinfluenceofbuilt-upedgeformationonthemachiningforcesandsurfaceroughness.Cutting

edgesinthesetestsareengineeredusingwireEDMtechniquetohaveanedgeradiusofaround2␮m

andclearanceanglesof7◦and14.Itisobservedthatmachiningprocessinputs(uncutchipthickness,

cuttingspeed,andclearanceangle)affectthesizeofthebuilt-upedge,whichinturnaffecttheprocess

outputs.Itisobservedthatbuilt-upedgeformationprotectsthecuttingedgefromflankandcraterwear

undermicromachiningconditionsandtheinfluenceofbuilt-upedgeonthesurfaceroughnessvaries

dependingonthecuttingspeedanduncutchipthickness.Ourfindingsalsoindicateacloserelationship

betweentheminimumuncutchipthicknessandthemeanroughnessdepth(Rz)ofthemachined

sur-face.Theminimumuncutchipthicknessisfoundtobearound10%oftheedgeradiusinthepresenceof

built-upedge.

©2016ElsevierB.V.Allrightsreserved.

1. Introduction

Mechanicalmicromachiningisdefinedasthemachiningof pre-cisionpartsmadeoutofawiderangeofengineeringmaterialswith complexsurfaces(Dornfeldetal.,2006).Asolidunderstandingof themechanicsofcuttingatthemicroscaleiscrucialinbuilding predictivemodelsandcontrollingthequalityofmicroparts.A com-monlyobservedphenomenon whichappearsduringcontinuous chipformationisbuilt-upedge(BUE)anditisknowntoaffect sur-faceroughnessandtoolwear.ABUEconsistsofmateriallayers whicharedepositedontothetoolsurface,changingthetool geom-etryand,hence,themechanicsoftheprocess.AstableandthinBUE isknowntoprotectthecuttingedge(KalpakjianandSchmid,2010).

∗ Correspondingauthorat:BilkentUniversity,DepartmentofIndustrial Engineer-ing,Bilkent,Ankara,Turkey.

E-mailaddress:ykarpat@bilkent.edu.tr(Y.Karpat).

Smalluncutchipthicknessesmachinedwithtoolshavinga com-parableedgeradiuscreatessuitableconditionsforBUEformation inmicroscalemachining.Gainingabetterunderstandingofthe influenceofBUEonprocessoutputshaveresultedinanincreased interestinmachiningresearch.

Due to the micro cutting tool fabrication process and tool materialgrainsizelimitations,theedgeradiuscannot beeasily decreased withoutsacrificing thestrengthof thetool,which in turnaffectsthechipformationprocessandthesurfacequalityof themachinedworkpiece.Weuleetal.(2002)showedthe impor-tanceofedgeroundnesswhentungstencarbidemicroendmillsare usedtomachineferrousmaterials.Woonetal.(2008)studiedthe interactionbetweenuncutchipthicknessandedgeradiususing experimentaland finite element based techniques when micro machiningAISI1045.Theyshowedtheedgeradiusactinglikea negativerakeangleandfoundthataconstantstagnationpointon thetoolexistsforalargerangeofuncutchipthicknessvalues. How-ever,inanearlierstudy,Waldorfetal.(1999),studiedploughing http://dx.doi.org/10.1016/j.jmatprotec.2016.04.010

(2)

S.N.B.Oliaei,Y.Karpat/JournalofMaterialsProcessingTechnology235(2016)28–40 29

Fig.1.(a)Schematicofwire-EDMprocessingtoobtainrequiredrakeandclearanceangles,(b)Edgeradiusmeasurementoftheinsertafteredgepreparation.

Table1 Experimentalconditions. InitialCutting EdgeRadius Clearance Angle UncutChip Thickness CuttingSpeed (m/min) 1.95␮m 7–14 0.2–0.4–0.6–0.8–1␮m 30–47–62–78

modelsduringorthogonalcuttingandfoundthatastablebuilt-up modeldescribedexperimentalobservationsbetterthana stagna-tionpointmodel.Fangand Dewhurst(2005)usedsliplinefield analysistopredictthesizeofthebuilt-upedge during machin-ing.KarpatandÖzel(2008)alsopresentedasliplinefieldbased approachformachiningwithroundedgedtools,includingbuilt-up edge.Karpat(2009)consideredtheinfluenceofcuttingedgeradius includingbuilt-upedgeduringmicroscalemachiningandstudied theeffectoffractureonmachiningoutputs.Childs(2013) devel-opeda finiteelementmodeltopredictbuilt-upedgeformation duringmachiningofsteelbyintegratingadamagemodel.Some preliminaryresultsonsimulatingbuilt-upedgeduringmicroscale machiningwerealsopresentedinChilds(2013).Adetailed inves-tigationofhowbuilt-upedgeinfluencesmicroscalemachiningis theaimofthisstudy.

Table2

EDXanalysisofsurfaceonthetool.

InsertSurface beforemachining

AnalysisofBUE InsertSurface

afterCleaning Co%5.19 Al%5.66 Co%4.65 W%94.81 Ti%82.82 W%93.95 V%3.46 Co%0.59 W%7.48

Inmicroscalemachining,thecuttingtooledgeradiusandthe amountofmaterialbeingcutareinthesameorderofmagnitude. Thereisavalueofuncutchipthicknessafterwhichcontinuouschip formationceases.Thiscriticalvalueisdefinedasminimumchip thickness,whichisknowntobeafunctionofthetoolmaterial, cuttingedgeradius,andworkpiecematerial(Ikawaetal.,1992). Luccaetal.(1991,1993)indicatedtheimportanceoftheslidingand ploughingatthetoolworkpieceinterfaceduetoedgeradiusofthe toolduringultraprecisionmachiningconditions.Kimetal.(2004) analyzedtheperiodicityofforcesduringmicromillingand identi-fiedthetransitionbetweennon-cuttingandcuttingregimesnear

(3)

30 S.N.B.Oliaei,Y.Karpat/JournalofMaterialsProcessingTechnology235(2016)28–40

Fig.2.InvestigationofthetoolsurfaceafterwireEDM(a)SEMimage,(b)Surfacetopographyoftherakeface.

theminimumchipthicknessvalue.Theyconcludedthatthe peri-odicityofcuttingforcesisaffectedbytheminimumchipthickness, feedpertooth,andcuttingpositionangle.Theyobservedalocal maximuminthethrustforcesthattakesplacearoundminimum chipthicknessvalue.Junetal.(2006)investigatedthedynamicsof microendmillingandobservedpeaksinthethrustforcearound minimumchipthicknessduringmicromachiningof ferriteand pearlite.Theyconcludedthattheminimumchipthicknesseffect causesinstabilityatlowfeedrates.Thesamephenomenonwas observedbyLiuetal.(2004)andnamedasfeedrateinstability.Son etal.(2005)studiedminimumuncutchipthicknessandits rela-tiontotheedgeradiusduringdiamondturningofvariousmaterials. Theydevelopedarelationshipbetweenminimumuncutchip thick-ness,frictionangle,andedgeradius.Malekianetal.(2012)used aminimumenergybasedmethodtomodelminimumuncutchip thicknesswhilemachiningaluminumalloy.Theyfoundthe stagna-tionpointtobeapproximately23%oftheedgeradius,anditisnot aconstantpointbutaregiononthetool.CubaRamosetal.(2012) emphasizedtheimportanceofbuilt-upedgeformationduring tran-sitionfromploughingtocuttingduringmicroscalemachiningof AISI1045anddevelopedanewmodelfortheestimationof

mini-mumchipthickness.Inthisstudy,minimumuncutchipthickness phenomenoninthepresenceofBUEisinvestigatedbyfocusingon theinteractionbetweenBUEandsurfaceroughness.

Duetoitshighreactivitywithcuttingtool materialsandits lowthermalconductivity,titaniumalloysareconsidered difficult-to-cut,sorapid toolwearisan importantissuethataffectsthe qualityofthemachinedproducts.BUEformationduring machin-ingoftitaniumundermacroscalemachiningconditionshasbeen wellstudiedinliterature.TheissuesrelatedtoBUEandtoolwear havebeensummarized inEzugwuand Wang(1997),Armendia etal.(2010)andPramanikandLittlefair(2015).Thepsonthiand Özel(2015)studiedmicromillingoftitaniumalloyTi6AL4Vand observedBUEwhencuttingedgeisworn.Thewearmechanisms oftitaniumalloyswereshown tobequitedifferentfromsteels and nickel alloys inHartung and Kramer(1982). It wasshown thattoolwearwasgreatlyreducedwhenadhesionoccursbetween toolandchip.Theadhesionlayerpreventsslidingattheinterface andimprovestoollifeundercertainconditions.Inarecentstudy, Kümmeletal.(2014)showedthattoolwearperformancemaybe improvedwhencuttingtoolswithintentionalbuilt-upedgeare employedinmachining.Kümmeletal.(2015)usedlasersurface

(4)

S.N.B.Oliaei,Y.Karpat/JournalofMaterialsProcessingTechnology235(2016)28–40 31

Fig.3.(a)Theexperimentalsetupformicroorthogonalexperiments,(b)Microstructureofthetitaniumworkpieceusedinthisstudy,(c)Atypicalchipproducedduring micromachiningexperiments.

texturingtocreatedifferentdimplestructuresandchannelsonthe rakefaceofthetool.ThedimpletexturesareshowntoincreaseBUE adhesiononthetool.Inthisstudy,electricaldischargemachining (EDM)techniqueisusedtopreparethecuttingedges.UsingEDM processcreatesmicroscalecratersonthesurfaceofthetool,which mayalsopromoteBUEadhesionduringmachining.

Inthisstudy,theinfluenceofbuilt-upedgeonprocessforces, surfacequalityandminimumchipthicknessduringmicro machin-ingoftitaniumalloyhasbeeninvestigatedindetail.Cuttingedges withsmalledgeradiiwerespecificallyfabricatedanduncutchip thicknessvaluesweresettobelessthantheedgeradiusto cre-atemicroscalemachiningconditions.Cuttingedgesandmachined surfaceswereinvestigatedaftertheteststorevealtheinfluenceof built-upedgeonprocessoutputs.

2. Experimentalprocedure

2.1. Fabricationofcuttingedgemicrogeometry

Thecuttingedgemicrogeometryisobtainedthroughmicrowire electricdischargemachining(wireEDM)technique.TheEDM tech-niqueisadvantageousintermsofcontrollingthemicrogeometry oftheedge.ThefeasibilityofedgepreparationusingEDM

tech-niquewasshownbyYussefianetal.(2010).Inthisstudy,theedge geometriesoftheuncoatedcarbidetools(DCMW11T304H13A) with0◦rakeanglearemodifiedbyusingthewireEDMdevice (Sod-ickAP250L).TheUandVaxesofthewireEDMmachineareutilized toobtainnecessaryclearance(relief)anglesonthecuttingedges asshowninFig.1a.AnEDMwirediameterof100␮mwasused. ThewireEDMmachineusesoilasdielectricfluidinordertoobtain superiorsurfacequality.Cuttingedgeswithtwodifferentclearance angles(7◦ and14◦)werepreparedandedgeradiiofeachinsert weremeasured.Fig.1bshowstheprofileofacuttingedgebefore andafteredgepreparationwithEDMmachining.

Alaserscanningmicroscope(KeyenceVK-X100)wasusedto measuretheedgeradiusandclearanceangleofthetools.Theedge radiusafterEDMmachiningis measuredas1.95␮mwhere the initialedgeradiusoftheinsertwas25␮m.Adetaileddiscussion ontheinfluenceofedgeradiusonmachiningandthe uncertain-tiesrelatedtoitsmeasurementsweredescribedinDenkenaand Biermann(2014).Scanningelectronmicroscopeimageofthetool surfaceafterwireEDMisshowninFig.2a.Thesurfaceroughness (Ra)oftheinsertwasmeasuredas0.11␮musingalaserscanning

(5)

32 S.N.B.Oliaei,Y.Karpat/JournalofMaterialsProcessingTechnology235(2016)28–40

Fig.4.SEMimagesofthecuttingedgesaftermachiningtests:a)0.2␮m,b)0.4␮m,c)0.6␮m.

2.2. Experimentalsetupfororthogonalmicrocuttingtests

Athree-axishybridmicromachiningcenter(MikrotoolsDT110), capable of performing micro turning processes, was used to conductmicro orthogonal cuttingexperiments. The machine is equipped with a spindle with maximum rotational speed of 3000rpm.Titaniumalloyshaftswith10mmouterdiameterand 0.25–0.35mmwallthicknesswereprepared.Onlyoneendofthe shaftwasmachinedtobehollow.Thedepthofhollowsidewaskept at3–4mm.InsertswithengineerededgeswereplacedonaSDACR 1212K11Stoolholder,whichwasthenattachedtotheKistlermini dynamometer(9256,max250N)asshowninFig.3.Micro machin-ingforcesweremeasuredandtransferredtoaPCthroughadata acquisitioncard(NationalInstrumentsPXI series).Thetitanium alloyTi6Al4V(␣+␤)workmaterialwithlamellarmicrostructure

(grainsof average25␮m lengthand 5␮m thickness), which is showntobesuitableformicromachiningapplicationsinAttanasio etal.(2013),wasusedinexperiments(Fig.3b).Ithadahardnessof 328HV.Theworkpiecewasfedtowardsthecuttingtoolwith nec-essaryfeedratetoobtaintherequireduncutchipthicknessduring orthogonaltests.Themachiningtimeanddistancewerechecked usingahighspeedmicroscopetomakesurethatthedesiredfeed ratewasachievedduringtests.Fig.3cshowsatypicalcontinuous chipproducedduringmicromachiningexperiments.

Inthis study,micro scaleorthogonalmachiningexperiments ontitaniumalloyTi6Al4Vwereperformedbyusingcuttingedges specificallyproducedforthatpurpose.Adifferentcuttingedgewas usedineachtest.Cuttingtoolshaveclearanceanglesof7and14◦. Thereasonforusingalowclearanceangleistochangemachining conditionsinthecuttingzoneandobserveitsinfluenceonthe

(6)

pro-S.N.B.Oliaei,Y.Karpat/JournalofMaterialsProcessingTechnology235(2016)28–40 33

Fig.5. (a)ScanningelectronmicroscopeimageoftheBUEregionandcorrespondingEDXmap,(b)EDXspectrumanalysisofthebuiltupedgezoneontherakeface,(c)EDX spectrumanalysisofthetoolsurface,(d)ColormapoftheTiandCelementsontheBUE.

(7)

34 S.N.B.Oliaei,Y.Karpat/JournalofMaterialsProcessingTechnology235(2016)28–40

Fig.7. 3DEdgeprofilemeasurements.Leftcolumn7◦,rightcolumn14clearanceangle.Uncutchipthicknessfromtoptobottom0.4,0.6,0.8,and1␮m.Cuttingspeedis

(8)

S.N.B.Oliaei,Y.Karpat/JournalofMaterialsProcessingTechnology235(2016)28–40 35

Fig.8.IncreasingBUEtiplengthwithincreasinguncutchipthicknessa)0.4,b)0.6,c)0.8,and,d)1␮m.

(9)

36 S.N.B.Oliaei,Y.Karpat/JournalofMaterialsProcessingTechnology235(2016)28–40

Fig.10. (a)2Dedgeprofilecorrespondingto14◦clearanceangleat0.4␮muncutchipthicknessafter2minofcontinuousmachining,(b)TiplengthofBUEafter9minof

continuousmachining(62m/mincuttingspeed).

cessoutputssuchasbuiltupedgeformationandsurfaceroughness. Arangeofcuttingspeedvalueswasconsidered,setat30,47,62, and78m/minbasedonpracticalmachiningconditionsoftitanium alloyTi6Al4Vwithinthelimitsofthespindle.Uncutchip thick-nessvalueswereconsideredas0.2,0.4,0.6,0.8and1␮m,which areallsmallerthantheedgeradius.Experimentalconditionsare summarizedinTable1.Theforcesduringmicromachiningwere alsomeasured.Theexperimentswereconductedover12sforeach cuttingconditionduringforcemeasurementstudies.

3. InvestigationofBUEaftermicromachiningexperiments Experimentswereperformedateachconditionandthecutting edgesoftheinsertsareinvestigatedaftereachexperiment.Fig.4 showsthescanningelectronmicroscopeimageoftherakefaceof thecuttingedgewherethebuilt-upedgeformationcanbeclearly seen.

ArelativelylargeBUElength(around20–100␮m),compared totheuncutchipthicknessisobserved.Basedontheseimages, thethicknessoftheBUEislargeratthetipofthetooland grad-uallydecreasesonthetoolrakeface.HartungandKramer(1992) observedbuiltuplayer(BUL)andbuiltupedge(BUE)formation whilemacroscalemachiningtitaniumalloyTi6Al4Vwithdifferent cuttingtoolmaterials.Theyobservedthattoolwearisconsiderably reducedatcertainconditionsasalayerpreventsrelativeslidingat thetoolchipinterfaceandlimitsthediffusionrateofthetool con-stituents.Athighspeeds,thisprotectivelayerisremovedandtool wearincreasesquickly.Thethicknessofthislayerisdetermined bythebalancebetweentherateofdiffusionofthetoolmaterial throughit,andtherateofdissolutionofthereactionlayerinthe workmaterial.Theyobservedtheabsenceofcobaltandalayerof TiCwasformedonthetoolsurfacewhichwasreplenishedbythe carbonatomsremovedfromtheWCgrainsbelow.Similar observa-tionswerealsomadebyIkutaetal.(2002),Armendiaetal.(2010), Gerezetal.(2009)andArrazolaetal.(2009)underconventional

machiningcaseswhereelevatedtemperatures(700–800◦C)exist atthetoolchipinterface.Atmicroscalemachiningthetemperature riseatthetool-chipinterfaceisexpectedtobelowercomparedto macroscalemachiningconditions.

Inordertoinvestigatethechemicalcompositionofthetooland BUE,anEDXanalysiswasperformedandtheresultsareshownin Fig.5.AscanningelectronmicroscopeimageoftheBUEregioncan beseeninFig.5a.Titanium,aluminum,andvanadiumelements inthebuilt-upedgeregioncanbeclearlyidentifiedasshownin Fig.5banditsdetailedchemicalcompositionisgivenTable2.The EDXanalysisofthetoolsurfacebeforemachiningisalsoshownin Fig.5canditschemicalcompositionisalsogiveninTable2.Acolor mapofTiandCelementsontheBUEandtoolsurfacesareshownin Fig.5d.TheEDXanalysiswasperformedforalluncutchipthickness valuesandsimilarresultsareobserved.

InordertoinvestigatetheinfluenceofBUE onthetool-chip interface,thesectionof thetool under theBUE isalso investi-gatedaftercleaningit usinganultrasonicprocess.EDXanalysis wasrepeatedontheregionwhereBUEexisted.Fig.6showsthe EDXspectrumofthetoolsurfacewhereCo(%4.65)andW(%93.95) wasdetected.TheamountofCoisslightlylowercomparedtothe originaltoolsurface(seeTable2).Thisisinaccordancewiththe observationsofHartungandKramer(1982),althoughthe differ-enceisquitelow.

Fig.7showstheedgeprofilesobtainedthroughalaserscanning microscopewhereshapesofbuilt-upedgeforeachcuttingcasecan beseen.Fig.8showstheopticalmicroscopeimagestakenfromthe flankfaceofthecuttingedges.

Fig.9showsedgeprofilesofcuttingedgeswheretheshapeof thebuiltupedgearoundthetooltipcanbeseen.Basedonthese images,asuncutchipthicknessincreases,theaveragetiplengthof BUEincreases(fromaround10␮mto19␮minFig.8).Thelength ofBUEontherakefaceislongeratloweruncutchipthickness. NosignificantdifferenceintermsofBUEsizewasobserveddueto differentclearanceangles.

(10)

S.N.B.Oliaei,Y.Karpat/JournalofMaterialsProcessingTechnology235(2016)28–40 37

Fig.11.Forcevs,timemeasurements.Leftcolumn7◦,rightcolumn14clearanceangle.Uncutchipthicknessfromtoptobottom0.4,0.6,0.8,and1␮m.

Fig.10ashowstheedgeprofileofthetoolafter12sof contin-uousmachiningaftercleaningoftheBUE.Nosignofcraterand flankwearwasobserved,confirmingtheprotectiveeffectofBUE. However,theedgeprofilemeasurementrevealedthatedgeradius increasedto3–4␮mattheendofthemachiningtest.Edge round-ingisaknownformoftoolwearduringmicroscalemachining.The machiningprocesswasfurtherlengthenedto2and9minof contin-uousmachining.Theedgeradiuswasalsomeasuredtobearound 3–4␮mandagainnosignofflank/craterwearwasobservedonthe tool.Fig.10bshowsthetiplengthofBUEafter9minofmachining fromflanksideofthetool.

Theincreaseinedgeradiusmayhavehappenedduring burn-inperiodofthetool,anditfurtherpromotestheaccumulationof materialinfrontofthetool.TheinfluenceofBUEonmachining forcesandsurfacequalityareinvestigatedinthenextsection. 4. Forcemeasurementsduringmicroscalemachiningof titaniumalloyTi6AL4V

Measuringforcesduringmicromachiningtestsallowsthe inves-tigationoftheprocessforces inthepresence ofBUEformation. Fig.11 shows theforcemeasurementsobtainedfor 7◦ and 14◦ clearanceangletoolsfordifferentuncutchipthicknessvaluesat 62m/mincorrespondingto12sofcutting.Thesemeasurements correspondtothecuttingedgeimagesshowninFig.7.Each

orthog-onalcuttingexperimentwasrepeatedat leastthree timeswith upsharptools,andconsistentresultswereobtained.Themeasured forceswerefilteredwithalowpassfilterandaveragemachining forcesandforcevariationsaroundaverageforceswerecalculated. Machiningforceswereobservedtoincreaseattheinitialstages ofmachining,indicatingchangingcontactconditionsatthetooltip andBUEformationontherakeface.Increasingaverageforcemay berelatedtoedgeroundingandincreasingforcevariationsmaybe relatedtoBUEformation.Thethrustforce(Ft)seemstobeaffected

bytheBUEmorethanthecuttingforce(Fc).Forcemeasurements

followasteadytrendindicatingtheformationofastableBUE. Fig.12showstheinfluenceofcuttingspeedonthrustand cut-tingforcesfordifferentuncutchipthicknessvalues.Thrustforces increasewithincreasingcuttingspeedfor0.4-0.6␮muncutchip thickness.Thereisasignificantjumpinthrustforcesat62m/min for uncut chip thicknesses of 0.8–1␮m. These resultsindicate theinfluenceofincreasingbuilt-upedgetiplengthwith increas-inguncut chipthickness andcuttingspeed. Ascuttingspeed is increasedto78m/min,thrustforcesplateau,whichmaybedue tosharptipofBUE.Cuttingforcesmostlypeakedaround62m/min andtendtodecreaseat78m/min.

Fig.13showstheaveragecuttingandthrustforcesasafunction ofuncutchipthicknessforcuttingedgeswith7◦and14◦clearance angles.AlthoughnocleardifferenceinBUEshapeswasobserved between7and14clearanceangles,forcemeasurementsincreaseas

(11)

38 S.N.B.Oliaei,Y.Karpat/JournalofMaterialsProcessingTechnology235(2016)28–40

Fig.12.Meanvaluesof(a)thrustand(b)cuttingforcesasafunctionofcuttingspeed.

clearanceangledecreasesasexpected.Cuttingforcemeasurements increasewithincreasinguncutchipthickness.Thrustforce mea-surementsfor7◦clearanceangleexhibitapeakat0.6␮mandthen plateaubetween0.8and1␮m.Thrustforcemeasurementfor14◦ clearanceangletoolexhibitedasimilartrend,howeveritplateaus between0.8and1␮muncutchipthickness.Thepresenceofa built-upedgeisknowntobeimportantsincealargecontactareawiththe workpieceandthetoolexistsasaresultofBUE.Therefore,larger thrustforcesareobtainedinthemeasurements.

5. EffectofBUEonsurfaceroughness

Inmicro scalemachining,theinfluence ofmachining condi-tionsonthesurface roughness is quiteimportant as shown in CubaRamosetal.(2012).Thissectioninvestigatestheinfluence ofBUEonsurfacequality. Asmentioned earlier,theuncutchip thicknesswherethethrustforcereachesitspeakvalueis identi-fiedasminimumchipthicknesswhichdefinesthetransitionfroma shearing-dominatedtoaploughing-dominatedmachiningregion. Inpreviousstudies,theinfluenceofthesurfaceroughnessbeing cutisusuallyneglected.Inthisstudy,aftereachtest,themachined surfacesare investigated by using a laser scanning microscope (KeyenceVK-X100) for contactlesssurface roughness measure-mentswhere arithmeticmeanheight(Ra)and averagedistance betweenthehighestpeakandlowestvalley(Rz)valuesare consid-eredtostudytheeffectofbuilt-upedgeonsurfaceroughness.In measurements,imagestitchingcapabilityofthelasermicroscope isusedtoinvestigatealargeareafordetailedsurface characteriza-tion.Noisefilteringandplanartiltcorrectionisappliedtoaregion ofinterestof(750␮m×200␮m)beforeextractingRaandRz

val-ues.Acut-off(␭c)valueof80␮mwasusedtoremovetheinfluence ofwavinessfromsurfaceroughnessmeasurements.Fig.14shows surfacetopologiesaftermachiningat62m/minat0.4and1␮m uncutchipthicknesses.Theridgesonthemachinedsurfacedueto nonuniformBUEtipformationcanbeclearlyseen.

Fig.15showsthesurfaceroughnessmeasurementsasafunction ofspeedforvariousuncutchipthicknessvalues.Itisinterestingto seethatsurfaceroughness(Rz)valuesimprovearound62m/min cuttingspeed,correspondingwithhighcuttingand thrustforce values(Fig.12).After62m/mincuttingspeed, thesurface qual-ity deteriorates significantly mainly due to scratching effect of BUE.Theresultsindicatethatthereexistsacomplexrelationship betweenuncutchipthickness,cuttingspeed,BUEformation,and surfaceroughness.Relativelybettersurfacequality valueswere obtainedatloweruncutchipthicknessvalues.

InFig.15,at0.2␮muncutchipthickness,averagesurface rough-ness(Rz)valueof0.13␮mwasmeasured.Asfor0.4␮muncutchip

thickness,averagesurfaceroughness(Rz)valueof 0.16␮m was

measured.ItmustbenotedthattheRzanduncutchipthickness valuesarequiteclosetoeachother.Inordertoobservethechip formationduringmicroscalemachining,ahighspeedmicroscope (KeyenceVW9000series)isused.Duetolimitationsofthehigh speedmicroscope,therecordingwasonlymadefromthebackside ofthechip.Basedonthevideorecordings,under0.4␮muncutchip thicknessvalue,thechipformationtransitionedfromcontinuous todiscontinuous.Themediafilesattachedtotheonlineversion ofthepaperclearlyshowcontinuous(Video1for0.8␮muncut chipthickness)andintermittent(Video2for0.2␮muncutchip thickness)machiningcycles.Itmustbenotedthatinthe experi-mentalsetupusedinthisstudy,theworkpieceiscontinuouslyfed

(12)

S.N.B.Oliaei,Y.Karpat/JournalofMaterialsProcessingTechnology235(2016)28–40 39

towardsthecuttingedge.Therefore,intermittentchipformation isexpectedwhenuncutchipthicknessislessthanminimumchip thickness.Basedonthesefindings,thetransitionfromcontinuous tointermittentchipformationhappensaround0.4␮m.Assuming thatedgeradiusis4␮m,theminimumuncutchipthicknessin thepresenceofBUEisaround10%oftheedgeradius.Thisratio issmallerthanthosereportedforstagnationpointassumptionin literature.

6. Conclusions

Thisstudyinvestigatestheinfluenceofbuilt-upedgeontool wear,forces,andsurfaceroughnessundermicroscalemachining conditions.Theuncutchipthickness,cuttingspeed,andclearance angleareconsideredasprocessvariables.Basedonourfindings: • AstableBUEformationexistsundermicroscalemachining

con-ditionsofthetitaniumalloyTi6Al4Vconsideredinthisstudy. • Duringbreak-inperiod,thecuttingedgeradiusincreaseswhich

promotesBUEformation,protectingthetoolsfromcraterand flankwear.EDXanalysisoftheinsertsurfaceindicatedasmall changeinthechemical analysisofthesurface.Butitisnotas significantasthoseinmacroscalemachiningprocesses. • Machininginputconditionsareshowntoaffectthesizeandshape

ofBUE,whichaffectmachiningforcesandsurfaceroughness val-ues.Acuttingspeed of62m/minresultedinlargerforcesand bettersurfaceroughnessvalues.

Fig.13.Meanvaluesofcuttingandthrustforcesat62m/mincuttingspeedfor cuttingedges.

• Ourfindingsconfirmtheinfluenceofsurfaceroughnesson min-imumuncutthickness.InthepresenceofBUE,theratioofuncut chipthicknesstoedgeradiusiscalculatedtobearound10%.

Acknowledgements

The authorswould like tothank The Scientific and Techno-logicalResearchCouncilofTurkey(TÜB˙ITAK-110M660,National

Fig.14.Lasertopographyimagesofthesurfacesmachinedat62m/mincuttingspeedata)0.4␮muncutchipthickness,b)1␮muncutchipthickness,c)0.8␮muncutchip thicknessat78m/min(with300×heightmagnification).

(13)

40 S.N.B.Oliaei,Y.Karpat/JournalofMaterialsProcessingTechnology235(2016)28–40

Fig.15.Surfaceroughnessanalysisasafunctionofcuttingspeed(a)Ra,(b)Rz.

YoungResearcherCareerDevelopmentProgram)andState Plan-ningOrganization of Turkey (HAMIT-Micro System Design and ManufacturingResearchCenter).

AppendixA. Supplementarydata

Supplementarydataassociatedwiththisarticlecanbefound,in theonlineversion,athttp://dx.doi.org/10.1016/j.jmatprotec.2016. 04.010.

References

Armendia,M.,Garay,A.,Iriarte,L.M.,Arrazola,P.J.,2010.Comparisonofthe machinabilitiesofTi6Al4VandTIMETAL54MusinguncoatedWCCotools.J. Mater.Process.Technol.210,197–203.

Arrazola,P.J.,Garay,A.,Iriarte,L.M.,Armendia,M.,Marya,S.,LeMaitre,F.,2009.

Machinabilityoftitaniumalloys(Ti6AlVandTi555.3).J.Mater.Process. Technol.209,2223–2230.

Attanasio,A.,MarcelloGelfi,M.,Pola,A.,Ceretti,E.,Giardini,C.,2013.Influenceof materialmicrostructuresinmicromillingofTi6Al4Valloy.Materials6, 4268–4283,http://dx.doi.org/10.3390/ma6094268.

Childs,T.H.C.,2013.Ductileshearfailuredamagemodellingandpredicting built-upedgeinsteelmachining.J.Mater.Process.Technol.213,1954–1969.

CubaRamos,A.,Autenrieth,H.,Straußa,T.,Deuchert,M.,Hoffmeister,J.,Schulze, V.,2012.Characterizationofthetransitionfromploughingtocuttinginmicro machiningandevaluationoftheminimumthicknessofcut.J.Mater.Process. Technol.212,594–600.

Denkena,B.,Biermann,D.,2014.Cuttingedgegeometries.CIRPAnn.—Manuf. Technol.63,631–653.

Dornfeld,D.,Min,S.,Takeuchi,Y.,2006.Recentadvancesinmechanical micromachining.CIRPAnn.—Manuf.Technol.55(2),745–768.

Ezugwu,E.O.,Wang,Z.M.,1997.Titaniumalloysandtheirmachinability—areview. J.Mater.Process.Technol.68,262–274.

Fang,N.,Dewhurst,P.,2005.Slip-linemodelingofbuilt-upedgeformationin machining.Int.J.Mech.Sci.47,1079–1098.

Gerez,J.M.,Sanchez-Carrilero,M.,Salguero,J.,Batista,M.,Marcos,M.,2009.ASEM andEDSbasedstudyofthemicrostructuralmodificationsofturninginsertsin thedrymachiningofTi6Al4VAlloy.AIPConf.Proc.1181,567–574.

Hartung,P.D.,Kramer,B.M.,1982.Toolwearintitaniummachining.Ann.CIRP32, 75–80.

Ikawa,N.,Shimada,S.,Tanaka,H.,1992.Minimumthicknessofcutin micromachining.Nanotechnology3,6–9.

Ikuta,A.,Shinozaki,K.,Masuda,H.,Tamame,Y.,Kuroki,H.,Fukaya,Y.,2002.

ConsiderationoftheadhesionmechanismofTialloysusingcementedcarbide duringthecuttingprocess.J.Mater.Process.Technol.127,251–255.

Jun,M.B.G.,DeVor,R.E.,Kapoor,S.G.,Liu,X.,2006.Investigationofthedynamicsof microendmilling—partII:modelvalidationandinterpretation.J.Manuf.Sci. Eng.128(4),901–912.

Kümmel,J.,Gibmeier,J.,Müller,E.,Schneider,R.,Schulze,V.,Wanner,A.,2014.

Detailedanalysisofmicrostructureofintentionallyformedbuilt-upedgesfor improvingwearbehaviourindrymetalcuttingprocessofsteel.Wear311, 21–30.

Kümmel,J.,Braun,D.,Gibmeier,J.,Schneider,J.,Greiner,C.,Schulze,V.,Wanner,A., 2015.Studyonmicrotexturingofuncoatedcementedcarbidecuttingtoolsfor wearimprovementandbuilt-upedgestabilisation.J.Mater.Process.Technol. 215,62–70.

Kalpakjian,S.,Schmid,S.,2010.ManufacturingEngineeringandTechnology,6th ed.PrencticeHall,Singapore,pp.563–564.

Karpat,Y.,Özel,T.,2008.Mechanicsofhighspeedcuttingwithcurvilinearedge tools.Int.J.Mach.ToolsManuf.48,195–208.

Karpat,Y.,2009.Investigationoftheeffectofcuttingtooledgeradiusonmaterial separationduetoductilefractureinmachining.Int.J.Mech.Sci.51(7), 541–546.

Kim,C.,Mayor,J.R.,Ni,J.,2004.Astaticmodelofchipformationinmicroscale milling.J.Manuf.Sci.Eng.126(4),710–718.

Liu,X.,DeVor,R.E.,Kapoor,S.G.,Ehmann,K.F.,2004.Themechanicsofmachining atthemicroscale:assessmentofthecurrentstateofthescience.J.Manuf.Sci. Eng.126(4),666–678.

Lucca,D.A.,Rhorer,R.L.,Komanduri,R.,1991.Energydissipationinthe ultraprecisionmachiningofcopper.Ann.CIRP40,69–72.

Lucca,D.A.,Rhorer,R.L.,Komanduri,R.,1993.Effectoftooledgegeometryon energydissipationinultraprecisionmachining.Ann.CIRP42,83–86.

Malekian,M.,Mostofa,M.G.,Park,S.S.,Jun,M.B.G.,2012.Modelingofminimum uncutchipthicknessinmicromachiningofaluminum.J.Mater.Process. Technol.212,553–559.

Pramanik,A.,Littlefair,G.,2015.Machiningoftitaniumalloy(Ti-6Al-4V)—theory toapplication.Mach.Sci.Technol.:Int.J.19,1–49,http://dx.doi.org/10.1080/ 10910344.2014.991031.

Son,S.M.,Lim,H.S.,Ahn,J.H.,2005.Effectsofthefrictioncoefficientonthe minimumcuttingthicknessinmicrocutting.Int.J.Mach.ToolsManuf.45, 529–535.

Thepsonthi,T.,Özel,T.,2015.3-Dfiniteelementprocesssimulationofmicro-end millingTi-6Al-4Vtitaniumalloy:experimentalvalidationsonchipflowand toolwear.J.Mater.Process.Technol.221,128–145.

Waldorf,D.J.,DeVor,R.E.,Kapoor,S.G.,1999.Anevaluationofploughingmodelsfor orthogonalmachining.J.Manuf.Sci.Eng.121,550–558.

Weule,H.,Huntrupl,V.,Tritschlerl,H.,2002.Microcuttingofsteeltomeetnew requirementsinminiaturization.CIRPAnn.—Manuf.Technol.50,61–64.

Woon,K.S.,Rahman,M.,Neo,K.,Liu,S.,2008.Theeffectoftooledgeradiusonthe contactphenomenonoftool-basedmicromachining.Int.J.Mach.ToolsManuf. 48(12–13),1395–1407.

Yussefian,N.Z.,Koshy,P.,Buchholz,S.,Klocke,F.,2010.Electro-erosionedge honingofcuttingtools.CIRPAnn.−Manuf.Technology59,215–218.

Şekil

Fig. 1. (a) Schematic of wire-EDM processing to obtain required rake and clearance angles, (b) Edge radius measurement of the insert after edge preparation.
Fig. 2. Investigation of the tool surface after wire EDM (a) SEM image, (b) Surface topography of the rake face.
Fig. 3. (a) The experimental setup for micro orthogonal experiments, (b) Microstructure of the titanium workpiece used in this study, (c) A typical chip produced during micro machining experiments.
Fig. 4. SEM images of the cutting edges after machining tests: a) 0.2 ␮m, b) 0.4 ␮m, c) 0.6 ␮m.
+7

Referanslar

Benzer Belgeler

The increase in photocatalysis (photo- reduction and photodegradation) reaction of Cr(VI), and 4- NP and phenol, by mesoporous FeSiNST NFs is because of the mesoporosity within

Focusing algorithms find the entities in focus space (entities which are salient in discourse), and the anaphora resolution rules decide the correct antecedent of

Different detection results obtained with 200 MHz and 1000 MHz center frequencies above a ground model of 0.2 S/m do not assert that these two frequency values cause different

focuses on two of the most prominent figures of American folk music, Woody Guthrie and Pete Seeger, and how their political stances went through significant changes both as

implementation of critical thinking in the field of education and language teaching, the role of teachers and students, and instruction through reading and writing... CHAPTER

kariyai Watanabe (Hymenoptera: Braconidae) – Pseudaletia separata Walker (Lepidoptera: Noctuidae) system, the protein concentration in the hemolymph of larvae injected with calyx

The other polycrystalline elastic properties (Young’s modulus, Poisson’s ratio, sound velocities, and Debye temperature) from the polycrystalline bulk modulus and isotropic

Tablo 3.5 İşletme Türü İle “Bölgenin Ekonomik Hayatında Turizm Sektörü Diğer Sektörlerden Daha Önemlidir” Arasındaki İlişki ...128.. Tablo 3.6 İşletme Türü