• Sonuç bulunamadı

A first principles investigation of the effect of aluminum, gallium and indium impurities on optical properties of β-Si3N4 structure

N/A
N/A
Protected

Academic year: 2021

Share "A first principles investigation of the effect of aluminum, gallium and indium impurities on optical properties of β-Si3N4 structure"

Copied!
8
0
0

Yükleniyor.... (view fulltext now)

Tam metin

(1)

gallium

and

indium

impurities

on

optical

properties

of

␤-Si

3

N

4

structure

P.

Narin

a,∗

,

E.

Kutlu

a

,

G.

Atmaca

a

,

S.B.

Lis¸

esivdin

a

,

E.

Özbay

b,c,d

aDepartmantofPhysics,FacultyofScience,GaziUniversity,Teknikokullar,06500Ankara,Turkey

bNanotechnologyResearchCenter,BilkentUniversity,Bilkent,06800Ankara,Turkey

cDepartmentofPhysics,BilkentUniversity,Bilkent,06800Ankara,Turkey

dDepartmentofElectricalandElectronicsEngineering,BilkentUniversity,Bilkent,06800Ankara,Turkey

a

r

t

i

c

l

e

i

n

f

o

Articlehistory: Received27April2017 Accepted7August2017 Keywords: ␤-Si3N4 Abinitio Opticalproperties DFT

a

b

s

t

r

a

c

t

Inthisstudy,effectsofsomeimpurityatomsincludedinIIIAgroupsuchasAl,Ga,and Inontheopticalpropertiesofthe␤-Si3N4structurehavebeendiscussed.The

calcula-tionsweremadeusingDensityFunctionalTheory(DFT)in0–15eVrangeandlocaldensity approximation(LDA)astheexchange-correlation.Usingtherealandtheimaginaryparts ofthecomplexdielectricfunction,thebasicopticalpropertiesof␤-Si3N4suchasdielectric

coefficient,refractiveindex,absorption,reflectioncoefficientshavebeeninvestigated.As aresultofthecalculations,itisdeterminedthatopticalpropertiesofstructurehavebeen significantlychangedwithdoping.

©2017ElsevierGmbH.Allrightsreserved.

1. Introduction

Siliconnitride(Si3N4)duetoitsstrongthermal,dielectricandstructuralpropertiesismostlyusedinelectronic,optical

andindustrialapplications[1,2].Thankstoitsthermalinsulationproperties,siliconnitrideisusedinmanyindustrialfields suchasareasofheatconduction,gasturbines,andautomobileengines,atthesametimeitiswidelyusedasapassivation layerintransistorapplications,lightemittingdiodes(LEDs)andsolarcells[3–7].Inaddition,siliconnitrideisfrequently usedasagatedielectricinhighelectronmobilitytransistors(HEMTs)[8].

Si3N4crystalstructurehasbasicallywell-known␣and␤phases,aswellasphasesindicatedby␥(orc).Wherein␣,␤,

␥arerespectivelyindicatorsoftrigonal,hexagonalandcubicstructures.Underhightemperatureandhighpressure,phase shiftsbetweenthesecrystalsstructuresmayoccur[9].Whileandphasesshowsimilaritiesintermsofsomeelectronic andopticalproperties,␥phasecanvaryintermsofthesecharacteristics.Forexample,intheliterature,while␣and␤phases demonstrateclosebandgapvaluessuchas∼4.63eVand4.50-5.50,␥phaseisgivenashaving∼3.45eVbandgap[10,11]. Thepropertybasicallyseparating␣and␤phasesarethefactthatclatticeconstantisabout2timeslargerthan␥phase. ␤-Si3N4structurehasa14-atomunitcell,andthiscellhas6siliconand8nitrogenatomsanditisastructurewithP63m

spacegroup.

Singlecrystalsof␤-Si3N4structurecanbegrownwithMolecularBeamEpitaxy(MBE)andChemicalVaporDeposition

(CVD)methods[12–14].Generally,inGaNorGaAs-basedcrystalgrowing,IndiumandAluminumusagearecommon

pro-∗ Correspondingauthor.

E-mailaddress:polatnarin0@gmail.com(P.Narin).

http://dx.doi.org/10.1016/j.ijleo.2017.08.056

(2)

Fig.1.ThemoststableatompositionisshownforAl,InandGaimpuritiesthatplacedin␤-Si3N4crystalstructure.

cesses.Duringthesegrowingprocesses,wastegasesremainingfrompreviousgrowthsinthereactororatomssuchasAl,Ga, Incanbefoundinthereactor.Inacrystalgrowth,whichwillbeconductedlater,theseatomscansettleasimpurityatoms withinthecrystalandthissituationmayseriouslyaffectopticalpropertiesofthecrystal[15,16].

Accordingly,itcanbeanimportantstepforgrowingprocessestobeconductedinthefuturetoanalyzeeffectsofAl,Ga andInimpuritiessettledwithinthecrystalduringgrowingprocessonopticalpropertiesofthecrystal.Forthisreason,in thisstudy,changesinopticalpropertiesof␤-Si3N4structurewereanalyzedbymeansofDFTmethodinsituationswhenit

containsAl,GaandInimpurities.Asaresultoftheseanalyses,seriouschangesinbasicopticalpropertiesof␤-Si3N4structure

wereobservedintermsofstaticdielectricconstant,refractiveindex,absorption,reflectioncoefficients.

2. Calculationmethod

Incalculations,todetermineeffectsofimpurityatomssuchasAl,GaandInonopticalpropertiesofthe␤-Si3N4structure,

DFTwithpseudopotentialmethodandLDAasexchange-correlationwereused.ThankstoAtomistix-VisualNanolabToolkit (ATK-VNL)software,theopticalpropertiesof␤−Si3N4structurewithpurityandimpuritywereanalyzedwiththehelp

oftherealandtheimaginarypartsofcomplexdielectricfunction[17–19].While analyzingopticalpropertiesofthe␤ −Si3N4structure,ahexagonal␤−Si3N4structurewith14atomscontaining8nitrogenand6siliconatomsandhavingP63m

spacegroupwasused.Incalculations,latticeconstantsofthestructureweredeterminedasa=7.6015Å,c=2.9061Å,cut-off as280eVandaregularMonkhorst–Pack4×4×10k-pointgridwereused.Intheopticalpropertiescalculations,photon energyrangewasselectedas0–15eV.Inthestudied␤−Si3N4structure,settlementlocationsofAl,InandGaimpurity

atomsweredeterminedbycalculatingformationenergyandbindingenergycalculations[20].Fortheatomplaceswith thelowestformationenergyandbindingenergy,impurityatomswereplaced,andopticalpropertiesofthesenewsystems wereanalyzed.Bycalculatingbindingenergyandformationenergy,themoststableconfigurationspecifiedforeachimpurity atomareshownwithredcircleinFig.1.

3. Resultsanddiscussion

TheopticalpropertiesofastudiedstructurecanbedefinedwiththehelpofthecomplexdielectricfunctiongiveninEq. (1)[21,22].Furtheropticalpropertiescanbedeterminedafterobtainingrealandimaginarypartsofthecomplexdielectric function.

Complexdielectricfunctionisgivenas;

ε(ω)=ε1(ω)+iε2(ω), (1)

TherealandimaginarypartsofthecomplexdielectricfunctionaregivenwiththeKramers-Kronigrelations;

ε1(ω)=1+ 2 p ∞



0 ωε2(ω) ω2−ω2dω . (2)

Here,ε2(ω)istheimaginarypartofthecomplexdielectricfunctionandgivenas;

ε2(ω)= e2h m2ω2



 

|ePif|2ı(Ekf −Eik−ω)d 3 k. (3)

Here,EiandEfarebindingenergiesinthefirstandthelastconfigurations,andPif isthemomentummatrixelement[23]. Also,nandkareassociatedwithexpressions␧1(ω)and␧2(ω)therelationshipbetweenthemisgivenas[22];

(3)

Fig.2. Fora)pureb)Al-impurityc)Gaimpurity,d)Inimpurityaddedstructures,therealpartofthedielectricfunctionof␤−Si3N4structure.

ε2=2nk (5)

Expressionsgivingthefrequencydependentrealandimaginarypartsofthecomplexrefractiveindexandtheirreflection

coefficientandabsorptioncoefficientaregivenasfollows[24,25];

n(ω)=(1/√2)



ε2 1(ω)+ε 2 2(ω)+ε1(ω)



1

2 , (6) k(ω)=(1/√2)



ε2 1(ω)+ε 2 2(ω)−ε1(ω)



1

2 , (7) R(ω)=(n−1) 2 +k2 (n+1)2+k2, (8) ˛(ω)=2ω ck. (9)

␤-Si3N4structureshowsanisotropicopticalpropertiesduetoitshexagonalstructure.Therefore,z-axis,which

corre-spondstothegrowthdirection,valueswithimportantopticalfeaturesareshowninthestudy.Therefore,fortherestofthe study,thenumericalvalueswillbegivenforz-axis.Table1showsthecalculatedopticalparametersof␤−Si3N4forpure

andwithimpurities.

Fig.2showsthechangesinphotonenergydependentrealpartofdielectricfunctionsafteraddingAl,Ga,Inimpurities separatelyto␤−Si3N4structure.InFig.2a,whilehighlyanisotropicbehaviorisobservedforz-axisforpure␤−Si3N4structure,

itshowsrelativelyisotropicbehaviorforxandy-axesforthedielectricfunctions.Forthepure␤−Si3N4structure,thestatic

(4)

Fig.3. Fora)pureb)Al-impurityc)Gaimpurity,d)Inimpurityaddedstructures,theimaginarypartofthedielectricfunctionof␤−Si3N4structure.

Realpartsofthedielectricfunctionsfallingbelowzero,namelywhen1(ω)<0andinenergiesafter9.28eVvalue,␤−Si3N4

showsmetallicbehavior.Withintheenergyrangebeforethisvalue,sincerealpartofthedielectricfunctionisabovezero, namely␧1(ω)>0,thestructureshowsdielectricproperties.

InFig.2b,itwasdeterminedthatthestaticdielectricconstantfor␤−Si3N4structurecontainingAlimpurityis9.12,and

thehighestvalueforthedielectricconstantas13.4isfoundat∼0.19eVvalue.Whileisotropicbehaviorinxandy-axesis notobservedbelow0.4eV,itcanbeseenthatisotropicbehaviorisstartedagainwhileapproachingtowardshighenergies. Asexpectedinallenergyvalues,thehighanisotropicbehaviorisobservedinthez-axis.InFig.2c,fora␤−Si3N4structure

containingGaimpurity,thestaticdielectricvalueisfoundasahugenumberof122.Astaticdielectricconstantsubstantially higherthanthepurestructurehasbeencalculated.

InFig.2d,wehavecalculatedstaticdielectricconstantfor␤−Si3N4containingInimpurityas75.7.Thehighestdielectric

constantwasdeterminedas78.3at0.1eVvalue.Whileisotropicbehaviorinxandy-axisisobservedinlowenergyvalues, theanisotropicbehaviorisseenathighenergyvalues.Inthisregard,itcanbesaidthat,thisbehaviorexhibitssimilar characteristicswiththestructureincludingGaimpurity.

InFig.3,imaginarypartsofdielectricfunctionbasedonphotonenergyareshownforthepure␤−Si3N4structureand

structureswithimpuritieswithin0–15eVenergyrange.InFig.3a,itcanbeseenthatopticalbandrangevalueforpure ␤−Si3N4iswithin∼5-5.8eVrange.Theopticalbandvalueofthepure␤−Si3N4structureisconsistentwiththeliterature

[10,26,27].Energyvalueswhereopticaltransitionsareatmaximumareseenas7.2eVand9eV.Inthecaseswithimpurities, itcanbeclearlyseenthatstructures␧2(ω)peakvaluesatverylowenergiesdonotrepresentanyopticalbandgap.

InFig.3b,itcanbeseenthatin␤−Si3N4structurewithA1impurity,energyvalueswithmaximumopticaltransitionsare

7.5eVand9eV.Furthermore,sinceitisobservedthatopticaltransitionalsooccursin∼0.45eVand∼1.19energyvalues,it willnotbepossibletomentionaboutopticalbandrangeinA1impurity.Incomparisonwiththepurestructure,forxand y-axes,theisotropicbehaviorispartiallydeteriorated.

InFig.3cand3drespectively,itcanbeseenthatveryhighopticaltransitionsoccuratverylowenergiesin␤−Si3N4

structurewithGaandInimpurities.Inthepresenceofbothimpurities,asecondarypeakwithnotsuchhighopticaltransitions canbeobservedat∼8eV.Forthesetwoimpurityaddedstructures,highlyanisotropicbehavioratlowenergyvaluesand isotropicbehaviorathighenergyvaluesareobserved.

InFig.4,changesinrefractiveindexesofpure␤−Si3N4structureandstructurewithimpuritiesaregivenwithrespectto

photonenergy.Thesechangescanbeactuallyseentochangeinproportiontochangeconnectedwith␧1(ω)intheformula

givenEq.(4).Therefore,ifthedielectriccoefficientofastructureishigh,it’srefractiveindexishighaswell.Inthepure ␤−Si3N4structure,therefractiveindexofthestructurewasdeterminedasn(0)=2.34andresultsclosertotheliterature

(5)

Fig.4.Fora)pureb)Al-impurityc)Gaimpurity,d)Inimpurity,therefractiveindexof␤−Si3N4structure.

8.7,respectively.ThestructurewithGa-impurityhasthehighestrefractiveindex,whichisfoundtobe5timeshigherthan thepurestructure.Itisobservedthatrefractiveindexchangeshowinghighanisotropicbehavioralongthez-axisinpure structureandthestructurewithAlimpurity.ForthestructureswithGaandInimpurities,mostlyisotropicbehaviorare observedathigherenergies.However,highanisotropicbehaviorsareobservedatverylowenergies.

Theimaginarypartofthecomplexrefractiveindex,namelyextinctioncoefficientisknowntobeassociatedwith2(ω)

givenbytheEq.(5).Therefore,changeinphotonfrequencydependent␧2(ω)andchangeinphotonfrequencydependent

extinctioncoefficientareshownsimilarbehaviors.Changesinphotonfrequencydependentextinctioncoefficientsofpure ␤−Si3N4structureandstructureswithimpuritiesaregiveninFig.5.Sinceitisdielectricinthepurestructure,itisobserved

thatopticaltransitionsstartaroundabove∼5eV.InthestructureswithAl,GaandInimpurities,thehigherextinction coefficientisobservedatlowerenergies.Anisotropybehaviorsaresimilarwiththerealpartofthecomplexrefractiveindex. Reflectancepropertiesofstructurevaryinconnectionwithwhethertheyshowmetallicbehaviorornot.Since␧1(ω)<0

isconsideredstructureswithmetallicbehavior,negative␧1(ω)representshighreflectivity.Fornegativevaluesof␧1(ω)are

foundtobepossiblewithEq.(4)andk>n.Therefore,highlevelofreflectanceisexpectedforlownandhighkvalues. InFig.6,changesinreflectanceofpure␤−Si3N4structureandstructureswithimpuritiesaregivenwithrespecttophoton

energy.Forpure␤−Si3N4and␤−Si3N4withAl,Ga,Inimpurities,reflectioncoefficientsofstructuresaredeterminedas0.16,

0.32,0.70and0.63,respectively.Forthestructureswithimpurities,behaviorsofreflectancewithenergychangesshow similaritieswitheachother.

Atvalueswhereextinctioncoefficientishigh,itcanbeexpectedabsorptioncoefficienttobehighalso.InFig.7,absorption datashowstheopticalbandgapsuccessfully.Inthestructureswithimpurities,theanisotropicbehaviorispreservedinthe z-axisallalongtheinvestigatedphotonenergies.Neartheopticalband-gapedge,pure␤−Si3N4structureshowsthemost

anisotropicbehavior.

Si3N4isknowntoreducenon-radiativetransitionsinthestructurewhereitisusedasapassivationlayer[30].Inaddition,

incaseswherethepassivationlayercontainsimpuritiessincemoreabsorptionoccursascanbeseeninFig.8.UsingSi3N4

asmuchpureaspossiblebecomessignificantespeciallyinLEDapplications.Fig.8showsabsorptionforpurestructureand structureswithAl,Ga,Inimpuritiesthatchangeatlowenergies,especiallyinthevisibleregion.Whileverylowabsorption isobservedinthevisibleregionforthepurewithimpuritiesstructures,especiallythestructurewithInimpurityshowsvery highabsorptioninthevisibleregion.

(6)

Fig.5. Fora)pureb)Al-impurityc)Gaimpurity,d)Inimpurityaddedstructures,theextinctioncoefficientof␤−Si3N4structure.

(7)

Fig.7. Fora)pureb)Al-impurityc)Gaimpurity,d)Inimpurityaddedstructures,theabsorptioncoefficientof␤−Si3N4structure.

Fig.8.Fora)pure,b)As-impurity,c)Gaimpurity,d)Inimpurityaddedstructures,absorptionof␤−Si3N4structuresatlowenergies.

4. Conclusion

Inthisstudy,theeffectsofimpurityatomssuchasAl,Ga,andInfoundinIIIAgroupoftheperiodictable,onoptical propertiesofpure␤−Si3N4structurewereanalyzed.ThecalculationswereperformedwithDFTmethodusingLDAapproach

within0–15eVrange.Basedonimpurityatoms,thechangesinbasicopticalpropertiesof␤−Si3N4structuresuchascomplex

dielectricfunction,refractiveindex,extinctioncoefficient,absorptioncoefficient,reflectioncoefficientbasedonphoton energywereanalyzed.Asaresultofcalculations,staticdielectriccoefficientswerefoundforpure␤−Si3N4andstructures

withimpurities,anditwasobservedthatimpurityatomsincreasethedielectricconstanttorelativelyhighervalues.Itis determinedthat,inthepure␤−Si3N4 structure,isotropicopticalpropertiesthatareobservedmostlybetweenxand

y-axes.Andwithaddingimpuritiesthisbehaviortendstowardsanisotropicbehavior.Asexpectedinhexagonalcrystals,it presentshighanisotropicopticalpropertiesinz-axiswithrespecttootheraxes.Duetotheincreasingabsorptionatvisible wavelengths,impuritiesmayresultinunwantedoutcomesinoptoelectronicdevicessuchasLEDs.

(8)

Acknowledgement

ThisworkissupportedbytheprojectsDPT-HAMIT,DPT-FOTON,andNATO-SET-193aswellasTUBITAKunderProject Nos.113E331,109A015,and109E301.Oneoftheauthors(EkmelOzbay)alsoacknowledgespartialsupportfromtheTurkish AcademyofSciences.

References

[1]B.Wang,J.Yang,R.Guo,J.Gao,J.Yang,Microstructureandpropertyenhancementofsiliconnitride-bariumaluminumsilicatecompositeswith ␤-Si3N4seedaddition,J.Mater.Sci.44(2009)1351–1356.

[2]J.H.Kim,K.W.Chung,Microstructureandpropertiesofsiliconnitridethinfilmsdepositedbyreactivebiasmagnetronsputtering,J.Appl.Phys.83 (1998)5831–5839.

[3]S.Y.Ren,W.Y.Ching,Electronicstructuresof␤-and␣-siliconnitride,Phys.Rev.B23(1981)5454–5463.

[4]A.Y.Liu,M.L.Cohen,Structuralpropertiesandelectronicstructureoflow-compressibilitymaterials:␤-Si3N4andhypothetical␤-C3N4,Phys.Rev.B

41(1990)10727–10734.

[5]X.Hu,A.Koudymov,G.Simin,J.Yang,M.A.Khan,A.Tarakji,R.Gaska,Si3N4/AlGaN/GaN–metal–insulator–semiconductorheterostructurefield–effect

transistors,Appl.Phys.Lett.79(2001)2832–2834.

[6]M.Meneghini,L.R.Trevisanello,U.Zehnder,T.Zahner,U.Strauss,G.Meneghesso,E.Zanoni,High-temperaturedegradationofGaNLEDsrelatedto passivation,electrondevices,IEEETrans.53(2006)2981–2987.

[7]Y.Ogawa,K.Ohdaira,T.Oyaidu,H.Matsumura,Protectionoforganiclight-emittingdiodesover50000hoursbyCat-CVDSiNx/SiOxNystackedthin

films,ThinSolidFilms516(2008)611–614.

[8]G.Kresse,M.Marsman,L.E.Hintzsche,E.Flage-Larsen,OpticalandelectronicpropertiesofSi3N4and␣-SiO2,Phys.Rev.B85(2012)

0405205–0405212.

[9]B.Wang,J.Yang,R.Guo,J.Gao,J.Yang,MicrostructureandboundaryphasesofLu–Al-dopedsiliconnitridebypressurelesssintering,Mater.Sci.Eng.: A500(2009)79–83.

[10]Y.N.Xu,W.Y.Ching,Electronicstructureandopticalpropertiesof␣and␤phasesofsiliconnitride,siliconoxynitrideandwithcomparisontosilicon dioxide,Phys.Rev.B51(1995)17379–17389.

[11]Y.C.Ding,A.P.Xiang,M.Xu,W.J.Zhu,Electronicstructuresandopticalpropertiesof␥-Si3N4dopedwithLa,PhysicaB:Condens.Matter403(2008) 2200–2206.

[12]B.Stannowski,J.K.Rath,R.E.I.Schropp,Growthprocessandpropertiesofsiliconnitridedepositedbyhot-wirechemicalvapordeposition,J.Appl. Phys.93(2003)2618–2625.

[13]G.Lucovsky,P.D.Richard,D.V.Tsu,S.Y.Lin,R.J.Markunas,Depositionofsilicondioxideandsiliconnitridebyremoteplasmaenhancedchemical vapordeposition,J.VacuumSci.Technol.A4(1986)681–688.

[14]Y.Nakada,I.Aksenov,H.Okumura,GaNheteroepitaxialgrowthonsiliconnitridebufferlayersformedonSi(111)surfacesbyplasma-assisted molecularbeamepitaxy,Appl.Phys.Lett.73(1998)827–829.

[15]Y.X.Han,C.L.Yang,M.S.Wang,X.G.Ma,Tuningthebandgapandopticalpropertiesof␥-Si3N4withrareearthelementCe,RSCAdv.4(2014)

55452–55458.

[16]E.Kutlu,P.Narin,G.Atmaca,B.Sarikavak-Lisesivdin,S.B.Lisesivdin,E.Ozbay,EffectofsubstitutionalAsimpurityonelectricalandopticalproperties of␤-Si3N4structure,Mater.Res.Bull.83(2016)128–134.

[17]Version12.2.2QuantumWiseA/S.<http://www.quantumwise.com>.

[18]M.Brandbyge,J.L.Mozos,J.TaylorP.Ordejón,K.Stokbro,Density-functionalmethodfornonequilibriumelectrontransport,Phys.Rev.B65(2002) 165401–165418.

[19]E.Kutlu,P.Narin,G.Atmaca,B.Sarikavak-Lisesivdin,S.B.Lisesivdin,E.Ozbay,Electronicstructureof␤-Si3N4crystalswithsubstitutionalicosagen

groupimpurities,J.Optoelectron.Adv.Mater.19(2017)278–282.

[20]J.M.Soler,E.Artacho,J.D.Gale,A.Garcıá,J.Junquera,P.Ordejón,D.Sánchez-Portal,TheSIESTAmethodforabinitioorder-Nmaterialssimulation,J. Phys.Condens.Matter14(2002)2745–2779.

[21]H.Ehrenreich,H.R.Philipp,OpticalpropertiesofAgandCu,Phys.Rev.128(1962)1622–1629.

[22]Y.Du,B.Chang,X.Fu,X.Wang,MeishanWang,Electronicstructureandopticalpropertiesofzinc-blendeGaN,Optik123(2012)2208–2212.

[23]F.Wooten,OpticalPropertiesofSolids,AcademicPress,NewYork,1972.

[24]X.Yu,C.Li,Y.Ling,T.A.Tang,Q.Wu,J.Kong,FirstprinciplescalculationsofelectronicandopticalpropertiesofMo-dopedrutileTiO2,J.Alloys Compd.507(2010)33–37.

[25]Y.Shen,Z.Zhou,Structural,electronicandopticalpropertiesofferroelectricKTa1/2Nb1/2O3solidsolutions,J.Appl.Phys.103(2008)074113–074120.

[26]J.F.Nye,ClarendonPress,Oxford(1957)p.297.

[27]H.Kurata,M.Hirose,Y.Osaka,Wideoptical-gapphotoconductivea-SixN1-x:H,Jpn.J.Appl.Phys.20(1981)L811.

[28]A.L.Shabalov,M.S.Feldman,M.Z.Bashirov,OpticalpropertiesofSiNxfilmsofvariablecomposition,PhysicaStatusSolidi(b)145(1988)K71–K74.

[29]R.W.Knoll,C.H.HenagerJr.,OpticalandphysicalpropertiesofsputteredSi:Al:O:Nfilms,J.Mater.Res.7(1992)1247–1252.

[30]S.Jahangir,M.Mandl,M.Strassburg,P.Bhattacharya,Molecularbeamepitaxialgrowthandopticalpropertiesofred-emitting(␭=650nm) InGaN/GaNdisks-in-nanowiresonsilicon,Appl.Phys.Lett.102(2013)071101.

Şekil

Fig. 1. The most stable atom position is shown for Al, In and Ga impurities that placed in ␤-Si 3 N 4 crystal structure.
Fig. 2. For a) pure b) Al-impurity c) Ga impurity, d) In impurity added structures, the real part of the dielectric function of ␤−Si 3 N 4 structure.
Fig. 3. For a) pure b) Al-impurity c) Ga impurity, d) In impurity added structures, the imaginary part of the dielectric function of ␤−Si 3 N 4 structure.
Fig. 4. For a) pure b) Al-impurity c) Ga impurity, d) In impurity, the refractive index of ␤−Si 3 N 4 structure.
+3

Referanslar

Benzer Belgeler

Clinicians should be aware of the possibility of a urethral diverticulum when patients have lower urinary tract irritability symptoms even if cystourethroscopy and VCUG are

While its predictive role for morbidity and mortal- ity has been well studied in patients with acute myo- cardial infarction, [14,15] we aimed to clarify its role fur- ther to

We found that NLR was asso- ciated with higher rates of Gleason score upgrading and high-grade pros- tate cancer cases, but not with disease upstaging (data not yet

Otlatılarak yararlanılan çayır ve meralarda ise, bitkilerin topraktan kaldırdığı besin elementlerinin büyük bir kısmı bu bitkileri otlayan hayvanların dışkıları

With this study, studied plants were found to be rich in respect to essential oil content and the results evaluated natural product, renewable resources and chemotaxonomy.. Key

Silicon waveguides are widely used as optical interconnects and they are particularly important for Si- photonics. Si-based devices, along with other optical

The standard propositional account of necessary and sufficient conditions in many in- troductory logic textbooks is based on the material conditional.. In the appendix,

In this article, we devised query processing strategies that use the result entries found in the result cache of a search engine to answer previously unseen user queries.. We