• Sonuç bulunamadı

Impacts of climate change on heating and cooling loads in residential buildings

N/A
N/A
Protected

Academic year: 2021

Share "Impacts of climate change on heating and cooling loads in residential buildings"

Copied!
11
0
0

Yükleniyor.... (view fulltext now)

Tam metin

(1)

ContentslistsavailableatScienceDirect

Resources,

Conservation

and

Recycling

j ou rn a l h o m epa g e :w w w . e l s e v i e r . c o m / l o c a t e / r e s c o n r e c

Environmental

analysis

of

different

packaging

waste

collection

systems

for

Istanbul

Turkey

case

study

Eren

Yıldız-Geyhan

a,b,∗

,

Güls¸

ah

Yılan-C¸

iftc¸

i

a

,

Gökc¸

en

Alev

Altun-C¸

iftc¸

io˘glu

a

,

Mehmet

Arif

Nes¸

et

Kadırgan

a

aDepartmentofChemicalEngineering,MarmaraUniversity,Istanbul,Turkey

bMaltepeMunicipalityEnvironmentalProtectionsandControlDepartment,Istanbul,Turkey

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received5June2015 Receivedinrevisedform 11September2015 Accepted24November2015 Keywords:

Municipalsolidwaste Packagingwaste Sourceseparation Environmentalanalysis LifeCycleAssessment(LCA)

a

b

s

t

r

a

c

t

Source-separatedcollectionofrecyclablepackagingwasteshasbeenahugeissueforcitiessuchas Istan-bulconsideringtheirsocially,economically,culturallyandenvironmentallycosmopolitestructure.In ordertoapplyanenvironmentallyeffectiveseparationandcollection,systemhastobeanalyzedwith aholisticapproachincludingwholerecycledpackagingmaterialamounts,sourceconsumptionsand relatedemissions.Inthiscontext,theaimofthisstudyistodeterminetheenvironmentallyoptimum source-separatedpackagingwastecollectionsystemapplicableinIstanbul,Turkeyforthefirsttimein literature.Eightscenariosforseparatedcollectionsystemweredefinedandallofthemwerecompared witheachotherandwiththeexistingsystem.Tomeasuretheefficiencyofthesystem,someefficiency indicatorswerechosenandeffectivenessrelatedvariablesweredeterminedtopredicttheparticipation rate.Calculationsoftheefficiencyindicatorsforalternativescenarioswerebasedontheexistingsystem. TheenvironmentalanalysiswasconductedbyusingLifeCycleAssessmentmethodology.Theresultsof thisstudyshowedthatexistingsystemwasstilloneoftheenvironmentallymostpromisingscenarios. FollowingadvantageousscenarioswereScenarios5and6whichweretwoandthreefractionated curb-sidecollectionsystems,respectively.Itisalsoseenthatmorefractionatedscenarioswerelessbeneficial thantwofractionatedscenarios.Andfinally,itcanbeconcludedthatwithanincrementonparticipation rateandchangingcollectionmaterialtype,collectionefficiencyofcurbsidesystemwouldincreaseand beenvironmentallymorebeneficial.

©2015ElsevierB.V.Allrightsreserved.

1. Introduction

Municipalsolidwastemanagementsystem(MSWMS)isdefined as“thedisciplineassociatedwiththecontrolofgeneration,storage, collection,transportation, processing and disposal of municipal solidwaste,inawaythatisgovernedbythebestprincipalsofpublic healthandeconomic,engineering,estheticandother environmen-talconsiderations”(Al-Maadedetal.,2012).

Managementof a municipal solid waste (MSW) starts with thecollectionofwastegeneratedinresidential,multifamily,and commercialsectors.TheMSWisthentransportedforseparation andrecycling,treatment,ordisposalfacilities(Weitzetal.,1999). Eachstageofanintegratedwastemanagementsysteminvolves adifferentmanagement-operationstrategyforitself.Toachieve

∗ Correspondingauthorat:DepartmentofChemicalEngineering,Marmara Uni-versity,Istanbul,Turkey.

E-mailaddress:rnyildiz@yahoo.com(E.Yıldız-Geyhan).

anoptimum efficiency ina MSWMS, itis important toanalyze each stage’srequirements. Inthis management process,a well-organizedseparatecollectionstageincreasestheentiresystems’ efficiency.

In Turkey, waste management has been a subject of legal arrangementssince1930swiththepublicationof“PublicHygiene Law”(UHK,1930)andmunicipalitieshavebeenassignedasthe mainimplementationauthoritywiththepublicationof “Munici-palityLaw”(BK,1930).However,therewerenotanyobligations onseparationofrecyclingmaterials,untilthepublicationof Regu-lationonControlofSolidWastein14.03.1991onOfficialGazette No.:20814(KAKY,1991).Moreover,withthepublicationof Regula-tionofControllingPackagingWastein2004,municipalitiesbecame responsibleandwithinthescopesofnegotiationwithEU,there havebeenconsiderableimprovementsinsolidwastemanagement regulationsinordertomeetthetargetsintheEuropeanUnion’s Directive.

TherecyclablepackagingwastesinTurkeyaremainlycollected bydoor-to-door system,which is carriedout bymunicipalities. http://dx.doi.org/10.1016/j.resconrec.2015.11.013

(2)

However,alargeproportionofrecyclablepackagingwastesare col-lectedbyscavengers,whoaredescribedbySannehetal.(2011)as thecitizenswithlowtonoincome thatcollectmaterialseither dispersed throughout the city or concentrated at dump sites. Agunwamba (2003) stated that because of the social, cultural, financial and environmental conditions, the implementation of thesourceseparationofrecyclablematerialsinNigeriamaynot beaneffectivesystemconsideringtheinvestmentcost, require-mentofpubliceducationandexpertiseofthesystem.Therefore, integrationofthescavengersintothesystemwassuggestedas asolution.However,thisisanuncontrolledandinformal collec-tion systemwhich hasnumerous social disadvantages such as healthrisk,lowincome,childlabor,etc.Inaddition, contamina-tionofwastedecreasesefficiencyofrecyclablematerial.Allthese abovestatedissues havedirectlyincreasingeffectonsocial and environmental impact,thus scavengers’ method is not consid-eredasanoption forpackagingwastecollectionsystemin this study.

Recently, Environment and UrbanizationMinistry published Regulation of Waste Management (AYY, 2015) which includes “Wastebringcentersandaplanofdoubletypecollectionof house-holdsolid waste(organic waste and packaging waste)”. Waste bring centers and double type collection system suggested by local authorities have been discussed as a draft circular from 2011till now todetermine theresponsibilities of stakeholders and to achieve a source separated packaging waste collection system. However, although there are various changes in the law and regulations, there is not a well-defined waste man-agement system which is fully-supported by the regulations yet.So,stakeholderssuchasmunicipalitiesand private compa-nies cannot applyan effective separatecollection of packaging waste which is the most important part of the waste man-agement system. Therefore, local authorities are still trying to develop a sustainable packaging waste management policy. In ordertoachieveaneffectivepackagingwastecollectionsystem, regional differences (urbanization), social awareness, economic conditions and environmental benefit should be analyzed in detail.

Gallardoetal.(2012a)indicated thatefficiencyofaseparate collectionsystemwasinfluencedbyanumberoffactorswhichare mainlyenvironmental,economic,social,political,legaland tech-nologicalfactors.Also,toachieveanincrementonthecollection efficiencyofrecyclablematerials,itwasimportanttoanalyze cit-izens’behaviorwithregardtothevariouscollectionsystems:the levelofparticipation,qualityofthewastecollected,financial incen-tives,etc.Forthesocialaspectsofthesystem,Martinetal.(2006) carriedoutadetailedreviewofapproachestakeninEnglandto encouragehouseholds toparticipatein recyclingandMcDonald andBall (1998),Read(1999), Dahlénet al.(2007),and Thomas (2001)alsostudiedonpublicparticipationinEngland.Forinstance, PerrinandBarton(2001)foundthatprovidingthecorrectcollection schemedesigntohouseholdsnotonlyretainsahigherproportion ofhouseholdswhoanticipateusingacurbsiderecyclingscheme butalsocapturesthetraditionally“non-committedrecycler” ensur-ingmaximumparticipationratesandhighdiversionsofrecyclable materials.KaciakandKushner(2009)determinedthefactorsthat influencerecyclingbehaviorandexaminedthesocio-demographic characteristicsof participants in some regions of Canada. Also, Omran etal. (2009)and Otitoju (2014)researchedthe individ-ualattitudeofparticipantsinMalaysiaandNigeria,respectively. Gellyncketal.(2011)identified12variablestoincreaserecycling andreducingtheresidualhouseholdwasteinBelgium.Also,Heravi etal.(2013)compareddifferentrecyclingcollectionscenariosin Tehran,consideringthesourceconsumption,costbenefit,public acceptability,andriskassessment ofthescenarios.Abovegiven literatureresearches, mainly examinedtheefficiency of source

separationsystemrelatedwithmultiplevariations.Generally,main purposeontheseliteratureresearcheswastomakeanincrement ontheamountofrecyclablematerialsortodeterminereasonof thecurrentsituation.However,evenifincreasingtheamountof therecyclablematerialshaveanimportantpositiveeffectonthe ecosystem;ithasalsoanegativeeffectarisingfromthe collec-tionsystem which consumesresources and releases emissions. Therefore, itis importanttoanalyze thesystemwitha holistic approach.

Theenvironmental,economicandsocialanalysisofthe munici-palsolidwastemanagementsystemsisgenerallyconductedusing theLifeCycleAssessmentmethodology.ManyofLCAapplications inthisfieldarefocusedontheuseofthismethodologyasa deci-sion supporttool in the selection of the optimum system and itiscommonly usedthroughtheworldonanystages orwhole stagesof MSWMS(Özeleretal.,2006;Rives etal.,2010;Banar etal.,2009;Menikpuraetal.,2012a,b;Hongetal.,2010;Bovea andPowellb,2006;Skordilis,2004;Soderman,2003;Weitzetal., 1999;Rigamontietal.,2009;Guerecaetal.,2006;Gomesetal., 2008;Boeretal.,2007;Rebitzeraetal.,2004).Forexample,Teerioja etal.(2012)comparedsociallifecyclecostsofastationary pneu-maticwastecollectionsystemtoavehicle-operateddoor-to-door collectionsystemin Finlandand foundthattraditional door-to-doorsystemeconomicallyhadmoreadvantagesthanpneumatic system. Bovea et al. (2010) studied on the environmental life cycleof24 wastemanagement scenarios whichwereconsisted ofpre-collection(bagsandcontainers),collection,transport, pre-treatment(wasteseparation)andtreatment/disposalstages.Iriarte etal.(2009)quantifiedandcomparedthepotential environmen-talimpactsofmobilepneumatic,multi-containeranddoor-to-door collectionsystemsandfoundthat,thecollectionsystemwiththe leastimpactwasmulti-containercollectionsystemwhereas door-to-doorandmobilepneumaticsystemshad thegreatestimpact attheurbansubsystemlevel. Rigamontietal.(2009)evaluated howdifferentassumptionsaboutrecyclingsysteminfluencedthe LCAresultsofintegratedwastemanagementsystemandindicated thatsource-separatedcollectedmaterialshadagreatinfluenceof thewholemanagementsystemas15%decreaseontheselection efficienciesresultedin26%increaseonglobalwarmingeffectof thesystem.Larsen et al. (2010)carried out environmentaland economicassessmentoffivealternativecollectionsystemswith thedifferentefficiencyforcollectingrecyclablesinDenmarkand foundthat curbside collection would beenvironmentally more beneficialthandrop-offandbringcenters.Giuglianoetal.(2011) analyzed fourscenarios of separatecollectionsystemincluding drop-off collectionsystems with35 and50% overall separation andcurbsidecollectionsystemswithoverall separatecollection valueof50and65%,andfoundthat50%separatecollection sys-temwasthebestperformingscenario.Untilthisyear,asLaurent et al. (2014a,b) indicated, only Banar et al. (2009) and Özeler etal. (2006)usedthe LCAmethodologytodeterminethe opti-mummunicipalsolidwastemanagementsysteminEskisehirand Ankara,Turkey.Recently,ErsesYayA.S(2015)publisheda simi-larstudyforSakarya,Turkey.InthesestudiesreportedforTurkey, theentiremunicipalsolidwastemanagement systemwas ana-lyzed.However, for Istanbul it is not alwayspossible to reach realistic data to analyze the entire system since each stage of theMSWMShandledbydifferentresponsibleinstitutions.Forthis reason, only collection,transportation and treatment processes ofrecyclablepackagingwastewereinvestigatedtooffera solu-tionto decision-makersfrom a moreenvironmentally effective pointofview.Thisstudyanalyzesandcomparesthecurrentand alternativescenarios interms ofenvironmentaleffectivenessof aseparatecollectionsystemofrecyclable packagingwasteasa partofintegratedwastemanagementsystemforthefirsttimein Turkey.

(3)

Fig.1. Existinghouseholdcollectionsystemandsystemboundariesforthestudy.

2. Methodology

TheLifeCycleAssessmentmethodologywasusedtoevaluate anenvironmentalcomparisonofthealternativescenarioswiththe currentpackagingwastecollectionsystem.AccordingtoISO14040 (2006a,b)anLCAcomprisesfourmajorstages:goalandscope def-inition,lifecycleinventory,lifecycleanalysisandinterpretationof theresults.AsanLCAsoftware,SimaPro8.0.1wasusedtodevelop systemmodeling.

2.1. Goalandscopedefinition

Themainobjectiveofthisstudyistodeterminethe environ-mental performance ofthe existingsource separatedcollection systemandproposedscenarios.Theresultofthestudymayassist decision-makerstoapplytheenvironmentallyoptimumscenario. Systemboundariesandfunctionalunitwerealsodetermined. Fig.1presentstheexistinghouseholdcollectionsystem.Household solidwastewascollectedintwofractionsasmixedwasteand recy-clablepackagingwaste.Inthescopeofthisstudyonlythepackaging wastecollectionsystemswereresearched.Itwasassumedthatthe systemboundaryforthestudystartswhenhouseholdsolidwaste deliveredtoanycollectionmaterialbyresidentsanditendswith thetransportationofseparatedwastetothetreatmentfacilities. Thedisposalsystemofthecollectedwastewasoutofthescopeof thisstudy.Thefunctionalunitwasselectedas1tonofrecyclable packagingwaste.

2.2. Inventorydatacollection

2.2.1. Definitionofexistingsystemandalternativescenarios There were mainly four collection methods planned to be employedinthisstudywhichwerethecollectionbyscavengers, door-to-door,curbside,drop-offpoints.Inthescavengermethod, wastesarenotseparatedatthesourcebycitizens.Instead,they areall collectedin a mixedwastebin and scavengersseparate therecyclablewastesinsidethesebins.Sinceitrequiresadetailed socialanalyze,scavengers’methodwasnotconsideredinthescope ofthisstudy.Door-to-doorcollectionsystemischaracterizedby locatingofbins,containersorbagsateach doororothereasily accessibleareafrombuildingsandthissystemrequiresadetailed collectionschedule.Inthecurbsidecollectionsystem,containers arelocatedonthestreetsintherangeofbetween50and100mand citizensarefreetodisposewasteatanytimeofthedayorweek.

Drop-offcollectionsystemisalsobasedonthelocationofstable containersonthestreetbutatgreaterdistancesbetween500and 1000m.

All scenarios were mainly based onthe collection methods mentionedabove.Additionallythesescenariosweredifferentiated accordingtofractionatedcollectionofthematerialswhichrequires differentcollectionmaterialfordifferentwastefractions.

Instead of picking solely one of the collection systems, researchersaregenerallyfocusedonthedoubleortriple combina-tionsofthesecollectionsystemsaccordingtothespecificationsof thewaste.ForinstanceGallardoetal.(2012b)determinedthebest separatecollectionsystembetweentheeightcollectionssystems usedinSpanishtowns.Intheseeighttypesofcollectionsystems implemented in Spain wastes were separated into fouror five fractionsandcollectedfromdrop-offpointsand/orpickedup door-to-doorsystemsand/orcollectedatcurbside.Similarly,Giugliano etal.(2011)usedthecombinationofcurbsideanddrop-off col-lectionandproposedthecollectionofwastefractionsonamono ormulti-materialbasis.Furthermore,Larsenetal.(2010)proposed fivecollectionsscenarioswhichincludeddifferentcombinationsof collectionofpackagingwasteatcurbside,drop-offcontainersand recyclingcenters.

In thispaperwe suggestedeight sourceseparatealternative collectionscenarios.Aschematicoverviewofexistingand alter-nativecollectionsystemisprovidedinFig.2.Detaileddescription ofexistingsystemandalternativescenariosareasfollows:

ExistingSystem(ES):Recyclablepackagingwastewasseparated into2fractions.Mixedpackagingwastes(paper-cardboard,glass, metal,plastic)werecollectedbydoor-to-doorsystemandglass wasteswerecollectedindrop-offpointswhereasunsortedwaste werecollectedbycurbsidebins.Plasticbagswereusedtostore mixedpackagingwastes.Inthissystem,packagingwasteswhich weredisposedinmixedwastecontainerbyresidentswerepicked fromcurbsidecontainersbyscavengers.

Scenario1(S1):Wastewasseparatedinto2fractionsandthe col-lectionsystemwasalmostthesameastheexistingsystem.Onthe contraryoftheexistingsystem,additiontotheplasticbags, con-tainerswerealsoused.Mixedwasteswerecollectedinplasticbags andthenstoredinaplasticcontainerwhichwaslocatedatthedoor ofthebuilding.Thisisthescenariosuggestedbytheregulation.

Scenario2(S2):Packagingwastewasnotseparatedinto frac-tions.Paper-cardboard,heavy-lightweightpackagingwaste(metal andplastic)andglasswastewerestoredinaplasticbagand col-lectedbydoor-to-doorcollectionsystem.

(4)

Door-to-door Curbside Drop-off Existing System - Scenario 1 Scenario 2 - -Scenario 3 - -Scenario 4 - -Scenario 5 - - Scenario 6 - - Scenario 7 - -Scenario 8 - -Pc HL G Mp G Pc HL G Pc G HL G G Mp G Pc Lw Hw G Mp Mp Mp Mp

Mp Mixed packaging waste Lw Lightweight packaging waste (plastic)

Pc Paper-cardboard waste G Glass waste

Hw Heavyweight packaging waste (metal) HL Heavy-Lightweight packaging waste S Pc and Lw collected by Scavengers Fig.2.Separationschemeoftheexistingcollectionsystemandalternativescenarios.

Scenario3(S3):Wastewasseparatedinto3fractions. Paper-cardboard,heavy-lightweight(metalandplasticwaste)packaging wasteandglasswastewereseparatelystoredinplasticbagsand collectedbydoor-to-doorcollectionsystem.

Scenario4(S4):Wastewasseparatedinto4fractions. Paper-cardboard,heavyweight(metalwaste),lightweight(plasticwaste) packagingwasteandglasswastewereseparatelystoredinplastic bagsandcollectedbydoor-to-doorcollectionsystem.

Scenario5(S5):SimilartotheexistingsystemandScenario1, wastewasseparatedinto2fractionsasmixedpackagingwaste andglasswaste.HoweverinScenario5,insteadofdoor-to-door collectionanddrop-offpoints,wasteswerecollectedin2different plasticcurbsidebins.

Scenario6(S6):Wastewasseparatedinto3fractionsas paper-cardboard,heavy-lightweightpackagingwasteandglasswaste.All these3fractionatedwastewerecollectedinplasticcurbsidebins.

Scenario7(S7):Scenario7wassimilartoScenario5.Wastes wereseparatedin2fractions.Theonlydifferencewasmixed pack-agingwasteandglasswasteswerecollectedatdrop-offpointsin galvanizedsteelcontainers.

Scenario8(S8):Inthisscenariowastewasseparatedinto3 frac-tions. Paper-cardboardwaste, heavy-lightweight packaging and glasswastewerecollectedatdrop-offpointsingalvanizedsteel containers.

2.2.2. Researchareaandwastespecifications

This study states the environmental impact of alternative recyclingwastecollectionsystemsforMaltepedistrictlocatedin thesuburbsofTurkey’slargestcityIstanbul.Ithasapopulationof 452,099inhabitants(ABPRSR,2012)andin2012householdsolid wastegeneratedwas162,569tons(MBFR,2013).Theamountof wasteisshowninTable1.

Householdsolidwasteisthesumofmixedsolidwaste(kitchen, gardenwaste,incinerableandnon-incinerablewaste)and pack-agingwaste.Packagingwasteamountis thesumoftheformal andinformalcollectionofpackagingmaterials.Informalpackaging wasteamountisestimated.AccordingtoAYEP(2008),Maltepe dis-trictdailywastegenerationrateis1.28kg/capita-day.Calculation methodexpressedinTaietal.(2011)’sstudywasusedto deter-minetheamountofpackagingmaterialscollectedbyscavengers. Table1showsthemunicipalsolidwastegenerationforMaltepe MunicipalityandTable2showsthehouseholdwastecomposition. 2.2.3. Dataforcollection,sortingandrecyclingactivities

Intheexistingsituation,transportationofpackagingwasteis doneintwostages.Firstly,wastearecollectedfromsourcesand transportedtothesortingfacility,andthensortedmaterialsare transportedtotherecyclingcenters.Alltransportationdatasuchas fuelconsumption,distancetraveled,andvehicletypesweretaken

(5)

Table1

HouseholdsolidwastegenerationforMaltepeMunicipality(ton/year)(MBFR,2013).

Householdsolidwaste[QT] Mixedsolidwaste[QM] Recyclablewaste[QR] Recyclablewaste[QF] Recyclablewaste[Q˙I]

211,220 158,316 52,904 4253 48,651

QT:amountoftotalhouseholdsolidwaste(QT=QM+QR).

QM:amountofmixedsolidwastecollectedbymunicipality.

QR:amountoftotalrecyclablewastecollectedformalandinformalways(QR=QF+QI).

QF:amountofrecyclablewastecollectedbymunicipality(formalcollection).

QI:amountofrecyclablewastecollectedbyscavengers(informalcollection).

Table2

HouseholdsolidwastecompositionforIstanbul(KAAP,2007).

Foodwaste Incinerablewaste Non-incinerablewaste Paperwaste Glasswaste Cardboardwaste Plasticwaste Metalwaste

34% 22% 19% 11% 6% 5% 2% 1%

Table3

Transportationdataforpackagingmaterials(km/ton).

Sortingfacility Recyclingcenter

Transportdistance(km/ton) Fuelconsumption(L/ton) Transportdistance(km/ton) Fuelconsumption(L/ton)

Paper-cardboard 33.33 17.49 20.00 8.09

Plastic 33.33 17.49 28.57 11.55

Metal 33.33 17.49 11.42 4.62

Glass 42.50 14.87 13.26 4.69

Note:Paper-cardboard,plasticandmetalwastearesenttothesamesortingfacility,thus,transportdistanceandfuelconsumptionhavethesamevalue.

frommunicipalityinventory.Table3givesthedistancefrom collec-tionpointtosortingfacilityandfromsortingfacilitytorecycling center.Intheexistingsystem,packagingwastesexceptglassare collectedinthesamebag.Mixedpackagingwasteandglasswaste arecollectedseparatelyand transportedtothedifferentsorting facilities.Therefore,thetraveldistanceformixedpackagingand glasswasteare33.33km/tonand42.50km/ton,respectively. Elec-tricity,waterandcollectionmaterialconsumptionarealsotaken frommunicipalityinventory.Electricityandwater consumption are 10.00kWh/ton and 0.39m3/tonfor mixed packaging waste

and9.00kWh/tonand0.41m3/tonforglasssortingfacility,

respec-tively.

Oneofthemostsignificantdifferencesbetweentheexisting sys-temandalternativescenariosisthematerialuse.Characteristicsof basiccollectionmaterialsaregiveninTable4.Allconsumptiondata forthealternativescenarioswerecalculatedbasedontheexisting system.Furtherdetailsaboutthecalculationsareexplainedinthe followingsection.

2.2.4. Efficiencydata

2.2.4.1. Measuring the efficiency of source separation system. In ordertoanalyzetheefficiencyofthesourceseparatedcollection system,therearesomeindicatorsdeterminedandusedtoobserve thesystems’alteration(Gallardoetal.,2010;Tchobanoglousand Kreith,2002;Thomas,2001;Panaretouetal.,2014;Taietal.,2011). • Quantityof collectedrecyclables(kg recyclables/householdor

person)

• Qualityofrecyclables(contaminationrate)

• Recycling rate (recovered material/the potential recyclable amount)

• Participationrate

• Willingnesstoparticipate(potentialparticipation) • Inhabitants’degreeofsatisfaction

• Capturerate(thesourcerecoveryfactor)

• Diversionrate(thediversionrateisameasureofthetotal quan-tityofwastethatis‘diverted’fromlandfillasafractionofthe totalwastegeneratedeachyear).

Inourstudy,mainly,followingindicatorsandequationswere appliedtodeterminetheefficiencyoftheexistingsystemand esti-matethescenariospotentialefficiency.

Specific waste generation rate, [GR]i: The ratio between the

weightofpotentialpackagingwasteandweightoftotalhousehold municipalsolidwaste.

[GR]i(%)= weightweightofoftotalpotentialmunicipalrecyclablehouseholdpackagingsolidwastewaste (1) Publicparticipationrate,[PR]i:Thisindicatorpresentsthe

per-centage of the people who participates the source separated collectionsystem.

[PR]i(%)= populationtotalthatpopulationparticipatesofapplicationtheseparationareasystem (2) SourceSeparationRate,[SR]i:Theratiobetweentheweightof

sourceseparatedrecyclingwasteandtheweightoftotalhousehold solidwaste.

[SR]i(%)=weightweightofoftotalsourcemunicipalseparatelyhouseholdcollectedsolidwastewaste (3) Effectiveseparationrate,[ESR]i:Thisindicatorpresentsthe

effec-tivinesofcitizens,whoparticipatethesystem.Intheparticipation rate, it is assumed that citizens separated theirwaste in 100% efficiency.Sourceseparationrateshowshowmuchwasteare sep-arated.Sotheratiobetweenthemgivestheefficiencyseparation rate.

[ESR]i(%)=PublicSourceParticipationSeparationRateRate (4) Wastagerate,[WR]i:Wastagerateisdefinedastheratiobetween

theweightofresidualmaterialremainfromsortingofcollected packagingsandweightoftotalsourceseparatelycollectedrecycling waste.

[WR]i(%)= weightofwastagematerialsincollectedrecyclables weightofsourceseparatelycollectedwaste

(6)

Table4

Materialcharacteristics.

Material Collectionsystem Volume(L) Weight(kg) Material

Galvanizedsteelcontainer Drop-off 2 87 Steel

Plasticcontainer Curbside 1.1 100 HDPE

Plasticbag Door-to-door 0.019 0.01 LDPE

PackagingWasteRate,[PWR]i:Packagingwasterateisdefined

as the percentage of packaging material sent to reprocessing facilities.

[PWR]i(%)= weightofsortedrecyclablepackagingwaste weightoftotalmunicipalhouseholdsolidwaste

(6)

Ona voluntarycollectionsystem,publicparticipationrateis directlyand indirectlyrelated toseveralfactors suchas collec-tionfrequency,materialscollected,collectionday,sizeofhousing, compulsoryseparatecollection,socio-economiclevel,education andpromotion,economic factors,socio-demographic character-istics, publicity and information provided to residents, history andcontextofscheme,collectionvehicle,provisionofcollection container(Gallardoet al., 2012a;Dahlénand Lagerkvist, 2010; Thomas,2001;Woodardetal.,2005;Lober,1996).Forinstance, Whiteetal.(1995)indicatedthatcitizens’motivationswere eas-ilyinfluenced by collectionfrequency soit affectedthesystem directly.Also,NoehammerandByer(1997)foundthatincrement onthenumberofseparatedfractiondecreasedtheparticipation rate. Another important factor is the property-close collection system.Gallardoetal. (2012a) showedthat in Spain participa-tionrateofthecitizensdecreasedwhendistancetothedeposit point increased. In the same way Dahlén et al. (2008) made an observationondifferent household waste collectionsystem designinSwedishandfoundthatwhenseparatedpackaging col-lectedfromthepointsclosetotheproperty,higheramountsof sortedmetalplasticandpaperpackagingcollectedthandrop-off points.

Inthisstudy,oncalculationofthescenarios’participationrate, weassumedthattherewerenochangesonthesocio-economicand educationlevelofthecitizensandsocio-demographic characteris-ticofthestudiedarea.Collectiondayandcollectionfrequencywere alsonottakenintoaccount.Itwasassumedthatonlydistanceto collectionpointandnumberoffractionsaffectedtheparticipation rateofthecitizens.However,asaresultoffractionatedcollection ofthepackagingmaterials,differentwastagerateswereestimated. Duetothemixedcollectionofpackagingmaterialssuchas paper-cardboard,plastic,metalandglasswaste,wastagerateshouldbe includedtocalculations.

Atfirst,selectedindicatorswerecalculatedfortheexisting sce-nario.SpecificWasteGenerationRateandSourceSeparationRate werecalculatedbyusingreleatedequationsandtheresultingdata isgiven inTable 1.Thechallenging partwasthecalculationof participationrate(PR).PRwasassumedtoberelatedtoonlytwo variablessuchasnumberoftheparticipatedbuildingsand apart-ments.Becauseofthevoluntary-basedcollectionsystem,notevery buildingonthestreetsandnoteveryapartmentinbuildingswerea partofthesystem.However,asaresultofaddress-basedcollection system,itwasknownhowmanybuildingsandapartments partic-ipatedtothesystem.Soparticipationratiosweredeterminedby usingthesedata.

Ontheestimationofthescenarioindicators,firstparticipation rateandthenseparationrateweredetermined.PRvaluesofthe scenarioswereestimatedbyconsideringthesocio-demographic characteristicsofthearea,educationlevelandwillingnessofthe

citizens.Inaccordancewiththeseresults,collectionratewas cal-culatedbyusingEq.(7).

[PRa]i [PRa]0 × [PRb]i [PRb]0 × [ESR]i [ESR]0 = [SR]i [SR]0 (7) Theestimatedparticipation,collection,wastageandtreatable materialrateusedinthescenariosarepresentedinTable5. Poten-tialamountofrecyclablematterwastaken25%ofthetotalamount ofwastegeneratedinallscenariosandyears.Fortheestimation oftheparticipationrate,existingsystem’scollectionratewas cal-culatedas2%thenparticipationratewascalculatedas8%.Forthe scenarios1,2and3participationratesweredeterminedbasedon datafromtheexistingsystemandtargetsaimedbyTurkish Legisla-tiveDecreewhereasfortheotherscenariosliteraturereviewswere used.Moreover,foreachscenarioitwasassumedthatparticipation ratewouldbeincreasedyearbyyearconsideringtheincrementon thesocialawarenessofcitizens.

2.2.5. Calculationofemissions

AllmobileemissionswerecalculatedusingIPCCTrier1 method-ology(IPCC,2006).EmissionfactorweretakenfromEEA(2013). AirborneemissionswerecalculatedusingEq.(8).

Ei=



j





m (FCj,mxEFi,j,m)



(8) where Ei: ‘emissionofpollutanti(g)

FCj,m: fuelconsumptionofveichlecategoryjusingfuelm(kg)

EFi,j,m: fuelconsumption-specificemissionfactorofpollutanti

forvehiclecategoryjandfuelm(g/kg). 2.3. LifeCycleImpactAssessment

Afterinventoryanalysis,impactassessmentstepfollows. CML-IAmethodwasusedtodeterminetheenvironmentalimpactsof thesystems.Followingimpactcategorieswereselectedto indi-catetheenvironmentaleffectsofthecomparedsystems:Abiotic resourcedepletion(mineralsandfossilfuels),acidification,global warmingpotential(20aand100a),Ozonelayerdepletion, photo-chemicaloxidationcreationpotential,eutrophication.Definitionof impactassessmentindicatorsisillustratedinTable6.

Moreover, single score analysis were performed via EDIP, IMPACT2002+,EPS,RECIPE(endpoint)methodswhicharethemost widelyusedLifeCycleImpactAssessment(LCIA)methodologieson solidwastemanagementsystems(Laurentetal.,2014b).

2.4. Interpretation

Generally,inthisstep,allfindingsareanalyzed,completeness, sensitivityandconsistencychecksareperformedandconclusions, limitationsand recommendationsaredrawninagreementwith goal/scopeofstudy.Interpretationstageofthisstudyisdiscussed inthefollowingsections.

(7)

Table5

Calculatedandestimatedindicatorsofexistingsystemandalternativescenarios.

Scenario Participationrate(%) Sourceseparationrate(%) Wastagerate(%) Recyclablewasterate(%)

Existingsystem 3.20 2.09 18.51 1.70 Scenario1 3.87 2.53 18.51 2.06 Scenario2 3.53 2.30 40.00 1.38 Scenario3 2.89 1.89 8.20 1.73 Scenario4 2.89 1.89 7.90 1.74 Scenario5 2.59 1.69 18.51 1.38 Scenario6 2.59 1.69 8.20 1.55 Scenario7 1.80 1.18 18.51 0.96 Scenario8 1.80 1.18 8.20 1.08 Table6

Definitionofimpactassessment.

Impactassessmentindicators Definition Unit Method

Abioticresourcedepletion Relatedtoextractionofmineralsandfossilfuelsdueto inputsinthesystem

kgSbeqMJ CML-IA Acidification Relatedtonitricacid,sulfuricacid,sulfurtrioxide,

hydrogenchloride,hydrogenfluoride,phosphoricacid andhydrogensulfide

kgSO2eq CML-IA

Globalwarmingpotential

(20a) in

Relatedtoemissionsofgreenhousegasestoair

kgCO2eq IPCC2007

(100a) CML-IA

Stratosphericozonedepletion RelatedtoemissionsofCFCs kgCFC-11eq CML-IA Photo-oxidantformation Relatedtoformationofreactivesubstances(mainly

ozone)

kgC2H4eq CML-IA

Eutrophication RelatedtomainlywithCH4andCO2emissions kgPO43−eq CML-IA

3. Resultsanddiscussion

3.1. Collectionandtransportationanalysis

Theresultsofcollectionandtransportationanalysisaregiven in Table 7. Considering the fuel consumption, S5 where waste wascollectedin2fractionswithcurbsidecollectionsystem,had minimumfuelusageamount.Ontheotherhand,inthefour frac-tionateddoor-to-doorcollectionsystem(S4),fuelwasusedalmost 3timeshigherthanS2.Alsoitisclearthatalldoor-to-door col-lection systems had more fuel consumption than curbside and drop-offsystems.Comparedwithcurbsidecollectionsystem,there wasalsoacleardifferenceondrop-offfuelusage.Material con-sumptionamountsofscenariosweredifferentiatedwithmaterial type.Amongthegalvanizedsteelcontainerused-scenarios,S5had theminimummaterialusagewhere S8had themaximum.This mainlydependedoncollectedwasteamountandthenwaste frac-tionation.Similarly,inplasticbagused-scenarios,one-fractionated scenario(S2)hadminimummaterialconsumptionwhereas four-fractionatedscenario(S4)hadmaximumconsumption.Waterand electricityconsumptionswererelatedwithonlysortingactivity. Therefore, fractionationof wasteatsource wasthedominating factor. Whenwastes werecollectedin three and fourfractions (Scenarios3and4),sortingactivitywasminimized.InScenario2, wasteswerecollectedinasinglefraction,andsowater-electricity consumptionincreased.Inthesameway,landfilledwasteamount was related with fractionated collection. If wastes were sepa-ratedefficiently,wastageamountwoulddecrease.Hence,landfilled wasteamountwouldalsodecrease.BecauseS3andS4had mini-mumwastageamount,landfillingwasalsominimumwhileS2had thehighest landfilledwasteamount.AsseeninTable7, advan-tageousscenarioswereS5,S4andS3regardingtheconsumption data.

3.2. Environmentalimpactanalysis(EIA)

Waste collection, transportation and sorting analysis input data were introduced to SimaPro software to quantify the

environmental impactindicators according to theexisting sys-temandalternativescenarios.Table8summarizestheresultsof existingsystemandeachscenariointermsofeightimpact indica-torsmentionedinSection2.3.TheresultsofCML-IAmethodwere schematicallyshowninFig.3a–h.

Inthisstudyavoidedimpactsarebiggerthanaddedimpacts because the recycling system saves raw material, decreases energy and water consumption and also avoids the emissions related to these activities. Consequently, impact assessment indicators may have negative values suggesting environmental benefits.

3.2.1. Abioticdepletionpotential(ADP)

The contributiontotheabiotic depletionimpactcategory is mainlyduetotheextractionofmineralsandthefuelconsumption duringthecollectionandtransportationofthewastetothesorting andfinallytotherecyclingcenter.Consideringtheabiotic deple-tionassociatedwithmineralconsumption,thebaselinescenario impactsslightlydifferedfromthescenariosS2,S3,S4whereas sce-nariosS1,S5,S6,S7,andS8weresignificantlydifferent(Fig.3a).The maindifferencebetweenthesescenarioswasmetalconsumption duetothecontainerusage.

InFig.3benergyrelatedabioticdepletionwasshown. Environ-mental profilewasalmostthesamefor existingsystemand all scenarios.However,ES, S5andS2werethefirstthree environ-mentallybeneficialscenarioswhereasS4,S8andS3weretheleast effective.Sincethecollectionandtransportationsystemforeach scenariowasnotthesame,consumptionsofresourcessuchasfossil fuelandelectricitywerealsodifferent.

3.2.2. Acidificationpotential(AP)

Thenetcontributiontothisimpactcategorywasdominatedby thefuelconsumptionassociatedwiththecollectionand transporta-tionofwaste.ESandS6hadtheleastscoreonacidificationbecause thefuelconsumptionandrelatedemissions(NOx,SOxandNH3)

werelessthanotherscenarios.However,S4,S8andS3had the biggestscoreonacidification(Fig.3c).

(8)

Fig.3. Comparativeanalysisofalternativescenariosandexistingsystemintermsof(a)abioticdepletion(minerals),(b)abioticdepletion(fossilfuels),(c)acidification,(d) globalwarming(20a),(e)globalwarming(100a),(f)ozonelayerdepletion,(g)photochemicaloxidation(h)eutrophication.

(9)

Table7

Resourceconsumptionandavoidedproductdataofexistingsystemandalternativescenarios. Avoidedproduct (kg) Landfilling(kg) Water consumption(m3) Fuelconsumption (kg) Material consumption(p) Electricity consumption(kWh) ES 0.871 0.314 0.396 10.111 275.973 9.760 S1 0.871 0.314 0.396 14.037 218.682 9.760 S2 0.876 0.524 0.458 11.079 185.128 11.723 S3 0.865 0.211 0.353 17.356 324.222 8.675 S4 0.864 0.211 0.352 30.831 335.201 8.663 S5 0.864 0.321 0.396 44.349 0.059 9.760 S6 0.863 0.213 0.353 13.378 0.090 8.675 S7 0.864 0.321 0.396 27.269 0.096 9.760 S8 0.863 0.213 0.353 40.147 0.146 8.675 Table8

Impactassessmentresultsofexistingsystemandscenarios.

Impactcategory Unit ES S1 S2 S3 S4 S5 S6 S7 S8

Abioticdepletion kgSbeq −1.14E−03 −8.79E−04 −1.18E−03 −1.17E−03 −1.17E−03 −9.32E−04 −8.13E−04 −9.55E−04 −8.45E−04 Abioticdepletion

(fossilfuels)

MJ −1.11E+04 −1.08E+04 −1.09E+04 −9.78E+03 −9.21E+03 −1.09E+04 −1.06E+04 −1.01E+04 −9.27E+03 Globalwarming

(GWP20a)

kgCO2eq −6.95E+01 −6.14E+01 3.26E+01 −8.81E+01 −6.96E+01 −5.86E+01 −1.00E+02 −3.82E+01 −7.16E+01

Globalwarming (GWP100a)

kgCO2eq −3.54E+02 −3.32E+02 −1.98E+02 −3.37E+02 −2.80E+02 −3.29E+02 −3.79E+02 −2.68E+02 −2.88E+02

Ozonelayer depletion(ODP)

kgCFC-11eq −2.56E−05 −2.55E−05 −2.48E−05 −2.07E−05 −1.80E−05 −2.54E−05 −2.45E−05 −2.13E−05 −1.80E−05 Humantoxicity kg1,4-DBeq −2.22E+02 −1.47E+02 −2.34E+02 −2.26E+02 −2.24E+02 −1.58E+02 −1.24E+02 −1.64E+02 −1.33E+02 Terrestrial

ecotoxicity

kg1,4-DBeq −3.89E−01 −3.22E−01 −3.78E−01 −4.10E−01 −4.12E−01 −3.52E−01 −3.26E−01 −3.56E−01 −3.30E−01 Photochemical

oxidation

kgC2H4eq −1.92E−01 −1.82E−01 −1.62E−01 −1.62E−01 −1.49E−01 −1.78E−01 −1.83E−01 −1.55E−01 −1.33E−01

Acidification kgSO2eq −3.53E+00 −3.47E+00 −3.29E+00 −2.61E+00 −1.93E+00 −3.54E+00 −3.37E+00 −2.79E+00 −2.21E+00

Eutrophication kgPO43−eq 2.19E−01 2.31E−01 7.83E−01 3.82E−02 1.08E−01 2.29E−01 −2.91E−02 3.07E−01 9.09E−02

3.2.3. Globalwarmingpotential(GWP)

Thegreenhousegases,suchasmethaneescapedfromthelandfill gascollectionsystemsandcarbondioxideemittedfrom consump-tionoffuelswereresponsibleforglobalwarming.Consideringthe globalwarmingpotential(GWP20a),acleardifferencewasfound betweenS6,S3,S8andothers.Duetothecumulativeimpactofthe landfillingandfuelconsumption,S6hadtheminimumscorewhere S7andS2hadthehighestenvironmentalimpact(Fig.3d).

AsseeninFig.3e,forGWP100a,S6wasstillthebestscenario whereas S2wastheworst.Although Fig.3d and enumerically seemeddifferent,therankingof thescenariosfor GWP20aand GWP100awerethesame.Environmentaleffectsofthesetwo indi-catorsonlydifferedinthetimeperiodbeing20yearsand100years, respectively.

3.2.4. Ozonelayerdepletionpotential(ODP)

Ozonelayerdepletionpotentialhadasimilartendencyto acid-ification potentialbecause both impact indicators weremainly associatedwiththetransportationactivity.Amongthecollection systems, S4, S8, S3 and S7 had the highest fuel consumption amounts.Therefore,thesescenarioshadthebiggestcontribution toozonelayerdepletion.Incontrast,ES,S1,S6andS5werethe mostbeneficialscenarios(Fig.3f).

3.2.5. Photochemicaloxidationcreationpotential(POCP)

Photochemical oxidation creation potential impact category depends largelyontheamountsof carbonmonoxide (CO), sul-fur dioxide (SO2), nitrogen oxide (NO), ammonium (NH3) and

non-methane volatile organic compounds (NMVOC). The most dominating inputs for photochemical oxidation were fuel con-sumption,materialconsumptionandfinallylandfilling.Therefore, S6,ESandS5werethefirstthreeenvironmentallybeneficial sce-narioswhereasS8andS7werethelast(Fig.3g).

3.2.6. Eutrophicationpotential(NP)

Landfillingwasthemainfactorforeutrophicationpotential.As statedinFig.3h,S6,S3andS8werethemostbeneficialscenarios comparedwiththeotherswhereS2hadthehighestenvironmental impact.

In brief, with respect to the air pollution indicators (GWP, POCP,AP,ODP)ESandS6seemtobethebestalternatives. Con-sideringthewaterpollutionindicators(EP)bestresultsachieved in S6 whereas resource consumption indicators (ADP) showed thatS2wasmorebeneficialtoavoidmineralresource consump-tion and ES was advantageous on avoiding fuel consumption. In generalaspect, the existing system (ES) may be considered to be one of the best performing method among the alterna-tivescenariosfollowedbythecurbsidecollectionsystemsS6and S5; ontheotherhandS2 wastheenvironmentallyleast favor-able.

In the light of the facts mentioned above, each impact assessmentindicatorwasanalyzedindividuallycomplicatingthe decision-makingprocessforauthoritiesinMSWS.Inorderto pro-posearationalsolution,thescoresmustbeaggregatedtoreacha cumulativevalue.Forthisreason,fourdifferentsinglescore evalu-ationmethodswerealsoperformedinthisstudyandexplainedin thefollowingsection.

3.3. Impactassessmentmethodologyanalysis

InordertochecktheconsistencyofCML-IAmethodresults,four diverseimpactassessmentmethodsnamelyEDIP,IMPACT2002+, EPS,andRECIPE(E)werealsoconducted.Theresultsofeachmethod wereshowninTable9andthenrankedaccordingtotheir envi-ronmentalperformanceinTable10.EvenCMLimpactassessment methodresultsdidnotrevealasignificantlyfavorablescenario,the singlescoreresultsindicatedthattheexistingscenariowasthebest optioninfourdifferentaspects.SimilartoCML-IAresultscurbside

(10)

Table9

Singlescoreresultsofdifferentimpactassessmentmethodologies.

Method ES S1 S2 S3 S4 S5 S6 S7 S8

EDIP −8.69E−01 −7.95E−01 −6.53E−01 −7.78E−01 −5.87E−01 −8.02E−01 −8.26E−01 −6.29E−01 −6.12E−01 IMPACT2002 −1.91E−01 −1.82E−01 −1.73E−01 −1.66E−01 −1.47E−01 −1.86E−01 −1.84E−01 −1.63E−01 −1.47E−01 EPS −4.06E+02 −2.56E+02 −4.04E+02 −3.96E+02 −3.76E+02 −2.79E+02 −2.18E+02 −2.71E+02 −2.03E+02 RECIPEH −1.49E+01 −1.38E+01 −9.93E+00 −1.33E+01 −1.08E+01 −1.39E+01 −1.50E+01 −1.11E+01 −1.09E+01

Table10

Rankingsofsinglescoreresultsofdifferentimpactassessmentmethodologies. Ranking EDIP IMPACT2002+ EPS RECIPE(E)

1 ES ES ES ES 2 S6 S5 S2 S5 3 S5 S6 S3 S1 4 S1 S1 S4 S6 5 S3 S2 S5 S2 6 S2 S3 S7 S3 7 S7 S7 S1 S7 8 S8 S8 S6 S4 9 S4 S4 S8 S8

collectionsystem(S5andS6)wasthesecondlywellperforming scenarioinallmethodsexceptEPSmethodology.

4. Conclusion

Inthisstudy,acomprehensiveanalysisofsourceseparation, collectionandtransportationsystemofpackagingwasteswas per-formedviaLCAmethodologyforthefirsttimeinIstanbul,Turkey. Theresultsareexpectedtoconstructareferencepointforfurther studiesandpoliciestobedevelopedbydecision-making authori-ties.

Themajorfindingsofthisstudyare:

• Theenvironmentalperformance ofexisting systemhasbetter scoresfor fiveout ofeight indicators calculatedwith CML-IA method.However,therankingmaychangeaccordingtowhich indicatorsaretakenintoconsiderationbydecision-makers.For thisreason,thereisnotabestoptionclaimedinthisstudyfor CML-IAmethod.

• Sincetheperformanceofthescenariosdramaticallychangeswith theassumptions, onecanbemisled abouttheresults accord-ingtothevariables taken intoconsideration. For this reason, thescientific basis of assumptions plays a crucial role in the evaluationprocess.Asstatedinthisstudy,neitherofthe alter-nativescenariosperformedbetterthantheexistingsystem.But evenaslightchangeoftheassumptionslikeparticipationrate ormaterialtypemayresultinanenvironmentallymore benefi-cialoutcome.Toevaluatemorerealisticresults,thestudymaybe broadenwithaddingthefactorslikesocioeconomiclevel, edu-cation,socio-demographiccharacteristics,collectionfrequency, collectionmaterials.

• Almostallimpactassessmentindicators havenegativevalues suggesting environmental benefits. By all manner of means, separationofpackagingmaterialswasalwaysenvironmentally beneficialregardlessofthecollectionsystem.

• Whenresourceconsumption datawereanalyzedwithoutLCA methodology,curbsidecollectionsystemperformedbetterthan door-to-door and drop-off collection systems. However, LCIA resultshowed that door-to-door collection systemwas more advantageous than curbside and drop-off systems. Addition-ally,fractionatedcollectionsystemswerecompared.Although, collection of waste in three and four fractions reduced the wastageamount,collectionintwofractionsperformedbetterin alltypesofcollectionsystems.Amongthestudiedmodels,two

fractionateddoor-to-doorsystem(ES)andtwofractionated curb-sidesystem(S5)wereenvironmentallyoptimummodels. • Sinceeachimpactassessmentindicatorwasanalyzed

individ-ually, numerous parameters for decision-makers to takeinto considerationexist.Inordertoproposearationalsolution,the scoresmustbeaggregatedtoreachacumulativevalue. Accord-ingtofourdifferentsinglescoreevaluationmethods,theexisting systemwasprovedtobetheenvironmentallyoptimumsolution.

Acknowledgements

Theauthorswould liketothank MaltepeMunicipality Envi-ronmental Protection and Control Department for providing requireddata.ResearchgrantfromMarmaraUniversityScientific ResearchProjectCoordinationUnit(BAPKO) FEN-C-DRP-150513-0186projectisalsoacknowledged.

References

ABPRSR,2012.AddressBasedPopulationRegistrationSystemResults.Turkish StatisticalInstitute.

Agunwamba,J.C.,2003.Analysisofscavengers’activitiesandrecyclinginsome citiesofNigeria.Environ.Manag.32(1),116–127.

AYEP,2008.AtıkYönetimiEylemPlanı.C¸evreveOrmanBakanlı˘gıC¸evreYönetimi GenelMüdürlü˘gü(inTurkish).

AYY,2015.AtıkYönetimiYönetmeli˘gi.T.C.ResmiGazete29314(Nisan)(in Turkish).

Al-Maaded,M.,Madi,N.K.,Kahraman,R.,Hodzic,A.,Ozerkan,N.G.,2012.An overviewofsolidwastemanagementandplasticrecyclinginQatar.J.Polym. Environ.20,186–194.

Banar,M.,Cokaygil,Z.,Ozkan,A.,2009.Lifecycleassessmentofsolidwaste managementoptionsforEskisehir,Turkey.WasteManag.29,54–62. BK,1930.BelediyeKanunu.T.C.ResmiGazete1471(Nisan)(inTurkish). Boer,J.,Boer,E.,Jager,J.,2007.LCA-IWM:adecisionsupporttoolforsustainability

assessmentofwastemanagementsystems.WasteManag.27,1032–1045. Bovea,M.D.,Ibá ˜nez-Forés,V.,Gallardo,A.,Colomer-Mendoza,F.J.,2010.

Environmentalassessmentofalternativemunicipalsolidwastemanagement strategies:aSpanishcasestudy.WasteManag.30,2383–2395.

Bovea,M.D.,Powellb,J.C.,2006.Alternativescenariostomeetthedemandsof sustainablewastemanagement.J.Environ.Manag.79,115–132. Dahlén,L.,Åberg,H.,Lagerkvist,A.,Berg,P.E.O.,2008.Inconsistentpathwaysof

householdwasteandtheimportanceofcollectionsystemdesign.Waste Manag.29,1798–1806.

Dahlén,L.,Lagerkvist,A.,2010.Evaluationofrecyclingprogramsinhousehold wastecollectionsystems.WasteManag.Resour.28,577–586.

Dahlén,L.,Vukicevic,S.,Meijer,J.-E.,Lagerkvist,A.,2007.Comparisonofdifferent collectionsystemsforsortedhouseholdwasteinSweden.WasteManag.27, 1298–1305.

EEA,2013.EMEP/EEAAirPollutantEmissionInventoryGuidebook2013.EEA TechnicalReportNo12/2013.EuropeanEnvironmentAgency.

ErsesYay,A.S.,2015.ApplicationofLifeCycleAssessment(LCA)formunicipalsolid wastemanagement:acasestudyofSakarya.J.Clean.Prod.94,284–293. Gallardo,A.,Bovea,M.D.,Colomer,F.,Prades,M.,Carlos,M.,2010.Comparisonof

differentcollectionsystemsforsortedhouseholdwasteinSpain.Waste Manag.31,379–406.

Gallardo,A.,Prades,M.,Bovea,M.D.,Colomer,F.J.,2012a.SeparateCollection SystemsforUrbanWaste(UW).ManagementofOrganicWaste,ISBN 978-953-307-925-7.

Gallardo,A.,Bovea,M.D.,Colomer,F.J.,Prades,M.,2012b.Analysisofcollection systemsforsortedhouseholdwasteinSpain.WasteManag.32,1623–1633. Gellynck,X.,Jacobsen,R.,Verhelst,P.,2011.Identifyingthekeyfactorsin

increasingrecyclingandreducingresidualhouseholdwaste:acasestudyof theFlemishregionofBelgium.J.Environ.Manag.92,2683–2690. Giugliano,M.,Cernuschi,S.,Grosso,M.,Rigamonti,L.,2011.Materialandenergy

recoveryinintegratedwastemanagementsystems:anevaluationbasedonlife cycleassessment.WasteManag.31,2092–2101.

Gomes,A.,Matos,M.,Carvalho,I.,2008.Separatecollectionofthebiodegradable fractionofMSW:aneconomicassessment.WasteManag.28,1711–1719.

(11)

Guereca,L.P.,Gasso,S.,Baldasano,J.M.,Jiménez-Guerrero,P.,2006.Lifecycle assessmentoftwobiowastemanagementsystemsforBarcelona,Spain. Resour.Conserv.Recycl.49(1),32–48.

Heravi,H.M.,Kannan,N.,Makmom,A.,Sabour,M.R.,2013.Evaluatingsustainable wastemanagement(householdwaste)inTehran,Iran.Aust.J.BasicAppl.Sci.7 (7),207–215,ISSN1991-8178.

Hong,J.,Li,X.,Zhaojie,C.,2010.Lifecycleassessmentoffourmunicipalsolidwaste managementscenariosinChina.WasteManag.30,2362–2369.

Iriarte,A.,Gabarell,X.,Rieradevall,J.,2009.LCAofselectivewastecollection systemsindenseurbanareas.WasteManag.29,903–914.

IPCC,2006.Guidelinesfornationalgreenhousegasinventories.In:Eggleston,H.S., Buendia,L.,Miwa,K.,Ngara,T.,Tanabe,K.(Eds.),PreparedbytheNational GreenhouseGasInventoriesProgramme.IGES,Japan.

ISO,2006a.ISO14040internationalstandard.In:EnvironmentalManagement– LifeCycleAssessment–PrinciplesandFramework.InternationalOrganisation forStandardization,Geneva,Switzerland.

ISO,2006b.ISO14044internationalstandard.In:EnvironmentalManagement– LifeCycleAssessment–RequirementsandGuidelines.International OrganisationforStandardisation,Geneva,Switzerland.

Kaciak,E.,Kushner,J.,2009.Determinantsofresidents’recyclingbehaviour.Int. Bus.Econ.Res.J.8(8).

KAKY,1991.KatıAtıklarınKontrolüYönetmeli˘gi.T.C.ResmiGazete120814(Mart) (inTurkish).

KAAP,2007.KatıAtıkAnaPlanıNihaiRaporCiltI.C¸evreveOrmanBakanlı˘gı(in Turkish).

Larsen,A.W.,Merrild,H.,Moller,J.,Christensen,T.H.,2010.Wastecollection systemsforrecyclables:anenvironmentalandeconomicassessmentforthe municipalityofAarhus(Denmark).WasteManag.30,744–754.

Laurent,A.,Bakas,I.,Clavreul,J.,Bernstad,A.,Niero,M.,Gentil,E.,Hauschild,M.Z., Christensen,T.H.,2014a.ReviewofLCAstudiesofsolidwastemanagement systems–partI:lessonslearnedandperspectives.WasteManag.34, 573–588.

Laurent,A.,Clavreul,J.,Bernstad,A.,Bakas,I.,Niero,M.,Gentil,E.,Christensen,T.H., Hauschild,M.Z.,2014b.ReviewofLCAstudiesofsolidwastemanagement systems–partII:methodologicalguidanceforabetterpractice.WasteManag. 34,589–606.

Lober,J.,1996.Municipalsolidwastepolicyandpublicparticipationinhousehold sourcereduction.WasteManag.Res.14(2),125–143.

MBFR,2013.MaltepeBelediyesiFaaliyetRaporu-2012.Türkiye, ˙Istanbul,Maltepe BelediyesiStratejiMüdürlü˘gü(inTurkish).

Martin,M.,Williams,I.D.,Clark,M.,2006.Social,culturalandstructuralinfluences onhouseholdwasterecycling:acasestudy.Resour.Conserv.Recycl.48, 357–395.

McDonald,S.,Ball,R.,1998.Publicparticipationinplasticsrecyclingschemes. Resour.Conserv.Recycl.22,123–141.

Menikpura,S.N.M.,Gheewala,S.H.,Bonnet,S.,Chiemchaisri,C.,2012a.Evaluation oftheeffectofrecyclingonsustainabilityofmunicipalsolidwaste managementinThailand.WasteBiomassValor.,http://dx.doi.org/10.1007/ s12649-012-9119-5.

Menikpura,S.N.M.,Gheewala,S.H.,Bonnet,S.,2012b.Sustainabilityassessmentof municipalsolidwastemanagementinSriLanka:problemsandprospects.J. Mater.CyclesWasteManag.,http://dx.doi.org/10.1007/s10163-012-0055-z.

Noehammer,H.C.,Byer,P.H.,1997.Effectofdesignvariablesonparticipationin residentialcurbsiderecyclingprograms.WasteManag.Res.15(4),407–427. Omran,A.,Mahmood,A.,AbdulAziz,H.,Robinson,G.M.,2009.Investigating

householdsattitudetowardrecyclingofsolidwasteinMalaysia:acasestudy. Int.J.Environ.Res.3,275–288.

Otitoju,T.A.,2014.Individualattitudetowardrecyclingofmunicipalsolidwastein Lagos,Nigeria.Am.J.Eng.Res.03(07),78–88.

Özeler,D.,Yetis,Ü.,Demirer,G.N.,2006.Lifecycleassessmentofmunicipalsolid wastemanagementmethods:Ankaracasestudy.Environ.Int.32,405–411. Panaretou,V.,Malamis,D.,Moustakas,K.,Valta,K.,Margaritis,M.,Loizidou,M.,

2014.ImplementationandevaluationofaMSWmanagementschemein Pyrgos&PanormosBaycommunitiesinTinosIsland,Greece.In:The2nd InternationalConferenceonSustainableSolidWasteManagement.

Perrin,D.,Barton,J.,2001.Issuesassociatedwithtransforminghouseholdattitudes andopinionsintomaterialsrecovery:areviewoftwokerbsiderecycling schemes.Resour.Conserv.Recycl.33,61–74.

Read,A.D.,1999.Aweeklydoorsteprecyclingcollection,Ihadnoideawecould! Overcomingthelocalbarrierstoparticipation.Resour.Conserv.Recycl.26, 217–249.

Rebitzera,G.,Ekvall,T.,Frischknecht,R.,Hunkeler,D.,Norris,G.,Rydberg,T., Schmidt,W.P.,Suh,S.,Weidema,B.P.,Pennington,D.W.,2004.Lifecycle assessmentPart1:framework,goalandscopedefinition,inventoryanalysis, andapplications.Environ.Int.30,701–720.

Rigamonti,L.,Grosso,M.,Giugliano,M.,2009.Lifecycleassessmentforoptimising thelevelofseparatedcollectioninintegratedMSWmanagementsystems. WasteManag.29,934–944.

Rives,J.,Rieradevall,J.,Gabarell,X.,2010.LCAcomparisonofcontainersystemsin municipalsolidwastemanagement.WasteManag.30,949–957.

Sanneh,E.S.,Hu,A.H.,Chang,Y.M.,Sanyang,E.,2011.Introductionofarecycling systemforsustainablemunicipalsolidwastemanagement:acasestudyonthe greaterBanjulareaoftheGambia.Environ.Dev.Sustain.13,1065–1080. Skordilis,A.,2004.Modellingofintegratedsolidwastemanagementsystemsinan

island.Resour.Conserv.Recycl.41,243–254.

Soderman,M.L.,2003.Includingindirectenvironmentalimpactsinwaste managementplanning.Resour.Conserv.Recycl.38,213–241.

Tai,J.,Zhang,W.,Che,Y.,Feng,D.,2011.Municipalsolidwastesource-separated collectioninChina:acomparativeanalysis.WasteManag.31,1673–1682. Teerioja,N.,Moliis,K.,Kuvaja,E.,Ollikainen,M.,Punkkinen,H.,Merta,E.,2012.

Pneumaticvs.door-to-doorwastecollectionsystemsinexistingurbanareas:a comparisonofeconomicperformance.WasteManag.32,1782–1791. Tchobanoglous,G.,Kreith,F.,2002.HandbookofSolidWasteManagement.

McGraw-Hill,NewYork.

Thomas,C.,2001.Publicunderstandinganditseffectonrecyclingperformancein HampshireandMiltonKeynes.Resour.Conserv.Recycl.32,259–274. UHK,1930.UmumiHıfzıssıhhaKanunu.T.C.ResmiGazete1489(Mayıs)(in

Turkish).

Weitz,K.,Barlaz,M.,Ranjithan,R.,Brill,D.,Thorneloe,S.,Ham,R.,1999.Lifecycle managementofmunicipalsolidwaste.Int.J.LifeCycleAssess.4(4),195–201. White,P.,Franke,M.,Hindle,P.,1995.IntegratedSolidWasteManagement:A

Life-CycleInventory.BlackieAcademic&Professional,Glasgow. Woodard,R.,Bench,M.,Harder,M.K.,2005.ThedevelopmentofaUKkerbside

Referanslar

Benzer Belgeler

The study further based its scopes on single family postmodern residential buildings in the Northeast and Northwest region with emphasis on architecture, which comprises

Şehzadenin rüyada görerek âşık olması ve Senuber’in rüyada görerek Gül’e âşık olması ve sevdiğini bulmak için Hıtâ’ya gitmek sevdiğini bulmak için

İsmet Zeki Eyüboğlu’nun yeni kitabı «İnsanın Boyut- larunı bir baş ucu yapıtı yapacaksınız, başka çare yok.... Öyle, ele bir alınışta sonuna

Onüç yaþ altýndaki 11 dirençli þizofreni olgusu ile yapýlan bir araþtýrmada istatistiksel olarak tüm parametrelerde, pozitif belirtiler baþta olmak üzere belirgin azalma

Ayrıca gözlem ve görüşme aracılığıyla da kaynaştırma öğrencisinin neyi, nasıl yaptığıyla ilgili sınıf öğretmenlerinin tespitleri de alanyazınla

Sonuç: Kan grubunun bireysel hassasiyet faktörü olduğu düşünülerek, bilateral sensörinöral işitme kaybı nedeniyle koklear implant yapılan hastalarda kan grupları ve

The Physical and Chemical Characterisation of Municipal Solid Waste Samples The natural water content, the natural water content, organic matter content, specific gravity and

This paper studies the profile of people who are involved in recycling activities and examines the factors influencing household recycling participation.. The