• Sonuç bulunamadı

Analysis of amplitude modulation atomic force microscopy in aqueous salt solutions

N/A
N/A
Protected

Academic year: 2021

Share "Analysis of amplitude modulation atomic force microscopy in aqueous salt solutions"

Copied!
5
0
0

Yükleniyor.... (view fulltext now)

Tam metin

(1)

ContentslistsavailableatScienceDirect

Applied

Surface

Science

j o ur na l ho me pa g e :w w w . e l s e v i e r . c o m / l o c a t e / a p s u s c

Analysis

of

amplitude

modulation

atomic

force

microscopy

in

aqueous

salt

solutions

Pınar

Karayaylalı

a

,

Mehmet

Z.

Baykara

a,b,∗

aDepartmentofMechanicalEngineering,BilkentUniversity,Ankara06800,Turkey

bUNAM-InstituteofMaterialsScienceandNanotechnology,BilkentUniversity,Ankara06800,Turkey

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received13November2013

Receivedinrevisedform15January2014 Accepted6February2014

Availableonline19February2014 Keywords:

Atomicforcemicroscopy Imagingofbiomaterials Electrostaticdoublelayerforces

a

b

s

t

r

a

c

t

Wepresentanumericalanalysisofamplitudemodulationatomicforcemicroscopyinaqueoussalt solu-tions,byconsideringtheinteractionofthemicroscopetipwithamodelsamplesurfaceconsistingofa hardsubstrateandsoftbiologicalmaterialthroughHertzandelectrostaticdoublelayerforces.Despitethe significantimprovementsreportedintheliteratureconcerningcontact-modeatomicforcemicroscopy measurementsofbiologicalmaterialduetoelectrostaticinteractionsinaqueoussolutions,ourresults revealthatonlymodestgainsof∼15%inimagingcontrastathighamplitudesetpointsareexpected undertypicalexperimentalconditionsforamplitudemodulationatomicforcemicroscopy,togetherwith relativelyunaffectedsampleindentationandmaximumtip–sampleinteractionvalues.

©2014ElsevierB.V.Allrightsreserved.

1. Introduction

Sinceitsinventionmorethantwodecadesago,atomicforce microscopy(AFM)hasbecomethemostwidelyutilizedmember ofthescanningprobemicroscopyfamilyinresearchandindustrial laboratoriesaroundtheworld[1,2].Akeyfactorinthewidespread useofAFMisitsabilitytoimagematerialsurfaceswith(sub)-nm resolutioninalargenumberofenvironmentalconditions,ranging fromultrahighvacuum(UHV)toambientandliquids.While imag-inginUHVusingcertainoperationalmodesofAFMhasallowed atomic-resolutionimagingofatomicallyflatandcleansurfaces[3], themainmotivationbehindoperatinginliquidshasbeenthegoal ofhigh-resolutionimagingofbiologicalmaterialsuchascell mem-branes,DNA, and variousfibrous andglobular proteinsin their naturalstates,withoutstructuraldeformationscausedbyvacuum conditionsneededfortransmissionelectronmicroscopy(TEM),the traditionalmethodofchoiceforhigh-resolutionimagingof bioma-terials[4–6].

AFMhasbeeninitiallyusedinthecontact-modeinliquidsto imagebiomaterialssuchaspurplemembraneand DNA[7,8].In thiscommonmodeofAFM,amicro-machinedcantileverwitha sharptip[9]isbroughtintosoftcontactwiththesamplesurface underinvestigation(withcontactforcesontheorderofafewnN) andscannedlaterallywithpmprecisionwhileverticaldeflections

∗ Correspondingauthorat:DepartmentofMechanicalEngineering,Bilkent Uni-versity,Ankara06800,Turkey.Tel.:+903122903428.

E-mailaddress:mehmet.baykara@bilkent.edu.tr(M.Z.Baykara).

ofthecantilevercausedbytopographicalfeaturesofthesample surfaceare detected,mostly byusingthelaserbeamdeflection (LBD)method[10].Thus,highresolutionmapsofbiological mate-rialsmaybeobtainedinliquidssuchaspurewaterorphosphate buffersolution(PBS).Onemajordrawbackofcontact-mode imag-ingofbiologicalmatteristheoccurrenceoflateralforcesbetween theprobetipandthesampleduringimaging,frequently damag-inganddisplacingthesoftbiologicalmatterunderinvestigation [4].To circumventthis problem, Mülleret al.have successfully demonstratedtheuseofrepulsiveelectrostaticinteractionforces occurringbetweentheprobetipandthesamplesurfacein aque-oussaltsolutionsduetoaccumulatedsurfacecharges[11].Thus, attractiveinteractionforcesactinglocallybetweenthetipapexand sampleatcloseseparationsareelectrostaticallybalancedand sam-pledeformationissignificantlyreducedwithanoticeableincrease inresolution.

Analternativemethodtoreducetheinfluenceoflateralforces on biological material during imaging in liquids is to employ dynamic imaging modes of AFM [12,13]. In dynamic AFM, the cantilever with the probe tip is oscillated at or near its reso-nance frequency using various actuation methods [14–16] and changesinitsoscillationcharacteristics(suchasamplitude,phase orfrequency)duetotip–sampleinteractionsarerecorded.While frequencymodulationatomicforcemicroscopy(FM-AFM,where the oscillation amplitude is kept constant during imaging and changesinoscillationfrequencyaredetected)hasrecentlybeen employedtoperformmolecularresolutionimagingofbiomaterials inliquidsthankstoseveraladvancesininstrumentation[17–21], amplitudemodulationatomicforcemicroscopy(AM-AFM,where http://dx.doi.org/10.1016/j.apsusc.2014.02.016

(2)

Fig.1.Schematicdescribingthemodelusedinthenumericalsimulations.The can-tileverisoscillatingwithanamplitudeofAwhileitsbaseislocatedadistanced abovethehardsubstrate.Theheightofthesoftislandistakentobe2nm.

the excitation frequency is kept constant during imaging and changesinoscillationamplitudearedetected)isusuallypreferred duetoitsrelativetechnicalsimplicity[22].Accordingly,AM-AFM (oftenreferredtoastapping-modeAFM)hasbeenusedtoimage anumberofbiomaterialsinliquidsinthepast[23,24].Itshould beindicatedthatthemainexperimentalchallengeassociatedwith AM-AFMimaginginliquidsisthesignificantlyreducedQ-factorof thecantilever,leadingtolowsignal-to-noiseratios[25].Assuch, attemptstoimprovetheeffectiveQ-factorsuchasthemethodof Q-Controlhavebeenemployedinthepast,leadingtoimproved imagingcontrast,aswellasreducedsampledeformationand inter-actionforces[26,27].

Beinginspiredbytheadvancesin AFMmeasurementof bio-materialsinliquidssummarized above,wehave investigatedin thiscontributiontheeffectofoperatinginaqueoussaltsolutions onAM-AFMimagingofamodelbiologicalsampleusing numer-icalsimulations.Contrarytocontact-modeoperation,ourresults indicateverymodestgainsinimagingcontrastduetoelectrostatic interactionsathighamplitudesetpoints,accompaniedbyrelatively unaffectedsampleindentationandmaximumtip–sample interac-tionvalues.

2. Theoreticalconsiderationsandmodeling

AM-AFMoperationinliquidconditionshasbeennumerically and theoretically analyzed in a number of studies in the past [27–30].Mostcommonly,theequationofmotionfortheoscillating cantileverisconsideredtobeinthefollowingform:

m¨z(t)+2f0m

Q ˙z(t)+k(z(t)−d)=kAextcos(2fextt)+Ftotal(z(t)) (1) where m is theeffective mass of the cantilever, z(t) the posi-tionoftheoscillatingtipofthecantileverrelativetothesample surface at time t, f0 theresonance frequency of the cantilever (f0=1/2



k/m),Qthequalityfactor,kthespringconstantand dthedistanceofthecantileverbasetothesamplesurface.The cantileverisoscillatedmechanically(e.g.,usingapiezoelectric ele-ment)withaconstant drivingamplitudeofAext anda constant drivingfrequencyoffext.Ftotal(z(t)) isthetotalinteractionforce actingbetweenthetipandthesamplesurfaceatpositionz(t).

AsamodelsamplesystemappropriateforsimulatingAM-AFM experimentsinliquidsonbiologicalmaterial,wehaveconsidered asoft(Es,soft=1GPa)islandof2nmheightontopofahard sub-strate(Es,hard=130GPa),inaccordancewithpreviousstudies[27] (seeFig.1).Theheightofthesoftislandroughlycoincideswith thatofDNA,whiletheelasticmodulusofthesubstratefollowsthat ofsilicon(Si),basedonthefactthatDNAadsorbedonSiormica

substratesarefrequentlyusedastestsamplesforliquidAM-AFM experiments[4].

When performing AFM measurements in deionized liquids, attractiveinteractionsincludingvanderWaals’forcesaregreatly reducedduetoscreening[27,31,32]andthemaininteractionforce isduetotheelasticcontactbetweentheprobetipandthe sam-plesurfacewhichisappropriatelydescribedbyHertziancontact theory[33]asfollows:

FH(z)= 4 3E

√R(z0z)3/2 (2)

whereEisaparameterderivedfromYoung’smodulusand Pois-son’sratiovaluesforthetipandsample(Et,Es,t,s)suchthat E=



(1−2

s)/Es+(1−2t)/Et



−1

, R the radius of the AFM tip modeledasasphereandz0aconstantvaluedescribingtheheight ofthesamplesurface(forourmodelsamplesystem,z0=2nmfor thesoftislandandz0=0forthehardsubstrate).Naturally, repul-sivecontactforcesdescribedbyFH affectcantilevermotiononly whencontactbetweentipandsampleoccurs(i.e.,(z0−z)>0).For noncontactconditions((z0−z)≤0),FHbecomeszero.Itshouldbe notedherethattheaccuracyofHertziancontactforcescalculatedin oursimulationsarelimitedbyassumptionsinvolvinglinear elastic-ity,isotropyandhomogeneity,amongothers.Whilelinearlyelastic conditions may not always be satisfiedduring actual AM-AFM measurementsperformedonbiologicalmaterial,Hertziancontact theoryhasbeenusedintheliteraturetosuccessfullyestimate con-tactforcestoafirstapproximationinsuchcases[22,27].Thus,it hasbeenemployedinthepresentdiscussionaswellforreasonsof comparability.Moreover,hydrodynamicreactionforceswhichare comparablysmallfortypicalcantilevertipdimensionsaswellas solvationforceshavebeenneglectedinouranalysisinaccordance withpreviousAM-AFMsimulationworkinliquids[22,27].

WhenperformingAM-AFMmeasurementsinaqueoussalt solu-tions,boththeAFMtipandthesampledevelopanetsurfacecharge, basedonvariousmechanismssuchasthedissociationofcertain surfacegroupsandadsorptionofionsontothematerialsurface [34].Duetotheelectrostaticinteractionbetweenthecharged sur-facesandtheionsinthesaltsolution,aconcentrationgradient calledtheelectrical doublelayer (EDL)existsneartheimmersed surfaces.Anelectricaldoublelayerforce(FEDL)basedonmutually attractiveorrepulsiveelectrostaticinteractionsisthusobserved betweensampleandtipwhenthedistancebetweenthemisonthe orderofafewtensofnanometers.WhilethePoisson–Boltzmann theoretical framework provides an accurate description of the potential that develops between such surfacesand the associ-atedinteractionforces[35],itinvolvesthenumericalsolutionofa secondordernonlineardifferentialequation,complicatingits use-fulness.Alternatively,anapproximateformoftheEDLforcethat developsbetweenaplanaranda sphericalsurface(suchasthe sampleandthetipsurfacesinanAFMexperiment)maybeused as[36] FEDL(z)=



4Rst ε0ε



ıexp



z0z ı



(3) for (z0−z)≤0, where s andt are surface chargedensities of sampleandtip,respectively,ε0thepermittivityofvacuum,εthe dielectricconstantoftheliquidandıtheDebyelength,described by: ı=



ε0εkBT e2

iciZi

(4) wherekBistheBoltzmannconstant,Tthetemperature,ethe elec-troniccharge,citheconcentrationoftheithtypeofioninthesalt solutionandZithevalencevalueforthesameiontype.Whileit shouldbeindicatedthattheapproximateformoftheEDLforce

(3)

providedbyEq.(3)isoflimitedaccuracyoncethedistancebetween thesurfacesisbelowtheDebyelength,it hasbeensuccessfully implementedinanumberofAFMstudiesinthepast,andhasthus beenadoptedforthepresentdiscussionaswell[36–38].Finally, combiningtheHertziancontactforceandtheEDLforce,thetotal tip–sampleinteractionforceisobtainedas

Ftotal=FEDL(z)=



4Rst ε0ε



ıexp



z0z ı



when z≥z0 (5) Ftotal=FH(z)+FEDL(0)= 43E√R(z0−z)3/2+



4Rst ε0ε



ı when z<z0 (6)

Experimentally appropriate parameters used in the simula-tionsfortheabovedescribedmodelsamplesurfaceandatypical Sicantileverareasfollows:Et=130GPa,t=s,soft=s,hard=0.3, t=s,hard=−0.012C/m2, s,soft=−0.04C/m2, T=293K, ε=80.2, R=10nm,f0=20kHz,Q=5,k=1N/m,fext=f0=20kHz.Aextis cho-sensuchthatthecantileverundergoesafreeoscillationamplitude ofA0=10nmfarfromthesamplesurfacewhentip–sample interac-tionsarenegligible,similartoearliersimulationwork[27].Please notef0=20kHzcorrespondstothewetresonancefrequencyofthe cantileverintheliquidmedium[30]anddoesnotimplyunusually largedimensions.Itshouldbenotedthatwhileithasbeenrecently demonstratedthatatomic-resolutionimagingofmineralsurfaces

suchasmicaismadepossiblebyasignificantreductionof oscilla-tionamplitudeinliquids[39],andtheuseofsmall,high-frequency cantileversinconjunctionwithhigh-speedAFMleadstoimpressive results[40,41],typicalexperimentalparametersforimaging bio-materialsusingAM-AFMremainsimilartothevaluesemployedin oursimulations.Tipandsurfacechargedensityvaluesforourmodel system–whichgenerallydisplayaratherweakdependenceonsalt concentrationdownto1mM[35]andhavethusbeentakentobe constantinthisstudy–havebeendeterminedbasedon experi-mentalworkintheliterature[35,36]andresultinanetrepulsive EDLforce.AllresultspresentedinSection3havebeenobtainedby numericallysolvingEq.(1)forthevariablez(t)byapplyingafourth orderRunge–Kuttamethodforsetvaluesofd,representingfixed distancesbetweenthecantileverbaseandsamplesurface.

3. Resultsanddiscussion

In typical AM-AFM operation, the cantilever is driven with a fixed driving amplitude (Aext)and a fixed driving frequency (fext),whileshiftsintheoscillationamplitude(A)withdecreasing tip–sample distance due to increasing force interactions are detected.Imagingisusuallyperformedatafixedamplitude set-point(usually10%to20%lowerthanthefreeoscillationamplitude A0)bytheutilizationofafeedbackloop.Assuch,theimaging con-trastbetweendifferentregionsofasamplesurfacearedetermined by thevertical displacementof the cantileverbase required to keeptheamplitudesetpointconstantduringimaging.Therefore,

Fig.2.Comparisonofamplitudevs.distancecurvesforthehardsubstrateandthesoftislandatvaryingsaltconcentrationsof0mM(a),100mM(b),10mM(c)and5mM (d).Imagingcontrastisonlymarginallyaffectedbychangesinsaltconcentration,withanincreaseofabout15%atanamplitudesetpointof9nmforaconcentrationof5mM (d0mM=0.88nmwhiled5mM=1.02nm).Pleasenotethatthed0mMvalueof0.88nmreportedhereislowerthanthecorrespondingcontrastvaluepresentedinRef.[27]

(4)

itwouldbeappropriatetocompareamplitudevs.distance(Avs.d) curvesforthehardsubstrateandthesoftislandemployedinour modelsamplesurfaceforvaryingsaltconcentrationstoinvestigate theeffectofoperatinginaqueoussaltsolutionsonimaging perfor-manceofAM-AFMinliquids.Accordingly,numericallyobtained Avs.dcurvesformonovalentsaltconcentrationsof0mM,5mM, 10mM,and100mMareprovidedinFig.2foradistance(d)regime of7–13nm.Thereasonfortheconsiderationofmonovalent(e.g., NaCl,KCl)insteadofdivalent(e.g.,MgCl2,CaCl2)saltspeciesinthe presentcalculationsisthattheEDLforcescausedbyequal concen-trationsofmonovalentsaltsarefoundtobesignificantlyhigher thandivalentsalts,basedonhigherDebyelengths[35].Assuch, monovalentsaltspeciesaremoreusefulforassessingtheeffects ofelectrostaticinteractionsonAM-AFMoperationinliquids.Let usnoteherethatasaltconcentrationof0mMcorrespondstothe completelydeionizedcasewheretheEDLcontributiontothetotal forceinteractioniszero.

ComparingtheplotsinFig.2,twomainconclusionsaremade: (1)Asexpectedfromexperimentalworkintheliterature[11,35],

theeffect ofsalt solutions onAvs. dcurves is strongest at lowsaltconcentrationssuchas5mMduetoincreasedDebye lengths.Consequently,theeffectof saltsolutionsonAvs.d curvesarenegligibleathighconcentrationssuchas100mM. (2)Evenforlowsaltconcentrationsof,e.g.,5mM,theeffectofEDL

forcesonAvs.dbehaviorissmall,resultinginanincreaseofonly about15%inheightcontrast(d)betweenthehardsubstrate andthesoftislandatarelativelyhighsetpointamplitudeof A=9nm.Asexpected,themodestincreaseincontrastduetothe earlieronsetofEDLforcesforthesoftisland(bothduetothefact thatthesoftislandisclosertothetipthanthehardsubstrateby 2nmandthefactthatthesurfacechargedensityishigheron thesoftisland)diminisheswithincreasingsaltconcentration. Comparedtotheincreaseinheightcontrastofmorethan60% providedbythemethodofQ-Controlonaverysimilarsample system[27],itisclearthatoperationinaqueoussaltsolutions doesnotleadtoasignificantimprovementinimagingcontrast forAM-AFM,despitethefactthatdifferencesinsurfacecharge densityhaveresultedindetectabledifferencesinthephaseshift signalinanearlierstudyintheliterature[42].

ThereasonforthemarginaleffectofEDLinteractionson AM-AFMimagingbecomesclearwhenthemaximumcontributionsof theEDL(FEDL)andHertz(FH)interactionstothetotaltip–sample interaction(Ftotal)arecomparedforthesoftislandinourmodel samplesystem.Evenforarelativelylowsaltconcentrationof5mM, themaximumvalueforFEDL(∼0.4nN)ismorethananorderof mag-nitudelowerthanthatobservedforthecontactforceFH(∼10nN) intheinvestigateddistanceregime.Assuch,thetip–sample inter-action is mainly dominated by contact forces during AM-AFM operationinaqueoussaltsolutions,limitingtheeffectof electro-staticinteractionsonimaging.Itshouldbenotedthatthecalculated maximumvaluesfortheEDLinteractionareingoodquantitative agreementwithexperimentalresultsreportedintheliteraturefor monovalentsalts(takingintoaccountthedifferencesintipradius andsamplesurfacechargedensity)[35]despitetherelativelybasic natureofourmodelsamplesystemandcalculations.

Anotheraspectthat needstobeconsideredwhenevaluating AM-AFMmeasurements in liquidson biological materialis the issueofsampledeformation.Sincetypicallythebiological mate-rialtobeimagedismechanicallymuchweakerthanthesubstrate itis adsorbedon, low interactionforcesand indentationvalues aredesirable.Theresultsofthepresentnumericalanalysis indi-catethatmaximumtip–sampleinteractionforcesonlymarginally increase(againdue tothesignificantlylowermagnitudeofEDL forceswhencomparedtocontactforces)whilesampleindentation

Table1

Comparisonofmaximuminteractionforceandsampleindentationvaluesforthe softislandinourmodelsamplesystematvaryingsaltconcentrations(d=7nm). Itisreadilyobservedthatsampleindentationvaluesareessentiallyunaffectedby changesinsaltconcentration,whilemaximuminteractionforcesonlymarginally increasewithdecreasingsaltconcentrationwhencomparedtothedeionizedliquid.

Saltconcentration(mM) Maximuminteraction force(nN) Sampleindentation (nm) 0 10.2 1.7 100 10.2 1.7 10 10.4 1.7 5 10.5 1.7

valuesremainrelativelyunchangedwithdecreasingsalt concentra-tion(seeTable1)whencomparedtoimagingindeionizedliquids.

4. Conclusions

Insummary,wehaveperformedamodelnumericalanalysisof amplitudemodulationatomicforcemicroscopyonsoftbiological materialsadsorbedonhardsubstratesinaqueoussaltsolutions. Despitethesignificantadvantagesprovidedbyrepulsive electro-staticinteractionsincontact-modeimagingofsimilarsamples[11], ourresultsindicatethatonlymodestgainsinimagingcontrastat highamplitudesetpointsare expectedforAM-AFMunder typi-calexperimentalconditionsrepresentedbyoursimulations,while sampleindentationandmaximumtip–sampleinteractionvalues remainrelativelyunaffected.

References

[1]G.Binnig,C.F.Quate,C.Gerber,Phys.Rev.Lett.56(1986)930.

[2]P.J.Eaton,P.West,AtomicForceMicroscopy,OxfordUniversityPress,Oxford, 2010.

[3]S.Morita,R.Wiesendanger,E.Meyer,NoncontactAtomicForceMicroscopy, Springer,Berlin,2002.

[4]V.J.Morris,A.R.Kirby,A.P.Gunning,AtomicForceMicroscopyforBiologists, ImperialCollegePress,London,2010.

[5]A.M.Baro,R.G.Reifenberger,AtomicForceMicroscopyinLiquid:Biological Applications,Wiley-VCH,Weinheim,2012.

[6]P.Parot,Y.F.Dufrene,P.Hinterdorfer,C.LeGrimellee,D.Navajas,J.L.Pellequer, S.Scheuring,J.Mol.Recognit.20(2007)418.

[7]D.J.Muller,F.A.Schabert,G.Buldt,A.Engel,Biophys.J.68(1995)1681. [8]H.G.Hansma,J.Vesenka,C.Siegerist,G.Kelderman,H.Morrett,R.L.Sinsheimer,

V.Elings,C.Bustamante,P.K.Hansma,Science256(1992)1180.

[9]T.R.Albrecht,S.Akamine,T.E.Carver,C.F.Quate,J.Vac.Sci.Technol.,A8(1990) 3386.

[10]G.Meyer,N.M.Amer,Appl.Phys.Lett.53(1988)1045.

[11]D.J.Müller,D.Fotiadis,S.Scheuring,S.A.Muller,A.Engel,Biophys.J.76(1999) 1101.

[12]R.Garcia,R.Perez,Surf.Sci.Rep.47(2002)197. [13]P.K.Hansma,etal.,Appl.Phys.Lett.64(1994)1738.

[14]M.Dreier,D.Anselmetti,T.Richmond,U.Dammer,H.J.Guntherodt,J.Appl. Phys.76(1994)5095.

[15]W.H.Han,S.M.Lindsay,T.W.Jing,Appl.Phys.Lett.69(1996)4111. [16]D.Ramos,J.Tamayo,J.Mertens,M.Calleja,J.Appl.Phys.99(2006)124904. [17]H.Yamada,K.Kobayashi,T.Fukuma,Y.Hirata,T.Kajita,K.Matsushige,Appl.

Phys.Express2(2009)095007.

[18]H.Asakawa,T.Fukuma,Nanotechnology20(2009)264008. [19]H.Asakawa,T.Fukuma,Rev.Sci.Instrum.80(2009)103703. [20]T.Fukuma,Rev.Sci.Instrum.80(2009)023707.

[21]Y.Mitani,M.Kubo,K.Muramoto,T.Fukuma,Rev.Sci.Instrum.80(2009) 083705.

[22]R.CastroGarcía,AmplitudeModulationAtomicForceMicroscopy,Wiley-VCH, Weinheim,2010.

[23]C.Moller,M.Allen,V.Elings,A.Engel,D.J.Muller,Biophys.J.77(1999)1150. [24]S.Kasas,etal.,Biochemistry36(1997)461.

[25]E.T.Herruzo,R.Garcia,Appl.Phys.Lett.91(2007)143113.

[26]D.Ebeling,H.Holscher,H.Fuchs,B.Anczykowski,U.D.Schwarz, Nanotechnol-ogy17(2006)S221.

[27]H.Holscher,U.D.Schwarz,Appl.Phys.Lett.89(2006)073117. [28]J.Legleiter,T.Kowalewski,Appl.Phys.Lett.87(2005)163120.

[29]S.deBeer,D.vandenEnde,F.Mugele,Appl.Phys.Lett.93(2008)253106. [30]S.Basak,A.Raman,Appl.Phys.Lett.91(2007)064107.

[31]J.Israelachvili,IntermolecularandSurfaceForces,AcademicPress,London, 1991.

(5)

[33]H.Hertz,J.ReineAngew.Math.92(1881)156. [34]H.J.Butt,Biophys.J.60(1991)1438.

[35]D.Ebeling,D.vandenEnde,F.Mugele,Nanotechnology22(2011)305706. [36]J.Sotres,A.M.Baro,Biophys.J.98(1995)(2010).

[37]J.Sotres,A.Lostao,C.Gomez-Moreno,A.M.Baro,Ultramicroscopy107(2007) 1207.

[38]H.J.Butt,Biophys.J.63(1992)578.

[39]D.Ebeling,S.D.Solares,Nanotechnology24(2013)135702. [40]N.Kodera,D.Yamamoto,R.Ishikawa,T.Ando,Nature468(2010)72. [41]I.Casuso,etal.,Nat.Nanotechnol.7(2012)525.

Şekil

Fig. 1. Schematic describing the model used in the numerical simulations. The can- can-tilever is oscillating with an amplitude of A while its base is located a distance d above the hard substrate

Referanslar

Benzer Belgeler

This study gathered empirical data to find out 194 teaching staffs‟ (a) personal and computer related characteristics, (b) their computer self-efficacy beliefs, (c)

In the third section, after investigating Philosophy and Logical Syntax (1935) from early Carnap and Introduction to Semantics (1942) from late Carnap, I will try to understand

Jonson, living and writing during the last years of the sixteenth century and the beginning of the seventeenth century, comments on political and social changes

This study was an experimental study on the immediate and delayed effects of two types of keyword vocabulary learning methods (teacher-provided and student-generated)

The GW band gaps of the stable materials are computed which restore the wide band gap values in addition to their high dielectric constants.. DOI: 10.1103/PhysRevB.74.193201 PACS

11 (b), the change of the laser power P, used to the processing of the Ti layer at a certain constant scanning speed υ in the NLL method, has a strong impact on the value of the

To assess suitability of the resulting InP/ZnS core-shell NCs as emitters for QD-LED application, a device structure of ITO/PEDOT:PSS/poly-TPD/QDs/TPBi/LiF/Al was fabricated, for