• Sonuç bulunamadı

Broadband impedance matching via lossless unsymmetrical lattice networks

N/A
N/A
Protected

Academic year: 2021

Share "Broadband impedance matching via lossless unsymmetrical lattice networks"

Copied!
4
0
0

Yükleniyor.... (view fulltext now)

Tam metin

(1)

Int.J.Electron.Commun.(AEÜ)66 (2012) 76–79

ContentslistsavailableatScienceDirect

International

Journal

of

Electronics

and

Communications

(AEÜ)

jo u rn al h om e p a g e :w w w . e l s e v i e r . d e / ae u e

Broadband

impedance

matching

via

lossless

unsymmetrical

lattice

networks

Metin

engül

KadirHasUniversityEngineeringFaculty34083Cibali,Fatih-Istanbul,Turkey

a

r

t

i

c

l

e

i

n

f

o

Articlehistory: Received16September2010 Accepted11May2011 Keywords: Broadbandnetworks Losslessnetworks

Latticenetworks,Impedancematching Synthesis

a

b

s

t

r

a

c

t

Inthispaper,abroadbandimpedancematchingnetwork(equalizer)designalgorithmhasbeenproposed.

Intheequalizer,alosslessunsymmetricallatticenetworkhasbeenutilized.Thebranchimpedancesof

thelatticenetworkareconsideredassinglyterminatedlosslessLCnetworks,sinceitisnotdesiredto

dissipatepowerintheequalizer.Aftergivingthealgorithm,itsusagehasbeenillustratedviaanexample.

© 2011 Elsevier GmbH. All rights reserved.

1. Introduction

Designofbroadbandmatchingnetworksisanessentialproblem formicrowavecommunicationsystemengineers[1].Soanalytic theoryofbroadbandmatching[2],[3]andcomputer-aided-design (CAD)methodsareessentialtoolsforthedesigners[4–6].Butit is wellknownthat analytictheory isdifficult toutilizeeven if thesourceandloadimpedancesaresimple.Therefore,itisalways attractivetouseCADtechniques.AlltheCADtechniquesoptimize thematchedsystemperformance.Butperformanceoptimization ishighlynonlinearwithrespecttoelementvaluesandneedsvery goodinitials [7].Asa result,initialelementvalues arevital for successfuloptimization.

In matching network design problems, ladder networks are used,sincethesestructureshaveverylowsensitivity[8].In addi-tiontheyarepreferablesince theyare unbalanced,thusallthe shuntbranchescanbegrounded.Ifnon-minimum-phasetransfer characteristicsaredesired,thenetworkcomplexityincreases.This addedcomplexityistheresultofright-halfplanezerosofatransfer function,whichcanberealizedonlybyasignal-cancellation pro-cess.Thisrequiresmorethanonepathoftransmissionbetween theinputandoutputports.Inladdernetworks,thiscanbe real-izedbyparallelorbridgedstructures.Withoutthecommonground betweentheinputandoutputports,righthalf-planezeroscanbe realizedbyabridgestructureoftheformshowninFig.1.

Therefore, in this paper, two-port bridge structures are employedinmatchingnetworks.Inthefollowingsections, two-portbridgenetworksandrealfrequencybroadbandmatchingwill

∗ Tel.:+902125336532;fax:+902125335753.

E-mailaddresses:msengul@khas.edu.tr,mtnsngl@gmail.com

besummarized.Then,theproposeddesignalgorithmandan exam-plewillbepresented.

2. Bridgenetworks

When a voltage source of frequency ω0 with the

resis-tance RS is applied to the input port of a bridge network

(Fig. 1) and the branch impedances are related such that [Z1(jω0)Z4(jω0)=Z2(jω0)Z3(jω0)],thevoltagedropacrosstheload

impedanceZLiszero,resultinginazerooftransmissionorazero

ofthevoltagetransferratioat(p=jω0).Abridgenetwork

satis-fyingtheseconditionsissaidtobebalanced.Ifoppositearmsof thebridgehavethesameimpedances [ZA(p)=Z1(p)=Z4(p)] and

[ZB(p)=Z2(p)=Z3(p)],thenetworkissaidtobesymmetrical.Ifthe

bridgeleadsaretwisted,theconfigurationseeninFig.2isobtained, whichisknownasaunsymmetricallatticenetwork.Althoughany physicallyrealizabletransferfunctioncanbesynthesizedbyusing unsymmetricalRLClatticenetwork,asymmetricallatticerestricts therangeofrealizablefunctions.Especially,certainphysically real-izabletransfer functionshavingpoles onthejω-axiscannot be synthesizedbyusingsymmetricallatticestructures[9].

3. Realfrequencybroadbandmatching

Letusconsidertheclassicalsinglematchingproblem(resistive sourceimpedanceandcomplexloadimpedance)showninFig.2.

ThematchingconditionsofthecomplexloadZLtotheresistive

generatorRScanbeformulatedintermsofthenormalized

reflec-tioncoefficientsatports1and2.Theinputreflectioncoefficients fNormcanbedefinedby

1=Zin−RS

Zin+RS

(1) 1434-8411/$–seefrontmatter © 2011 Elsevier GmbH. All rights reserved.

(2)

M.S¸engül/Int.J.Electron.Commun.(AEÜ)66 (2012) 76–79 77 ) ( 1 p Z Z 3 ( p ) ) ( 2 p Z Z 4 ( p ) ) ( p Z L E + S R

Fig.1.Generaltwo-portbridgenetwork.

whereZin istheinputimpedanceseenatport1whenport2is

terminatedbytheloadZL.Similarlythereflectioncoefficientatport

2canbedefinedby 2= Zout−ZL∗

Zout+ZL

(2) whereZoutistheimpedanceseenatport2whenport1is

termi-natedbythesourceresistanceRS,andtheupperasteriskdenotes

complexconjugation.Here,2isthenormalizedreflection

coeffi-cientatport2.Sincethetwo-portisconsideredaslossless,wehave ontheimaginaryaxisofthecomplexfrequencyplane



1



2

=



2



2

. (3)

Then,thetransducerpowergain(TPG)atrealfrequenciescan beexpressedas TPG(ω)=1−



1



2 =1−



2



2 . (4)

Thegoalinbroadbandmatchingistodesignthelossless net-workN,whichconsistsofthearmimpedancesZ1(p),Z2(p),Z3(p)

andZ4(p),suchthatTPGgivenbyEq.(4)ismaximizedinside a

desiredfrequencyband.Obviously,maximizingTPG(ω)meansto minimizingthemodulusofthereflectioncoefficients



1



or



2



.In

thiscontext,thematchingproblemisreducedtothedetermination ofarealizableimpedancefunctionZinorZout.

LettheequalizerinputimpedanceZinbeexpressedintermsof

itsrealandimaginarypartsontherealfrequencyaxisas

Zin(jω)=Rin(ω)+jXin(ω). (5)

ByusingEq.(5),Eq.(4)andEq.(1)weobtaintransducerpower gain(TPG)intermsoftherealandimaginarypartsoftheinput impedanceZinoftheequalizerNandthesourceresistanceRSas

follows:

TPG(ω)= 4RSRin(ω)

(RS+Rin(ω))2+(Xin(ω))2

. (6)

NamelythematchingproblemconsistsoffindingZin(jω)such

thatTPG(ω)ismaximizedinsideadesiredfrequencyband.OnceZin

isdeterminedproperly,theequalizernetworkNcanbesynthesized directlybyusingthe obtainedimpedance orthecorresponding reflectioncoefficient. ) ( 1 p Z ) ( 4 p Z ) ( p Z L S R E + Z 3 ( p ) Z 2 ( p ) in Z , 1 ρ ρ 2 , Z out N

Fig.2.Unsymmetricallatticenetwork.

4. Rationaleofthematchingprocedure

Foralosslesstwo-portliketheonedepictedinFig.2,thecanonic formofthescatteringmatrixisgivenby[10],[11]

S(p)=



S11(p) S12(p) S21(p) S22(p)



= g(p)1



h(p) f(−p) f(p) −h(−p)



(7) wherep=+jωisthecomplexfrequencyvariable,and=±1 isaunimodular constant.Ifthetwo-portisreciprocal,thenthe polynomialf(p)iseithereven orodd.In thiscase, =+1iff(p) iseven,and =−1iff(p)isodd.Thus, foralossless,reciprocal two-port

=f(−p)

f(p) =±1. (8)

Foralosslesstwo-portwithresistivetermination,energy con-versationrequiresthat

S(p)ST(−p)=I, (9)

whereIistheidentitymatrix.TheexplicitformofEq. (9)is knownastheFeldtkellerequationandgivenas

g(p)g(−p)=h(p)h(−p)+f(p)f(−p). (10) In Eqs.(7) and(10),g(p) is a strictlyHurwitz polynomialof nthdegreewithrealcoefficients,andh(p)isapolynomialofnth degreewithrealcoefficients.Thepolynomialfunctionf(p)includes alltransmissionzerosofthetwo-port.

ConsiderthebridgenetworkseeninFig.1orFig.2.Sinceitis notdesiredtodissipateanypowerintheimpedancesZ1(p),Z2(p),

Z3(p)andZ4(p),theymustcontainonlyinductorsandcapacitors.

Alsotheirterminationsmustbeeithershortoropen,notresistive terminations.Sotheseimpedancesaresinglyterminatedlossless LCnetworks[12].

In[12],ithasbeenshownthatforalosslesssinglyterminated network,theinputreflectioncoefficientcanbeexpressedas S11(p)=±

g(−p) g(p) =˛

g(−p)

g(p) , (11)

where ˛=+1 and ˛=− 1 corresponds to an openand short termination,respectively.Sotheprocedureproposedin[12]can beused todesign theimpedancesZ1(p),Z2(p),Z3(p) andZ4(p).

Thenthefollowingalgorithmisproposedtodesignthebroadband impedancematchingnetworkbyusingunsymmetricallattice net-works.

4.1. Algorithm 4.1.1. Inputs

• ωi(actual)=2fi(actual);i=1,2,...,Nω:measurementorcalculation

frequenciesselectedarbitrarily.

• Nω:Totalnumberofmeasurementorcalculationfrequencies.

• ZL(actual)(jωi)=RL(actual)(ωi)+jXL(actual)(ωi);i=1, 2,...,Nω:

mea-suredorcalculatedloadimpedancedataatNωfrequencypoints.

• RS:Givensourceresistance.

• fNorm:Normalizationfrequency.

• R0:Normalizationresistance,usually50.

• nk;k=1,2,3,4:Desirednumberofelementsinthearmsofthe

bridgenetwork.

• ˛k=±1;k=1,2,3,4:Desiredterminationtypeofthearmsofthe

bridgenetwork.

• gk(p);k=1,2,3,4:Initializedpolynomialg(p)describingthearm

impedancesofthebridgenetwork.

• T0:Desiredflattransducerpowergainlevel.

• ı:Thestoppingcriteriaforthesumofthesquareerrors.Formany practicalproblems,itissufficienttochooseı=10−3.

(3)

78 M.S¸engül/Int.J.Electron.Commun.(AEÜ)66 (2012) 76–79

4.2. Computationalsteps

Step1:Ifthegivenloadimpedanceandfrequenciesareactual values, not normalized, then normalize the frequencies with respecttofNormandsetallthenormalizedangularfrequencies

ωi=

fi(actual)

fNorm

Normalizetheloadimpedancewithrespecttonormalization resistanceR0overtheentirefrequencybandas

RL= RL(actual) R0 ,XL= XL(actual) R0 .

Itshouldbenotedthat iftheloadis specifiedasadmittance data, then the normalization resistance R0 multiplies the real

andimaginarypartsoftheadmittancedata(i.e.,GL=GL(actual)R0,

BL=BL(actual)R0).

Butifthegiven loadimpedance andfrequencies arealready normalized,thengotothenextstepdirectlywithoutany normal-izationprocess.

Step2:Calculatetheinputimpedancevaluesofthearmsofthe bridgenetworkas Z(k)(jωi)= 1+S(k),11(jωi) 1−S(k),11(jωi) , (12) k=1,2,3,4 and i=1,2,...,Nω

whereS(k),11(jωi)=˛kggkk(−jω(jωi)i) istheinputreflectioncoefficient

ofthearmsofthebridgenetwork.

Step3:Calculatetheinputimpedanceofthebridgenetwork whenport2isterminatedbytheloadimpedanceZLviathe

follow-ingequation(seeFig.2) Zin= N D where N=Z1(Z4ZL+Z3ZL+Z2Z3+Z3Z4+Z2Z4)+Z2Z4ZL+Z2Z3ZL+Z2Z3Z4 and D=Z1(ZL+Z2+Z4)+Z2Z3+Z2ZL+Z4ZL+Z3Z4+Z3ZL.

Theinputimpedanceexpressionhasbeenobtainedbyusing −to−Ytransformationequations[13].

Step4:CalculatetransducerpowergainviaEq.(6)asfollows

TPG(ωi)=

4RSRin(ωi)

(RS+Rin(ωi))2+(Xin(ωi))2

whereRin(ωi)=Real (Zin(jωi)) andXin(ωi)=Imag (Zin(jωi)).

Step5:Calculatethesumofthesquarederrorvia

ıc= Nω



i=i



ε(jωi)



2 whereε(jωi)=T0−TPG(ωi). Step6:Ifıc≤ı,synthesizeS(k),11(p)=˛kggk(−p)

k(p) andobtainthe

arm networks of the bridge, then stop. Otherwise, change ˛k

(terminationtypes)andgk(p)(initializedpolynomials)viaany

opti-mizationroutineandgotoStep2.

5. Example

Inthissection,anexamplewillbegiventoillustratethe pro-posedalgorithm.Hereallthecalculationswillbemadebyusing

) ( 1 p Z ) ( 4 p Z L R S R E + ( ) 2 p Z ) ( 3 p Z L C L L

Fig.3. Thesourceandloadterminations,RS=1,LL=1,CL=3,RL=1(normalized).

Table1

Calculatedloadimpedancedata(normalized).

ω RL XL 0.1 0.9174 −0.1752 0.2 0.7353 −0.2412 0.3 0.5525 −0.1972 0.4 0.4098 −0.0918 0.5 0.3077 0.0385 0.6 0.2358 0.1755 0.7 0.1848 0.3118 0.8 0.1474 0.4450 0.9 0.1206 0.5743 1.0 0.1000 0.7000

normalizedvalues.Afterdesigningthematchingnetwork,all

com-ponentscanbede-normalizedbyusingthegivennormalization

frequency(fNorm)andresistance(R0).

Thesourceresistanceandtheloadimpedancewhichisselected

asaseriesinductorandaparallelconnectionofacapacitoranda

resistorinnormalizedvaluescanbeseeninFig.3.

Sincethegivensourceandloadterminationshavenormalized elementvalues,thereisnoneedanormalizationprocess.InTable1, thecalculatedloadimpedancevaluesaregiven.

Theselectedinitialcoefficientsofthepolynomials(gk(p)),the

alphaconstants(˛k)andthedesiredflattransducerpowergain

level (T0) are as follows, g1=[ 4 2 3 ], g2=[ 2 4 3 ], g3=

[ 3 5 2 ],g4=[ 1 2 4 ],˛1=+1,˛2=−1,˛3=−1,˛4=−1,and

T0=0.7,respectively.

After running the proposed algorithm, the fol-lowing polynomial coefficients and alpha constants are obtained, g1=[ 6.0437 23.1923 3.1920 ], g2=

[ 6.3061 7.7312 0.2542 ], g3=[ 13.1356 6.4255 0.0907 ],

g4=[ 1.3511 13.3529 12.2343 ], ˛1=+1, ˛2=−1, ˛3=−1,

˛4=−1,respectively.

After synthesizing the corresponding reflection coefficients



S(k),11(p)=˛kggkk(−p)(p)



thebridgenetworkseeninFig.4isreached. TheobtainedtransducerpowergaincurveisgiveninFig.5.

Actualelementvaluescanbeobtainedbyde-normalization.In thiscase,actualelementvaluesaregivenby

ActualCapacitor= (NormalizedCapacitor/2fNorm)

R0 , 1 L L R S R E + L C L 1 C 2 L 3 L 4 L 2 C 3 C 4 C

Fig. 4.Designed matching network, L1=0.2606, C1=7.2658, L2=30.4138,

(4)

M.S¸engül/Int.J.Electron.Commun.(AEÜ)66 (2012) 76–79 79

Fig.5.Transducerpowergain.

ActualInductor=



NormalizedInductor 2fNorm



R0,

ActualResistor=(NormalizedResistor)R0.

Sincethematchingnetwork isdesignedbyusingnormalized values,thecutofffrequency ofthenetworkis ω=1(seeFig.5). Afterde-normalizationprocess,itshiftstothegivennormalization frequency,sincefi(actual)=ωifNorm.

AscanbeseeninFig.5,anearlyflattransducerpowergaincurve isobtainedwithintherequiredfrequencybandatthedesiredflat gainlevel(T0=0.7).

6. Resultsandconclusion

An algorithm has been proposed to design broadband impedancematchingnetworksvialosslessunsymmetricallattice networks.Sinceitisnotdesiredtodissipatepowerintheequalizer, thearmimpedancesofthelatticenetworkareselectedassingly terminatedlosslessLCsections.Inthepaper,singlematching prob-lem(resistivesourceimpedanceandcomplexloadimpedance)has beenconsidered.Butthesameprocedurecanbeusedeasilyfor dou-blematchingproblems(complexsourceimpedanceandcomplex loadimpedance).

Intheexample,thedesiredflattransducerpowergainlevelis selectedas0.7.Ascanbeseenfromthetransducerpowergain graph,anearlyflatgaincurvearoundthislevelhasbeenobtained.

Itisshownthattheproposedmethodgeneratesverygood ini-tialstoimprovethematchedsystemperformancebyoptimizing theelementvalues.Therefore,itisexpectedthattheproposed algo-rithmcanbeusedasafront-endforthecommerciallyavailableCAD toolstodesignbroadbandmatchingnetworksforcommunication systems.

AppendixA. Supplementarydata

Supplementarydataassociatedwiththisarticlecanbefound,in theonlineversion,atdoi:10.1016/j.aeue.2011.05.005.

References

[1] YarmanBS.Broadbandnetworks.WileyEncyclopediaofElectricaland Elec-tronicsEngineering;1999.

[2]YoulaDC.Anewtheoryofbroadbandmatching.IEEETransactionsonCircuit Theory1964;11:30–50.

[3]Fano RM. Theoretical limitations on the broadband matching of arbitrary impedances. Journal of Franklin Institute 1950;249: 57–83.

[4] Awr:Microwaveofficeofappliedwaveresearchinc.www.appwave.com. [5]Edl/ansoftdesignerofansoftcorp.www.ansoft.com/products.cfm. [6]Adsofagilenttechologies.www.home.agilent.com.

[7]YarmanBS,S¸engülM,Kılınc¸A.Designofpracticalmatchingnetworkswith lumped-elementsviamodeling.IEEETransactionsonCircuitsandSystemsI: RegularPapers2007;54(8):1829–37.

[8]ChenWK.PassiveandActiveFilters.NewYork:Wiley;1986.

[9]YengstWC.ProceduresofModernNetworkSynthesis.NewYork:The Macmil-lanCompany;1964.

[10]BelevitchV.ClassicalNetworkTheory.SanFrancisco:HoldenDay;1968. [11]Aksen,A.Designoflosslesstwo-portwithmixed,lumpedanddistributed

elementsforbroadbandmatching.Dissertation.Bochum,Germany:Ruhr Uni-versity,1994.

[12] S¸engül M. Reflectance-based foster impedance data modeling. Frequenz Journal of RF Engineering and Telecommunications 2007;61(7–8): 194–6.

[13] NilssonJW.Electriccircuits.NewYork:Addison-WesleyPublishingCompany; 1993.

MetinS¸engülreceivedB.Sc.andM.Sc.degreesinElectronicsEngineeringfrom

˙IstanbulUniversity,Turkeyin1996and1999,respectively.HecompletedhisPh.D. in2006atIs¸ıkUniversity, ˙Istanbul,Turkey.Heworkedasatechnicianat ˙Istanbul Universityfrom1990to1997.HewasacircuitdesignengineeratR&DLabsof thePrimeMinistryOfficeofTurkeybetween1997and2000.Between2000and 2008,hewasalectureratKadirHasUniversity, ˙Istanbul,Turkey.Dr.S¸engülwas avisitingresearcheratInstituteforInformationTechnology,Technische Univer-sitätIlmenau,Ilmenau,Germanyin2006forsixmonths.Heworkedasanassistant professoratKadirHasUniversitybetween2008and2010.Currentlyheis serv-ingasanassociateprofessoratKadirHasUniveristy.Dr.S¸engülisworkingon microwavematchingnetworks/amplifiers,datamodelingandcircuitdesignvia modeling.

Şekil

Fig. 1. General two-port bridge network.
Fig. 3. The source and load terminations, R S = 1, L L = 1, C L = 3, R L = 1 (normalized).
Fig. 5. Transducer power gain.

Referanslar

Benzer Belgeler

Define a map point at the end of the scattering vector at Bragg condition..

The double bond pattern underlies un- usual physical properties, such as high elastic stiffness, co- hesive energy and quantum conductance higher than Au and Cu atomic chains.

as the establishment of Parliamentary Human Rights Committee, new legislative packages preventing torture and ill-treatment, and constitutional amendments of 2005

That’s why the regional policy targeting strong dynamism, regional stability, better education, scientific development, economic sustainability, competitiveness, equal

ġahkulu bin Hasan ve Murad Beğ bin Yûsuf an karye-i Ġzz-üd-dîn an kazâ-i Sındırgu meclis-i Ģer‟e hâzıran olub bi-t-tav‟ ve-r-rıza ikrâr- Ģer‟î kılub dedi

Bu bilgiler doğrultusunda, bankanın fırsatçı davranışta bulunması sonrası ortaya çıkan hizmet hatası durumunda müşterilerin banka hakkındaki NWOM

Beden eğitimi ve spor yüksekokulu öğrencilerinin bölümlere göre değerlendirildiğinde beden eğitimi ve spor öğretmenliği bölümünde okuyan öğrencilerin

SONUÇ: FVL mutasyon s›kl›¤› ülkemizde,gen polimorfizminden söz ettirecek kadar yayg›n ol- makla birlikte tek bafl›na heterozigot mutant var- l›¤›