• Sonuç bulunamadı

Probing the chiral magnetic wave in pPb and PbPb collisions at root S-NN=5.02 TeV using charge-dependent azimuthal anisotropies

N/A
N/A
Protected

Academic year: 2021

Share "Probing the chiral magnetic wave in pPb and PbPb collisions at root S-NN=5.02 TeV using charge-dependent azimuthal anisotropies"

Copied!
17
0
0

Yükleniyor.... (view fulltext now)

Tam metin

(1)

Probing the chiral magnetic wave in pPb and PbPb collisions at

s

NN

= 5.02 TeV

using charge-dependent azimuthal anisotropies

A. M. Sirunyan et al.∗ (CMS Collaboration)

(Received 29 August 2017; revised manuscript received 12 October 2018; published 18 December 2019) Charge-dependent anisotropy Fourier coefficients (vn) of particle azimuthal distributions are measured in pPb and PbPb collisions at √sNN= 5.02 TeV with the CMS detector at the LHC. The normalized difference in the second-order anisotropy coefficients (v2) between positively and negatively charged particles is found to depend

linearly on the observed event charge asymmetry with comparable slopes for both pPb and PbPb collisions over a wide range of charged particle multiplicity. In PbPb, the third-order anisotropy coefficientv3shows a similar

linear dependence with the same slope as seen forv2. The observed similarities between thev2slopes for pPb and

PbPb, as well as the similar slopes forv2andv3in PbPb, are compatible with expectations based on local charge

conservation in the decay of clusters or resonances, and constitute a challenge to the hypothesis that, at LHC ener-gies, the observed charge asymmetry dependence ofv2in heavy ion collisions arises from a chiral magnetic wave.

DOI:10.1103/PhysRevC.100.064908

I. INTRODUCTION

Observing macroscopic phenomena arising from quantum anomalies is a subject of interest for a wide range of physics communities, from magnetized relativistic matter in three-dimensional Dirac and Weyl materials [1–3] to hot plasma in the early universe or formed in relativistic heavy ion collisions [4–6]. In quantum chromodynamics, gluon fields within a localized region of space-time can form nontrivial topologi-cal configurations [7–10]. If approximate chiral symmetry is restored, the interactions of chiral quarks with these gluon fields can produce a chirality imbalance, violating the local P and CP symmetries [9,10]. This anomalous chiral effect can manifest itself as an electric current along or opposite to a strong magnetic field [11–13]. The electric charge separation produced by these currents is known as the chiral magnetic effect (CME) [11]. The chiral separation effect (CSE) is a similar process, where the separation of the chiral charges along the magnetic field will be induced by a finite density of the net electric charges [14]. The coupling of electric and chiral charge densities and currents leads to a long-wavelength collective excitation, known as the chiral magnetic wave (CMW) [14–17].

In relativistic heavy ion (AA) collisions, a strong magnetic field and the restoration of the approximate chiral symme-try, both necessary conditions for creating a CMW, may be present. The magnetic field is produced by the spectator protons and is, on average, perpendicular to the reaction plane

Full author list given at the end of the article.

Published by the American Physical Society under the terms of the

Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI.

defined by the impact parameter and beam directions. The propagation of the CMW leads to an electric quadrupole moment, where additional positive (negative) charges are accumulated away from (close to) the reaction plane [14]. Following a hydrodynamic evolution of the medium formed in AA collisions, this electric quadruple moment is expected to result in a charge-dependent variation of the second-order anisotropy coefficient (v2) in the Fourier expansion of the final-state particle azimuthal distribution. More specif-ically, the v2 coefficient will exhibit a linear dependence on the observed event charge asymmetry [14], Ach≡ (N+−

N)/(N++ N), where N+ and N denote the number of positively and negatively charged hadrons in each event,

v2,±= vbase2 ∓ rAch. (1) Here vbase

2 represents the value in the absence of a charge

quadrupole moment from the CMW for positively (+) and

negatively (−) charged particles, and r denotes the slope

parameter. In the presence of a CMW, the difference of v2

values between positively and negatively charged particles will be proportional to Ach. Similar charge-dependent effects from the CMW are not expected for the third-order anisotropy coefficient (v3) [13].

Recent observations of the Ach dependence of v2 in

AA collisions at RHIC at BNL and the CERN LHC are

qualitatively consistent with expectations of the CMW mech-anism [5,18,19]. However, the interpretation of the results remains inconclusive since alternative mechanisms have been proposed to generate charge-dependentv2coefficients without a CMW [20,21]. For example, it has been shown that local charge conservation (LCC) in the decay of clusters or reso-nances can qualitatively describe the charge-dependentv2data [20]. Decay particles from a lower transverse momentum (pT) resonance tend to have a larger rapidity separation, resulting in

(2)

a daughter more likely to fall outside the detector acceptance, leading to a nonzero Ach. Hence, this process generates a cor-relation between Achand the average pTof charged particles, and therefore also between Ach and the v2 coefficient, since

v2 depends on pT. The LCC mechanism also applies to all

higher-order anisotropy Fourier coefficients (vn).

This paper presents measurements of the Achdependence

of the pT and of the pT-averaged vn coefficients in pPb and PbPb collisions at√sNN= 5.02 TeV, using data collected

with the CMS experiment at the LHC. It has been shown that pp and pPb collisions with high charged-particle multi-plicities can generate large final-state azimuthal anisotropies, comparable to those in AA collisions at similar event mul-tiplicities [22–35]. However, the CMW contribution to any

Ach-dependent v2 signal is expected to be negligible in pPb collisions: the induced magnetic field is smaller than in PbPb collisions (albeit of the same order of magnitude) and, more importantly, its correlation with the harmonic event planes is vanishingly small [6,36]. The recent observation of nearly identical charge-dependent azimuthal correlations in

pPb and PbPb suggested significant contamination of

back-ground sources (e.g., LCC) to any CME induced signal [6,37]. Therefore, a comparison between pPb and PbPb systems and their Ach dependence of the pT and the v3 coefficient can differentiate between the CMW and LCC mechanisms. It is worth noting that a lack of experimental evidence for the CME [6,37] does not necessarily imply the absence of the CMW, as the CME requires an initial chirality imbalance from topological QCD charges (which may be too weak to be observed), whereas the CMW only requires an initial net electric charge density [14,16]. Therefore, the CME and CMW deserve independent experimental investigations.

II. THE CMS DETECTOR

The central feature of the CMS apparatus is a super-conducting solenoid of 6 m internal diameter, providing a magnetic field of 3.8 T. Within the solenoid volume, there are silicon pixel and strip tracker detectors, a lead tungstate crys-tal electromagnetic calorimeter, and a brass and scintillator hadron calorimeter. The silicon tracker measures charged par-ticles within the pseudorapidity range|η| < 2.5. For charged particles with 1< pT< 10 GeV/c and |η| < 1.4, the track resolutions are typically 1.5% in pTand 25−90 (45−150) μm in the transverse (longitudinal) impact parameter [38]. Iron and quartz-fiber Cherenkov hadron forward (HF) calorimeters cover the range 2.9 < |η| < 5.2. A detailed description of the CMS detector, together with a definition of the coordinate system used and the relevant kinematic variables, can be found in Ref. [39].

III. EVENT AND TRACK SELECTIONS

The pPb data atsNN= 5.02 TeV, collected in 2013 using

the CMS detector, correspond to an integrated luminosity of 35 nb−1. A subset of peripheral PbPb data at√sNN = 5.02 TeV

collected in 2015 (30–90% centrality, where centrality is defined as the fraction of the total inelastic cross section, with 0% denoting the most central collisions [40]), is also

ch

Observed A

0.2

0.1

0

0.1

0.2

0.05

0.1

CMS PbPb 5.02 TeV Cent. 30-40% < 3.0 GeV/c T p ≤ 0.3 | < 2.4 η |

FIG. 1. The event-by-event probability distribution observed in the charge asymmetry, Ach, for PbPb collisions at √sNN= 5.02 TeV within the 30–40% centrality range. The particles are selected be-tween 0.3 and 3.0 GeV/c and having pseudorapidity |η| < 2.4.

used. The sample is reconstructed with the same algorithm as the pPb data, in order to compare directly the two sys-tems at similar multiplicities. The event reconstruction, event selection and the trigger, including the dedicated triggers to collect a large sample of high-multiplicity pPb events, are identical to those used in previous CMS particle correlation measurements [6,22,32]. In the offline analysis of pPb (PbPb) collisions, hadronic events are selected by requiring the pres-ence of at least one (three) energy deposit(s) greater than 3 GeV in each of the two HF calorimeters. Events are also required to contain a primary vertex within 15 cm of the nominal interaction point along the beam axis and 0.15 cm in the transverse direction. In the pPb data sample, there is a 3% probability to have at least one additional interaction in the same bunch crossing (pileup). After the procedure used to reject pileup events is applied, the remaining sample has a purity of 99.8% for single collision events [32]. The pileup in PbPb data is negligible.

Primary tracks, i.e., tracks that originate at the primary vertex and satisfy the high-purity criteria of Ref. [38], are used to define the event charged-particle multiplicity (Noffline

trk )

and to perform correlation measurements. In addition, the impact parameter significance of the tracks with respect to the primary vertex in the beam and transverse direction is required to be less than 3. The relative uncertainty in pT must be less than 10%. To ensure high tracking efficiency, only tracks with |η| < 2.4 and pT> 0.3 GeV/c are used for Ach andvn mea-surements in this analysis. The pPb and PbPb data are com-pared in ranges of Noffline

trk , where primary tracks with|η| < 2.4 and pT > 0.4 GeV/c are counted, in order to match the trigger selection criterion implemented at the HLT in pPb collisions.

(3)

ch true A 0.05 − 0 0.05 ) + 2 + v 2 − )/(v + 2 - v 2 − (v−0.01 0 0.01 < 220 N ≤ 185 < 3.0 GeV/c 0.3 < p CMS < 220 N ≤ 185 < 3.0 GeV/c 0.3 < p 0.005 ± PbPb 0.108 0.008 ± pPb 0.149 2 norm r ch true A 0.05 − 0 0.05 ) + T p〈 + - T p〈 )/( + T p〈 - - T p〈( 0.01 − 0 0.01 0.001 ± PbPb 0.058 0.001 ± pPb 0.062 〉 p 〈 norm r < 220 N ≤ 185 < 3.0 GeV/c 0.3 < p CMS ch true A 0.05 − 0 0.05 2 v 0.096 0.098 PbPb 5.02 TeV ch true A 0.05 − 0 0.05 (GeV/c)〉 T p〈 0.76 0.765 0.77 PbPb 5.02 TeV 2 v 0.07 0.072 < 220 N ≤ 185 < 3.0 GeV/c 0.3 < p + h − h CMS pPb 5.02 TeV (GeV/c)〉 T p〈 0.87 0.88 CMS pPb 5.02 TeV h+ − h < 220 N ≤ 185 < 3.0 GeV/c 0.3 < p

FIG. 2. The elliptic anisotropyv2 (top left) and event-averaged

pT (top right) for positively (h+) and negatively (h−) charged

particles, and their normalized differences (bottom row), as functions of Atrue

ch for the multiplicity range 185 Ntrkoffline< 220 of pPb and

PbPb collisions at √sNN= 5.02 TeV. Statistical uncertainties are smaller than the marker size, while systematic uncertainties are not displayed.

IV. ANALYSIS TECHNIQUE

In each multiplicity or centrality class, events are further divided into several ranges of the observed event charge asymmetry Aobs

ch, calculated based on the number of positively and negatively charged particles from primary tracks. An example of the Aobsch distribution for PbPb data in the 30–40% centrality range is shown in Fig.1. Within each Aobsch range, the

vncoefficients are obtained separately for tracks with positive (vn+) and negative (vn−) charge, and with|η| < 2.4 and 0.3 < pT < 3 GeV/c, using the two-particle cumulant method [41] with a pseudorapidity gap of at least one unit between the two particles to suppress the short-range correlations. Because of statistical limitations, the pseudorapidity gap chosen in this analysis is smaller than the value of two units typically used in other CMS correlation measurements, but results are found to be consistent between one and two units of pseudorapidity gap. Residual effects of short-range correlations may still contribute to the sum of thevn,vn + v+n, but not the difference

since the effect is largely canceled out. However, this effect contributes to the pPb and PbPb systems similarly [32], so it has little impact on the comparison of the two systems.

The main physics observable of interest in this analysis is the slope parameter (rnorm) extracted by fitting a linear func-tion to the normalizedvndifferences, (vn− vn+)/(vn+ v+n),

as a function of the true event charge asymmetry value, Atrue ch , obtained by correcting Aobs

ch for the detector acceptance and

ch

Corrected A

0.1 − −0.05 0 0.05 0.1 + n

+ v

- n

v

+ n

- v

- n

v

0.02 − 0 0.02 0.002 ± (CMS) = 0.131 norm r 0.013 ± (ALICE) = 0.137 norm r CMS, PbPb 5.02 TeV ALICE, PbPb 2.76 TeV CMS Cent. 30-40% < 5.0 GeV/c T p ≤ 0.2 | < 0.8 η |

FIG. 3. The normalized difference in elliptic flow v2 between

positive- and negative-charged particles, (v2 − v2+)/(v2+ v+2), as a function of charge asymmetry, is presented. The results are selected in centrality range 30–40% with particles within |η| < 0.8 and 0.2  pT < 5.0 GeV, and are compared between the ALICE [19]

and the CMS experiment in PbPb collisions at √sNN= 2.76 and 5.02 TeV, respectively. The bars represent statistical point-by-point uncertainties.

tracking efficiency. Based on Monte Carlo (MC) simulations, detector effects can be modeled as a Gaussian response of the

Atrue

ch distribution within |η| < 2.4, with a width determined from the simulated Aobs

ch distribution at a given Atruech value. Combining the Aobsch distribution in data with the response function from MC simulations, the predicted correlation be-tween Aobs

ch and Atruech in data is calculated. The slope of a linear fit to this correlation is used to obtain the average Atrue ch trk offline N 0 100 200 300 400 500 〉 p〈 norm , r normr 0.1 0.2 CMS r2norm pPb 5.02 TeV PbPb 5.02 TeV 〉 p 〈 norm r < 3.0 GeV/c T 0.3 < p

FIG. 4. The linear slope parameters rnormforv

2 (filled symbols)

andpT (open symbols) as functions of event multiplicity in pPb

and PbPb collisions at √sNN= 5.02 TeV. Statistical and systematic uncertainties are indicated by the error bars and shaded regions, respectively.

(4)

TABLE I. The table summarizes the absolute and normalized slope parameters (r) fromv2andpT in ranges of multiplicity class, Ntrkoffline,

in pPb collisions at √sNN= 5.02 TeV. The first uncertainty associated with the central values denotes statistical errors, while the second uncertainty represents the systematic uncertainty.

Noffline trk rv2 r norm v2 rpT r norm pT [120,150) 0.022 ± 0.001 ± 0.002 0.163 ± 0.01 ± 0.011 0.103 ± 0.001 ± 0.007 0.06 ± 0 ± 0.004 [150,185) 0.02 ± 0.001 ± 0.001 0.145 ± 0.008 ± 0.009 0.105 ± 0.001 ± 0.007 0.06 ± 0 ± 0.004 [185,220) 0.02 ± 0.001 ± 0.001 0.143 ± 0.008 ± 0.009 0.108 ± 0.001 ± 0.007 0.062 ± 0.001 ± 0.004 [220,260) 0.022 ± 0.002 ± 0.001 0.153 ± 0.012 ± 0.009 0.111 ± 0.002 ± 0.007 0.063 ± 0.001 ± 0.004

value in each selected Aobsch range in data. The slope, which ranges from 0.6 to 0.8, is fit separately for each multiplicity or centrality selection. This procedure is validated using different MC generators, which give similar correction factors.

The systematic uncertainty related to the Ach correction factors, based on the difference between EPOS LHC[42] and

HYDJET++ [43] event generators, is estimated to be 1–7%

ranging from high- to low-multiplicity events. To evaluate the systematic uncertainty related to thevnmeasurement, the sensitivity of the results to different track selection criteria is studied. Varying the longitudinal and transverse track impact parameter selection criteria from the default three standard deviations to 2 or 5, and the relative pTuncertainty selection criterion from the default 10% to 5%, yields a systematic uncertainty of less than 2%. The longitudinal primary vertex position (zvtx) has been varied, using ranges |zvtx| < 3 cm and 3< |zvtx| < 15 cm, where the difference with respect to the default range |zvtx| < 15 cm is less than 2%. All of the systematic uncertainty sources are uncorrelated and were found to be similar for pPb and PbPb collisions. Therefore, the total systematic uncertainty is taken as the quadratic sum, and the same values are quoted for both pPb and PbPb systems.

V. RESULTS

Figure2(left column) shows the Atrue

ch dependence ofv2 co-efficients, averaged over 0.3 < pT< 3 GeV/c, for positively and negatively charged particles in the multiplicity range 185 Noffline

trk < 220 of pPb and PbPb collisions at √sNN=

5.02 TeV. The normalized v2difference as a function of Atruech is also shown. A trend ofv+2 (v2−) decreasing (increasing) as

Atrue

ch increases is observed for both pPb and PbPb collisions

with an approximately linear dependence. A similar linear

trend of elliptic anisotropy as a function of Ach has been

observed in AuAu [18] and PbPb [19] systems at lower

collision energies, as shown in Fig.3 for 30–40% centrality PbPb events. The linear slope parameter, rnorm2 , is extracted by aχ2 fit to a linear function, which gives values of 0.149 ± 0.008 for pPb and 0.108 ± 0.005 for PbPb, in the multiplicity range 185 Noffline

trk < 220. A significant nonzero value of the linear slope parameter is observed in pPb collisions, even greater than that in PbPb collisions. Since the CMW effect is expected to be negligible in high-multiplicity pPb events, this observation might be caused, at LHC energies, by a mechanism unrelated to the CMW. The differences in the linear slope parameters observed in the pPb and PbPb systems remain to be understood.

ThepT for positively and negatively charged particles are also measured as functions of Atruech , in the multiplicity range 185 Noffline

trk < 220 of pPb and PbPb collisions at √sNN =

5.02 TeV, and shown in Fig.2(right column). The normalized pT difference as a function of Atruech is obtained for the two systems with the slope parameters displayed in the figure. A similar linear Atrue

ch dependence of thepT value to that of v2 is observed. This behavior is qualitatively consistent with the expectation of the LCC effect from resonance decays. Sincevn has a strong dependence on particle pT, a correlation between the pT-averagedvn and Ach, as observed in Fig.2(left), can also be induced by the LCC mechanism.

The extracted normalized slope parameters for v2 and

pT as functions of event multiplicity in pPb and PbPb

collisions are shown in Fig.4. The rnorm values for bothv 2 andpT are found to have a weak dependence on the event multiplicity for both pPb and PbPb collisions, with values for pT approximately half of those for v2. In the overlapping multiplicity range, normalized slope parameters are observed

TABLE II. The table summarizes the absolute and normalized slope parameters (r) fromv2andpT in ranges of multiplicity class, Ntrkoffline,

in PbPb collisions at √sNN= 5.02 TeV. The first uncertainty associated with the central values denotes statistical errors, while the second uncertainty represents the systematic uncertainty.

Noffline trk rv2 r norm v2 rpT r norm pT [90,120) 0.02 ± 0.001 ± 0.001 0.12 ± 0.007 ± 0.009 0.084 ± 0.001 ± 0.006 0.056 ± 0 ± 0.004 [120,150) 0.023 ± 0.001 ± 0.002 0.131 ± 0.006 ± 0.009 0.084 ± 0.001 ± 0.006 0.056 ± 0.001 ± 0.004 [150,185) 0.022 ± 0.001 ± 0.001 0.119 ± 0.005 ± 0.008 0.087 ± 0.001 ± 0.006 0.057 ± 0.001 ± 0.004 [185,220) 0.022 ± 0.001 ± 0.001 0.108 ± 0.005 ± 0.007 0.087 ± 0.001 ± 0.006 0.058 ± 0.001 ± 0.004 [220,260) 0.025 ± 0.001 ± 0.001 0.126 ± 0.004 ± 0.008 0.091 ± 0.001 ± 0.005 0.059 ± 0.001 ± 0.004 [260,300) 0.025 ± 0.001 ± 0.001 0.122 ± 0.004 ± 0.007 0.093 ± 0.001 ± 0.005 0.06 ± 0.001 ± 0.003 [300,400) 0.028 ± 0 ± 0.001 0.133 ± 0.002 ± 0.007 0.094 ± 0.001 ± 0.005 0.061 ± 0 ± 0.003 [400,500) 0.03 ± 0 ± 0.001 0.141 ± 0.002 ± 0.007 0.099 ± 0.001 ± 0.005 0.064 ± 0.001 ± 0.003

(5)

TABLE III. The table summarizes the absolute and normalized slope parameters (r) fromv2andv3in ranges of centrality class, in PbPb

collisions at √sNN= 5.02 TeV. The first uncertainty associated with the central values denotes statistical errors, while the second uncertainty represents the systematic uncertainty.

Centrality rv2 rnorm v2 rv3 r norm v3 30–40% 0.032 ± 0 ± 0.001 0.162 ± 0.001 ± 0.006 0.01 ± 0.0006 ± 0.0004 0.149 ± 0.008 ± 0.006 40–50% 0.032 ± 0 ± 0.001 0.151 ± 0.001 ± 0.006 0.0102 ± 0.0007 ± 0.0004 0.15 ± 0.01 ± 0.006 50–60% 0.028 ± 0 ± 0.001 0.135 ± 0.001 ± 0.007 0.0083 ± 0.001 ± 0.0004 0.131 ± 0.016 ± 0.007 60–70% 0.024 ± 0 ± 0.002 0.126 ± 0.002 ± 0.008 0.0054 ± 0.0016 ± 0.0003 0.102 ± 0.03 ± 0.006 70–80% 0.022 ± 0.001 ± 0.002 0.136 ± 0.004 ± 0.011 · · · · 80–90% 0.022 ± 0.002 ± 0.002 0.171 ± 0.012 ± 0.014 · · · ·

to be larger in pPb than PbPb collisions, which is not expected in the CMW context and may indicate a collision system dependence of the LCC or other mechanisms. The measured normalized slope parameters, as well as the absolute slope parameters, for each multiplicity or centrality range of pPb and PbPb collisions, are reported in TablesI–III.

The charge asymmetry dependence of the v3 coefficient

for positively and negatively charged particles is also studied in PbPb collisions at √sNN = 5.02 TeV, as shown in Fig. 5

(top) for the 30–40% centrality class. As found for the v2 values, thev+3 (v3) values also decrease (increase) as Atruech

increases. No v3 results for pPb collisions are reported

ch true A 0.04 − −0.02 0 0.02 0.04 3

v

0.033 0.034 CMS 40% centrality − PbPb 5.02 TeV, 30 < 3.0 GeV/c T 0.3 < p + h − h ch true A 0.04 − −0.02 0 0.02 0.04

)

+ n

+ v

− n

)/(v

+ n

- v

− n

(v

0.01 − 0 0.01 0.02 0.001 ± = 0.167 2 norm r 0.009 ± = 0.161 3 norm r 2 v 3 v CMS 40% centrality − PbPb 5.02 TeV, 30 < 3.0 GeV/c T 0.3 < p

FIG. 5. Thev3coefficient for positively and negatively charged

particles (top) and the normalized difference invn, (vn− vn+)/(vn + v+

n) (bottom), for n= 2 and 3, as functions of true event charge asymmetry for the 30–40% centrality class in PbPb collisions at √s

NN= 5.02 TeV.

because of limited statistical precision. The normalized v3 difference, (v3− v+3)/(v3+ v+3), is derived as a function of

Atrue

ch in PbPb collisions and compared with that for v2 in

Fig.5(bottom). The normalized slope parameter ofv3, r3norm, agrees well with r2normwithin statistical uncertainties. Charge-dependent higher harmonicvn coefficients were measured in

PbPb collisions at 2.76 TeV [5] and their magnitude was

found to be smaller than that of the second order coefficient. We show in this paper that, once normalized, no difference is observed for the Atruech dependence between the charge-dependentv2andv3.

The rnorm

2 and r3norm values of PbPb collisions at √

sNN=

5.02 TeV are shown in Fig. 6, as functions of centrality in

the range 30–90%. As found for rnorm

2 , a moderate centrality

dependence of rnorm

3 is observed. Over the centrality range

studied in this analysis, the r2norm and r3norm slope parame-ters are consistent with each other within uncertainties. The CMW effect is expected with respect to the reaction plane, which is approximated by the second-order event plane in

AA collisions, but highly suppressed with respect to the

third-order event plane [13]. The observation of the harmonic order independence, reflected in the similar r2normand r3normvalues, indicates an underlying physics mechanism unrelated to the

Centrality (%) n normr 0.1 0.2 0 20 40 60 80 100 〉 trk offline N 〈 26 81 197 403 716 1139

CMS

PbPb 5.02 TeV < 3.0 GeV/c T 0.3 < p 2

v

3

v

FIG. 6. The linear slope parameters, rnorm

2 and rnorm3 as functions

of the centrality class in PbPb collisions. Average Noffline

trk values for

each centrality class are indicated on the top axis. Statistical and systematic uncertainties are indicated by the error bars and shaded regions, respectively.

(6)

CMW effect and, instead, can be qualitatively explained by the LCC effect [20].

Note that the results reported here and elsewhere [18,19] used the same population of particles to measure bothvnand

Atrue

ch . However, the slope parameters are found to be reduced by about a factor of 3, if the Atrue

ch andvnvalues are determined by two distinct groups of randomly selected particles. This suggests that the observed correlations are not of a collective nature.

VI. SUMMARY

In summary, the charge-dependent Fourier coefficients of the azimuthal anisotropy have been measured in pPb and PbPb collisions at√sNN= 5.02 TeV as functions of the charge

asymmetry of the produced hadrons. The normalized differ-ences in thev2coefficient between positively and negatively charged particles in pPb and PbPb, and that in the v3 coef-ficient in PbPb collisions, are found to depend linearly on the charge asymmetry. The normalized slope parameters of thev2 coefficient versus charge asymmetry in pPb collisions are found to be significant and similar to those in PbPb collisions over a wide range of charged particle multiplicities. The normalized slope parameters of thev2andv3coefficients in PbPb collisions show similar magnitudes for various cen-trality classes. A significant charged asymmetry dependence is also observed for the event-averaged transverse momenta of positively and negatively charged particles in both pPb and PbPb collisions. None of these observations, made at 5.02 TeV and within the CMS phase space window, are expected from the chiral magnetic wave as the dominant physics mechanism, while they are qualitatively consistent with predictions based on local charge conservation. The new measurements pre-sented here indicate that, at LHC energies, the chiral magnetic wave is not the cause of the charge-dependent azimuthal anisotropies seen in pPb and PbPb collisions.

ACKNOWLEDGMENTS

We congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC and thank the technical and administrative staffs at CERN and at other CMS institutes for their contributions to the success of the CMS effort. In addition, we gratefully acknowledge the computing centers and personnel of the Worldwide LHC Computing Grid for delivering so effectively the comput-ing infrastructure essential to our analyses. Finally, we ac-knowledge the enduring support for the construction and

operation of the LHC and the CMS detector provided by the following funding agencies: BMWFW and FWF (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES and CSF (Croatia); RPF (Cyprus); SENESCYT (Ecuador); MoER, ERC IUT, and ERDF (Estonia); Academy of Finland, MEC,

and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF,

DFG, and HGF (Germany); GSRT (Greece); OTKA and NIH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); MSIP and NRF (Republic of Korea); LAS (Lithuania); MOE and UM (Malaysia); BUAP, CINVES-TAV, CONACYT, LNS, SEP, and UASLP-FAI (Mexico); MBIE (New Zealand); PAEC (Pakistan); MSHE and NSC (Poland); FCT (Portugal); JINR (Dubna); MON, RosAtom, RAS, RFBR and RAEP (Russia); MESTD (Serbia); SEIDI, CPAN, PCTI and FEDER (Spain); Swiss Funding Agencies (Switzerland); MST (Taipei); ThEPCenter, IPST, STAR, and NSTDA (Thailand); TUBITAK and TAEK (Turkey); NASU and SFFR (Ukraine); STFC (United Kingdom); DOE and NSF (USA). Individuals have received support from the Marie Curie program and the European Research Council and Horizon 2020 Grant, Contract No. 675440 (European Union); the Leventis Foundation; the A. P. Sloan Founda-tion; the Alexander von Humboldt FoundaFounda-tion; the Belgian Federal Science Policy Office; the Fonds pour la Formation à la Recherche dans l’Industrie et dans l’Agriculture (FRIA-Belgium); the Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium); the Ministry of Education, Youth and Sports (MEYS) of the Czech Republic; the Council of Science and Industrial Research, India; the HOMING PLUS program of the Foundation for Polish Science, cofi-nanced from European Union, Regional Development Fund, the Mobility Plus program of the Ministry of Science and Higher Education, the National Science Center (Poland),

Contracts No. Harmonia 2014/14/M/ST2/00428, No. Opus

2014/13/B/ST2/02543, No. 2014/15/B/ST2/03998, and

No. 2015/19/B/ST2/02861, Sonata-bis 2012/07/E/ST2/

01406; the National Priorities Research Program by Qatar National Research Fund; the Programa Clarín-COFUND del Principado de Asturias; the Thalis and Aristeia programs cofi-nanced by EU-ESF and the Greek NSRF; the Rachadapisek Sompot Fund for Postdoctoral Fellowship, Chulalongkorn University and the Chulalongkorn Academic into Its 2nd Century Project Advancement Project (Thailand); the Welch Foundation, contract C-1845; and the Weston Havens Foun-dation (USA).

[1] B. Q. Lv, H. M. Weng, B. B. Fu, X. P. Wang, H. Miao, J. Ma, P. Richard, X. C. Huang, L. X. Zhao, G. F. Chen, Z. Fang, X. Dai, T. Qian, and H. Ding, Experimental Dis-covery of Weyl Semimetal TaAs, Phys. Rev. X 5, 031013 (2015).

[2] X. Huang, L. Zhao, Y. Long, P. Wang, D. Chen, Z. Yang, H. Liang, M. Xue, H. Weng, Z. Fang, X. Dai, and G. Chen,

Observation of the Chiral-Anomaly-Induced Negative Magne-toresistance in 3D Weyl Semimetal TaAs, Phys. Rev. X 5, 031023(2015).

[3] Q. Li, D. E. Kharzeev, C. Zhang, Y. Huang, I. Pletikosic, A. V. Fedorov, R. D. Zhong, J. A. Schneeloch, G. D. Gu, and T. Valla, Observation of the chiral magnetic effect in ZrTe5,Nat. Phys.

(7)

[4] B. I. Abelev et al. (STAR Collaboration), Observation of charge-dependent azimuthal correlations and possible local strong parity violation in heavy ion collisions,Phys. Rev. C 81, 054908(2010).

[5] ALICE Collaboration, Charge Separation Relative to the Reaction Plane in Pb-Pb Collisions at √s

NN= 2.76 TeV, Phys. Rev. Lett. 110, 012301 (2013).

[6] CMS Collaboration, Observation of Charge-Dependent Az-imuthal Correlations in p-Pb Collisions and its Implication for the Search for the Chiral Magnetic Effect,Phys. Rev. Lett. 118, 122301(2017).

[7] T. D. Lee, A theory of spontaneous T violation,Phys. Rev. D 8, 1226(1973).

[8] T. D. Lee and G. C. Wick, Vacuum stability and vacuum excitation in a spin 0 field theory, Phys. Rev. D 9, 2291 (1974).

[9] P. D. Morley and I. A. Schmidt, Strong P, CP, T violations in heavy-ion collisions,Z. Phys. C 26,627(1985).

[10] D. Kharzeev, R. D. Pisarski, and M. H. G. Tytgat, Possibility of Spontaneous Parity Violation in Hot QCD,Phys. Rev. Lett. 81, 512(1998).

[11] D. Kharzeev, Parity violation in hot QCD: Why it can happen, and how to look for it,Phys. Lett. B 633,260(2006).

[12] D. E. Kharzeev, L. D. McLerran, and H. J. Warringa, The effects of topological charge change in heavy ion collisions: ‘event by event P and CP violation’,Nucl. Phys. A 803,227(2008). [13] D. E. Kharzeev, J. Liao, S. A. Voloshin, and G. Wang,

Chiral magnetic and vortical effects in high-energy nuclear collisions—A status report,Prog. Part. Nucl. Phys. 88,1(2016). [14] Y. Burnier, D. E. Kharzeev, J. Liao, and H.-U. Yee, Chiral Magnetic Wave at Finite Baryon Density and the Electric Quadrupole Moment of Quark-Gluon Plasma in Heavy ion Collisions,Phys. Rev. Lett. 107,052303(2011).

[15] G. M. Newman, Anomalous hydrodynamics,J. High Energy Phys. 01(2006)158.

[16] D. E. Kharzeev and H.-U. Yee, Chiral magnetic wave,Phys. Rev. D 83,085007(2011).

[17] E. V. Gorbar, V. A. Miransky, and I. A. Shovkovy, Normal ground state of dense relativistic matter in a magnetic field, Phys. Rev. D 83,085003(2011).

[18] L. Adamczyk et al. (STAR Collaboration), Observation of Charge Asymmetry Dependence of Pion Elliptic Flow and the Possible Chiral Magnetic Wave in Heavy-Ion Collisions,Phys. Rev. Lett. 114,252302(2015).

[19] ALICE Collaboration, Charge-dependent flow and the search for the chiral magnetic wave in Pb-Pb collisions at √sNN= 2.76 TeV,Phys. Rev. C 93,044903(2016).

[20] A. Bzdak and P. Bozek, Contributions to the event-by-event charge asymmetry dependence for the elliptic flow ofπ+and

πin heavy-ion collisions,Phys. Lett. B 726,239(2013).

[21] Y. Hatta, A. Monnai, and B.-W. Xiao, Elliptic flow difference of charged pions in heavy-ion collisions,Nucl. Phys. A 947,155 (2016).

[22] CMS Collaboration, Observation of long-range near-side an-gular correlations in proton-proton collisions at the LHC, J. High Energy Phys. 09(2010)091.

[23] ATLAS Collaboration, Observation of Long-Range Elliptic Azimuthal Anisotropies in √s= 13 and 2.76 TeV pp

Colli-sions with the ATLAS Detector,Phys. Rev. Lett. 116,172301 (2016).

[24] CMS Collaboration, Measurement of Long-Range Near-Side Two-Particle Angular Correlations in pp Collisions ats=

13 TeV,Phys. Rev. Lett. 116,172302(2016).

[25] CMS Collaboration, Evidence for collectivity in pp collisions at the LHC,Phys. Lett. B 765,193(2017).

[26] CMS Collaboration, Observation of long-range near-side an-gular correlations in proton-lead collisions at the LHC, Phys. Lett. B 718,795(2013).

[27] ALICE Collaboration, Long-range angular correlations on the near and away side in pPb collisions at √sNN= 5.02 TeV,Phys. Lett. B 719,29(2013).

[28] ATLAS Collaboration, Observation of Associated Near-Side and Away-Near-Side Long-Range Correlations in √sNN= 5.02 TeV Proton-Lead Collisions with the ATLAS Detector, Phys. Rev. Lett. 110,182302(2013).

[29] LHCb Collaboration, Measurements of long-range near-side angular correlations in √sNN= 5 TeV proton-lead col-lisions in the forward region, Phys. Lett. B 762, 473 (2016).

[30] CMS Collaboration, Long-range two-particle correlations of strange hadrons with charged particles in pPb and PbPb col-lisions at LHC energies,Phys. Lett. B 742,200(2015). [31] ALICE Collaboration, Long-range angular correlations ofπ, K,

and p in p-Pb collisions at √sNN = 5.02 TeV,Phys. Lett. B 726, 164(2013).

[32] S. Chatrchyan et al. (CMS Collaboration), Multiplicity and transverse momentum dependence of two- and four-particle correlations in pPb and PbPb collisions,Phys. Lett. B 724,213 (2013).

[33] ATLAS Collaboration, Measurement of long-range pseudo-rapidity correlations and azimuthal harmonics in √sNN= 5.02 TeV proton-lead collisions with the ATLAS detector,Phys. Rev. C 90,044906(2014).

[34] CMS Collaboration, Evidence for Collective Multiparticle Cor-relations in p-Pb Collisions, Phys. Rev. Lett. 115, 012301 (2015).

[35] K. Dusling, W. Li, and B. Schenke, Novel collective phenomena in high-energy proton-proton and proton-nucleus collisions, Int. J. Mod. Phys. E 25,1630002(2016).

[36] R. Belmont and J. L. Nagle, To CME or not to CME? Impli-cations of p+Pb measurements of the chiral magnetic effect in heavy ion collisions,Phys. Rev. C 96,024901(2017).

[37] CMS Collaboration, Constraints on the chiral magnetic ef-fect using charge-dependent azimuthal correlations in pPb and PbPb collisions at the LHC, Phys. Rev. C 97, 044912 (2018).

[38] CMS Collaboration, Description and performance of track and primary-vertex reconstruction with the CMS tracker, J. Instrum. 9,P10009(2014).

[39] CMS Collaboration, The CMS experiment at the CERN LHC, J. Instrum. 3,S08004(2008).

[40] CMS Collaboration, Measurement of the elliptic anisotropy of charged particles produced in PbPb collisions at nucleon-nucleon center-of-mass energy √sNN= 2.76 TeV,Phys. Rev. C 87,014902(2013).

[41] A. Bilandzic, R. Snellings, and S. Voloshin, Flow analysis with cumulants: Direct calculations,Phys. Rev. C 83,044913(2011). [42] T. Pierog, Iu. Karpenko, J. M. Katzy, E. Yatsenko, and K. Werner, EPOS LHC: Test of collective hadronization with data measured at the CERN Large Hadron Collider,Phys. Rev. C 92, 034906(2015).

(8)

[43] I. P. Lokhtin, L. V. Malinina, S. V. Petrushanko, A. M. Snigirev, I. Arsene, and K. Tywoniuk, Heavy ion event

genera-tor HYDJET++ (HYDrodynamics plus JETs),Comput. Phys. Commun. 180,779(2009).

A. M. Sirunyan,1A. Tumasyan,1W. Adam,2F. Ambrogi,2E. Asilar,2T. Bergauer,2J. Brandstetter,2E. Brondolin,2

M. Dragicevic,2J. Erö,2M. Flechl,2M. Friedl,2R. Frühwirth,2,aV. M. Ghete,2J. Grossmann,2J. Hrubec,2M. Jeitler,2,a

A. König,2N. Krammer,2I. Krätschmer,2D. Liko,2T. Madlener,2I. Mikulec,2E. Pree,2D. Rabady,2N. Rad,2H. Rohringer,2

J. Schieck,2,aR. Schöfbeck,2M. Spanring,2D. Spitzbart,2W. Waltenberger,2J. Wittmann,2C.-E. Wulz,2,aM. Zarucki,2

V. Chekhovsky,3V. Mossolov,3J. Suarez Gonzalez,3E. A. De Wolf,4D. Di Croce,4X. Janssen,4J. Lauwers,4H. Van Haevermaet,4P. Van Mechelen,4N. Van Remortel,4S. Abu Zeid,5F. Blekman,5J. D’Hondt,5I. De Bruyn,5J. De Clercq,5 K. Deroover,5G. Flouris,5D. Lontkovskyi,5S. Lowette,5S. Moortgat,5L. Moreels,5Q. Python,5K. Skovpen,5S. Tavernier,5

W. Van Doninck,5P. Van Mulders,5I. Van Parijs,5H. Brun,6B. Clerbaux,6G. De Lentdecker,6H. Delannoy,6G. Fasanella,6

L. Favart,6R. Goldouzian,6A. Grebenyuk,6G. Karapostoli,6T. Lenzi,6J. Luetic,6T. Maerschalk,6A. Marinov,6

A. Randle-conde,6T. Seva,6C. Vander Velde,6P. Vanlaer,6D. Vannerom,6R. Yonamine,6F. Zenoni,6F. Zhang,6,b

A. Cimmino,7T. Cornelis,7D. Dobur,7A. Fagot,7M. Gul,7I. Khvastunov,7D. Poyraz,7C. Roskas,7S. Salva,7M. Tytgat,7 W. Verbeke,7N. Zaganidis,7H. Bakhshiansohi,8O. Bondu,8S. Brochet,8G. Bruno,8C. Caputo,8A. Caudron,8S. De

Visscher,8C. Delaere,8M. Delcourt,8B. Francois,8A. Giammanco,8A. Jafari,8M. Komm,8G. Krintiras,8V. Lemaitre,8

A. Magitteri,8A. Mertens,8M. Musich,8K. Piotrzkowski,8L. Quertenmont,8M. Vidal Marono,8S. Wertz,8N. Beliy,9

W. L. Aldá Júnior,10F. L. Alves,10G. A. Alves,10L. Brito,10M. Correa Martins Junior,10C. Hensel,10A. Moraes,10

M. E. Pol,10P. Rebello Teles,10E. Belchior Batista Das Chagas,11W. Carvalho,11J. Chinellato,11,cA. Custódio,11E. M. Da Costa,11G. G. Da Silveira,11,dD. De Jesus Damiao,11S. Fonseca De Souza,11L. M. Huertas Guativa,11H. Malbouisson,11

M. Melo De Almeida,11C. Mora Herrera,11L. Mundim,11H. Nogima,11A. Santoro,11A. Sznajder,11E. J. Tonelli

Manganote,11,cF. Torres Da Silva De Araujo,11A. Vilela Pereira,11S. Ahuja,12a,12bC. A. Bernardes,12a,12bT. R. Fernandez

Perez Tomei,12a,12bE. M. Gregores,12a,12bP. G. Mercadante,12a,12bS. F. Novaes,12a,12bSandra S. Padula,12a,12bD. Romero

Abad,12a,12bJ. C. Ruiz Vargas,12a,12bA. Aleksandrov,13R. Hadjiiska,13P. Iaydjiev,13M. Misheva,13M. Rodozov,13 M. Shopova,13S. Stoykova,13G. Sultanov,13A. Dimitrov,14I. Glushkov,14L. Litov,14B. Pavlov,14P. Petkov,14W. Fang,15,e

X. Gao,15,eM. Ahmad,16J. G. Bian,16G. M. Chen,16H. S. Chen,16M. Chen,16Y. Chen,16C. H. Jiang,16D. Leggat,16

H. Liao,16Z. Liu,16F. Romeo,16S. M. Shaheen,16A. Spiezia,16J. Tao,16C. Wang,16Z. Wang,16E. Yazgan,16H. Zhang,16

S. Zhang,16J. Zhao,16Y. Ban,17G. Chen,17Q. Li,17S. Liu,17Y. Mao,17S. J. Qian,17D. Wang,17Z. Xu,17C. Avila,18

A. Cabrera,18L. F. Chaparro Sierra,18C. Florez,18C. F. González Hernández,18J. D. Ruiz Alvarez,18B. Courbon,19

N. Godinovic,19D. Lelas,19I. Puljak,19P. M. Ribeiro Cipriano,19T. Sculac,19Z. Antunovic,20M. Kovac,20V. Brigljevic,21 D. Ferencek,21K. Kadija,21B. Mesic,21A. Starodumov,21,fT. Susa,21M. W. Ather,22A. Attikis,22G. Mavromanolakis,22

J. Mousa,22C. Nicolaou,22F. Ptochos,22P. A. Razis,22H. Rykaczewski,22M. Finger,23,gM. Finger, Jr.,23,gE. Carrera Jarrin,24

Y. Assran,25,hM. A. Mahmoud,25,iA. Mahrous,25,jR. K. Dewanjee,26M. Kadastik,26L. Perrini,26M. Raidal,26A. Tiko,26

C. Veelken,26P. Eerola,27J. Pekkanen,27M. Voutilainen,27J. Härkönen,28T. Järvinen,28V. Karimäki,28R. Kinnunen,28

T. Lampén,28K. Lassila-Perini,28S. Lehti,28T. Lindén,28P. Luukka,28E. Tuominen,28J. Tuominiemi,28E. Tuovinen,28 J. Talvitie,29T. Tuuva,29M. Besancon,30F. Couderc,30M. Dejardin,30D. Denegri,30J. L. Faure,30F. Ferri,30S. Ganjour,30

S. Ghosh,30A. Givernaud,30P. Gras,30G. Hamel de Monchenault,30P. Jarry,30I. Kucher,30E. Locci,30M. Machet,30

J. Malcles,30G. Negro,30J. Rander,30A. Rosowsky,30M. Ö. Sahin,30M. Titov,30A. Abdulsalam,31I. Antropov,31

S. Baffioni,31F. Beaudette,31P. Busson,31L. Cadamuro,31C. Charlot,31R. Granier de Cassagnac,31M. Jo,31S. Lisniak,31

A. Lobanov,31J. Martin Blanco,31M. Nguyen,31C. Ochando,31G. Ortona,31P. Paganini,31P. Pigard,31S. Regnard,31

R. Salerno,31J. B. Sauvan,31Y. Sirois,31A. G. Stahl Leiton,31T. Strebler,31Y. Yilmaz,31A. Zabi,31A. Zghiche,31 J.-L. Agram,32,kJ. Andrea,32D. Bloch,32J.-M. Brom,32M. Buttignol,32E. C. Chabert,32N. Chanon,32C. Collard,32

E. Conte,32,kX. Coubez,32J.-C. Fontaine,32,kD. Gelé,32U. Goerlach,32M. Jansová,32A.-C. Le Bihan,32N. Tonon,32P. Van

Hove,32S. Gadrat,33S. Beauceron,34C. Bernet,34G. Boudoul,34R. Chierici,34D. Contardo,34P. Depasse,34H. El Mamouni,34

J. Fay,34L. Finco,34S. Gascon,34M. Gouzevitch,34G. Grenier,34B. Ille,34F. Lagarde,34I. B. Laktineh,34M. Lethuillier,34

L. Mirabito,34A. L. Pequegnot,34S. Perries,34A. Popov,34,lV. Sordini,34M. Vander Donckt,34S. Viret,34T. Toriashvili,35,m I. Bagaturia,36,nC. Autermann,37S. Beranek,37L. Feld,37M. K. Kiesel,37K. Klein,37M. Lipinski,37M. Preuten,37 C. Schomakers,37J. Schulz,37T. Verlage,37V. Zhukov,37,lA. Albert,38E. Dietz-Laursonn,38D. Duchardt,38M. Endres,38

M. Erdmann,38S. Erdweg,38T. Esch,38R. Fischer,38A. Güth,38M. Hamer,38T. Hebbeker,38C. Heidemann,38K. Hoepfner,38

S. Knutzen,38M. Merschmeyer,38A. Meyer,38P. Millet,38S. Mukherjee,38M. Olschewski,38K. Padeken,38T. Pook,38

M. Radziej,38H. Reithler,38M. Rieger,38F. Scheuch,38D. Teyssier,38S. Thüer,38G. Flügge,39B. Kargoll,39T. Kress,39 A. Künsken,39J. Lingemann,39T. Müller,39A. Nehrkorn,39A. Nowack,39C. Pistone,39O. Pooth,39A. Stahl,39,oM. Aldaya Martin,40T. Arndt,40C. Asawatangtrakuldee,40K. Beernaert,40O. Behnke,40U. Behrens,40A. Bermúdez Martínez,40A. A. Bin

Anuar,40K. Borras,40,pV. Botta,40A. Campbell,40P. Connor,40C. Contreras-Campana,40F. Costanza,40C. Diez Pardos,40

(9)

J. M. Grados Luyando,40A. Grohsjean,40P. Gunnellini,40M. Guthoff,40A. Harb,40J. Hauk,40M. Hempel,40,rH. Jung,40 A. Kalogeropoulos,40M. Kasemann,40J. Keaveney,40C. Kleinwort,40I. Korol,40D. Krücker,40W. Lange,40A. Lelek,40 T. Lenz,40J. Leonard,40K. Lipka,40W. Lohmann,40,rR. Mankel,40I.-A. Melzer-Pellmann,40A. B. Meyer,40G. Mittag,40

J. Mnich,40A. Mussgiller,40E. Ntomari,40D. Pitzl,40A. Raspereza,40B. Roland,40M. Savitskyi,40P. Saxena,40

R. Shevchenko,40S. Spannagel,40N. Stefaniuk,40G. P. Van Onsem,40R. Walsh,40Y. Wen,40K. Wichmann,40C. Wissing,40

O. Zenaiev,40S. Bein,41V. Blobel,41M. Centis Vignali,41T. Dreyer,41E. Garutti,41D. Gonzalez,41J. Haller,41A. Hinzmann,41

M. Hoffmann,41A. Karavdina,41R. Klanner,41R. Kogler,41N. Kovalchuk,41S. Kurz,41T. Lapsien,41I. Marchesini,41 D. Marconi,41M. Meyer,41M. Niedziela,41D. Nowatschin,41F. Pantaleo,41,oT. Peiffer,41A. Perieanu,41C. Scharf,41

P. Schleper,41A. Schmidt,41S. Schumann,41J. Schwandt,41J. Sonneveld,41H. Stadie,41G. Steinbrück,41F. M. Stober,41

M. Stöver,41H. Tholen,41D. Troendle,41E. Usai,41L. Vanelderen,41A. Vanhoefer,41B. Vormwald,41M. Akbiyik,42C. Barth,42

S. Baur,42E. Butz,42R. Caspart,42T. Chwalek,42F. Colombo,42W. De Boer,42A. Dierlamm,42B. Freund,42R. Friese,42

M. Giffels,42A. Gilbert,42D. Haitz,42F. Hartmann,42,oS. M. Heindl,42U. Husemann,42F. Kassel,42,oS. Kudella,42 H. Mildner,42M. U. Mozer,42Th. Müller,42M. Plagge,42G. Quast,42K. Rabbertz,42M. Schröder,42I. Shvetsov,42G. Sieber,42

H. J. Simonis,42R. Ulrich,42S. Wayand,42M. Weber,42T. Weiler,42S. Williamson,42C. Wöhrmann,42R. Wolf,42

G. Anagnostou,43G. Daskalakis,43T. Geralis,43V. A. Giakoumopoulou,43A. Kyriakis,43D. Loukas,43I. Topsis-Giotis,43

G. Karathanasis,44S. Kesisoglou,44A. Panagiotou,44N. Saoulidou,44K. Kousouris,45I. Evangelou,46C. Foudas,46P. Kokkas,46

S. Mallios,46N. Manthos,46I. Papadopoulos,46E. Paradas,46J. Strologas,46F. A. Triantis,46M. Csanad,47N. Filipovic,47 G. Pasztor,47G. I. Veres,47,sG. Bencze,48C. Hajdu,48D. Horvath,48,tÁ. Hunyadi,48F. Sikler,48V. Veszpremi,48 A. J. Zsigmond,48N. Beni,49S. Czellar,49J. Karancsi,49,uA. Makovec,49J. Molnar,49Z. Szillasi,49M. Bartók,50,sP. Raics,50

Z. L. Trocsanyi,50B. Ujvari,50S. Choudhury,51J. R. Komaragiri,51S. Bahinipati,52,vS. Bhowmik,52P. Mal,52K. Mandal,52

A. Nayak,52,wD. K. Sahoo,52,vN. Sahoo,52S. K. Swain,52S. Bansal,53S. B. Beri,53V. Bhatnagar,53R. Chawla,53

N. Dhingra,53A. K. Kalsi,53A. Kaur,53M. Kaur,53R. Kumar,53P. Kumari,53A. Mehta,53J. B. Singh,53G. Walia,53

A. Bhardwaj,54S. Chauhan,54B. C. Choudhary,54R. B. Garg,54S. Keshri,54A. Kumar,54Ashok Kumar,54S. Malhotra,54 M. Naimuddin,54K. Ranjan,54Aashaq Shah,54R. Sharma,54R. Bhardwaj,55R. Bhattacharya,55S. Bhattacharya,55

U. Bhawandeep,55S. Dey,55S. Dutt,55S. Dutta,55S. Ghosh,55N. Majumdar,55A. Modak,55K. Mondal,55S. Mukhopadhyay,55

S. Nandan,55A. Purohit,55A. Roy,55D. Roy,55S. Roy Chowdhury,55S. Sarkar,55M. Sharan,55S. Thakur,55P. K. Behera,56

R. Chudasama,57D. Dutta,57V. Jha,57V. Kumar,57A. K. Mohanty,57,oP. K. Netrakanti,57L. M. Pant,57P. Shukla,57

A. Topkar,57T. Aziz,58S. Dugad,58B. Mahakud,58S. Mitra,58G. B. Mohanty,58N. Sur,58B. Sutar,58S. Banerjee,59 S. Bhattacharya,59S. Chatterjee,59P. Das,59M. Guchait,59Sa. Jain,59S. Kumar,59M. Maity,59,xG. Majumder,59 K. Mazumdar,59T. Sarkar,59,xN. Wickramage,59,yS. Chauhan,60S. Dube,60V. Hegde,60A. Kapoor,60K. Kothekar,60

S. Pandey,60A. Rane,60S. Sharma,60S. Chenarani,61,zE. Eskandari Tadavani,61S. M. Etesami,61,zM. Khakzad,61

M. Mohammadi Najafabadi,61M. Naseri,61S. Paktinat Mehdiabadi,61,aaF. Rezaei Hosseinabadi,61B. Safarzadeh,61,ab

M. Zeinali,61M. Felcini,62M. Grunewald,62M. Abbrescia,63a,63b,63cC. Calabria,63a,63b,63cA. Colaleo,63a,63b,63c D. Creanza,63a,63b,63cL. Cristella,63a,63b,63cN. De Filippis,63a,63b,63cM. De Palma,63a,63b,63cF. Errico,63a,63b,63cL. Fiore,63a,63b,63c

G. Iaselli,63a,63b,63cS. Lezki,63a,63b,63cG. Maggi,63a,63b,63cM. Maggi,63a,63b,63cG. Miniello,63a,63b,63cS. My,63a,63b,63c

S. Nuzzo,63a,63b,63cA. Pompili,63a,63b,63cG. Pugliese,63a,63b,63cR. Radogna,63a,63b,63cA. Ranieri,63a,63b,63cG. Selvaggi,63a,63b,63c

A. Sharma,63a,63b,63cL. Silvestris,63a,63b,63c,oR. Venditti,63a,63b,63cP. Verwilligen,63a,63b,63cG. Abbiendi,64a,64bC. Battilana,64a,64b

D. Bonacorsi,64a,64bS. Braibant-Giacomelli,64a,64bR. Campanini,64a,64bP. Capiluppi,64a,64bA. Castro,64a,64bF. R. Cavallo,64a,64b

S. S. Chhibra,64a,64bG. Codispoti,64a,64bM. Cuffiani,64a,64bG. M. Dallavalle,64a,64bF. Fabbri,64a,64bA. Fanfani,64a,64b D. Fasanella,64a,64bP. Giacomelli,64a,64bC. Grandi,64a,64bL. Guiducci,64a,64bS. Marcellini,64a,64bG. Masetti,64a,64b

A. Montanari,64a,64bF. L. Navarria,64a,64bA. Perrotta,64a,64bA. M. Rossi,64a,64bT. Rovelli,64a,64bG. P. Siroli,64a,64bN. Tosi,64a,64b

S. Albergo,65a,65bS. Costa,65a,65bA. Di Mattia,65a,65bF. Giordano,65a,65bR. Potenza,65a,65bA. Tricomi,65a,65bC. Tuve,65a,65b

G. Barbagli,66a,66bK. Chatterjee,66a,66bV. Ciulli,66a,66bC. Civinini,66a,66bR. D’Alessandro,66a,66bE. Focardi,66a,66b

P. Lenzi,66a,66bM. Meschini,66a,66bS. Paoletti,66a,66bL. Russo,66a,66b,acG. Sguazzoni,66a,66bD. Strom,66a,66bL. Viliani,66a,66b,o L. Benussi,67S. Bianco,67F. Fabbri,67D. Piccolo,67F. Primavera,67,oV. Calvelli,68a,68bF. Ferro,68a,68bE. Robutti,68a,68b S. Tosi,68a,68bA. Benaglia,69a,69bL. Brianza,69a,69bF. Brivio,69a,69bV. Ciriolo,69a,69bM. E. Dinardo,69a,69bS. Fiorendi,69a,69b

S. Gennai,69aA. Ghezzi,69a,69bP. Govoni,69a,69bM. Malberti,69a,69bS. Malvezzi,69a,69bR. A. Manzoni,69a,69bD. Menasce,69a,69b

L. Moroni,69a,69bM. Paganoni,69a,69bK. Pauwels,69a,69bD. Pedrini,69a,69bS. Pigazzini,69a,69b,adS. Ragazzi,69a,69bT. Tabarelli de

Fatis,69a,69bS. Buontempo,70a,70b,70c,70dN. Cavallo,70a,70b,70c,70dS. Di Guida,70a,70b,70c,70d,oF. Fabozzi,70a,70b,70c,70d

F. Fienga,70a,70b,70c,70dA. O. M. Iorio,70a,70b,70c,70dW. A. Khan,70a,70b,70c,70dL. Lista,70a,70b,70c,70dS. Meola,70a,70b,70c,70d,o P. Paolucci,70a,70b,70c,70d,oC. Sciacca,70a,70b,70c,70dF. Thyssen,70a,70b,70c,70dP. Azzi,71a,71b,71c,oN. Bacchetta,71a,71b,71c

L. Benato,71a,71b,71cM. Biasotto,71a,71b,71c,aeA. Boletti,71a,71b,71cR. Carlin,71a,71b,71cP. Checchia,71a,71b,71c

M. Dall’Osso,71a,71b,71cP. De Castro Manzano,71a,71b,71cT. Dorigo,71a,71b,71cU. Dosselli,71a,71b,71cF. Gasparini,71a,71b,71c

U. Gasparini,71a,71b,71cA. Gozzelino,71a,71b,71cS. Lacaprara,71a,71b,71cM. Margoni,71a,71b,71cA. T. Meneguzzo,71a,71b,71c

M. Michelotto,71a,71b,71cN. Pozzobon,71a,71b,71cP. Ronchese,71a,71b,71cR. Rossin,71a,71b,71cF. Simonetto,71a,71b,71c E. Torassa,71a,71b,71cM. Zanetti,71a,71b,71cP. Zotto,71a,71b,71cG. Zumerle,71a,71b,71cA. Braghieri,72a,72bA. Magnani,72a,72b

P. Montagna,72a,72bS. P. Ratti,72a,72bV. Re,72a,72bM. Ressegotti,72a,72bC. Riccardi,72a,72bP. Salvini,72a,72bI. Vai,72a,72b

(10)

L. Fanò,73a,73bP. Lariccia,73a,73bR. Leonardi,73a,73bE. Manoni,73a,73bG. Mantovani,73a,73bV. Mariani,73a,73b M. Menichelli,73a,73bA. Rossi,73a,73bA. Santocchia,73a,73bD. Spiga,73a,73bK. Androsov,74a,74b,74cP. Azzurri,74a,74b,74c,o

G. Bagliesi,74a,74b,74cJ. Bernardini,74a,74b,74cT. Boccali,74a,74b,74cL. Borrello,74a,74b,74cR. Castaldi,74a,74b,74c

M. A. Ciocci,74a,74b,74cR. Dell’Orso,74a,74b,74cG. Fedi,74a,74b,74cL. Giannini,74a,74b,74cA. Giassi,74a,74b,74c

M. T. Grippo,74a,74b,74c,acF. Ligabue,74a,74b,74cT. Lomtadze,74a,74b,74cE. Manca,74a,74b,74cG. Mandorli,74a,74b,74c

L. Martini,74a,74b,74cA. Messineo,74a,74b,74cF. Palla,74a,74b,74cA. Rizzi,74a,74b,74cA. Savoy-Navarro,74a,74b,74c,af

P. Spagnolo,74a,74b,74cR. Tenchini,74a,74b,74cG. Tonelli,74a,74b,74cA. Venturi,74a,74b,74cP. G. Verdini,74a,74b,74cL. Barone,75a,75b F. Cavallari,75a,75bM. Cipriani,75a,75bN. Daci,75a,75bD. Del Re,75a,75b,oE. Di Marco,75a,75bM. Diemoz,75a,75bS. Gelli,75a,75b

E. Longo,75a,75bF. Margaroli,75a,75bB. Marzocchi,75a,75bP. Meridiani,75a,75bG. Organtini,75a,75bR. Paramatti,75a,75b

F. Preiato,75a,75bS. Rahatlou,75a,75bC. Rovelli,75a,75bF. Santanastasio,75a,75bN. Amapane,76a,76b,76cR. Arcidiacono,76a,76b,76c

S. Argiro,76a,76b,76cM. Arneodo,76a,76b,76cN. Bartosik,76a,76b,76cR. Bellan,76a,76b,76cC. Biino,76a,76b,76cN. Cartiglia,76a,76b,76c

F. Cenna,76a,76b,76cM. Costa,76a,76b,76cR. Covarelli,76a,76b,76cA. Degano,76a,76b,76cN. Demaria,76a,76b,76cB. Kiani,76a,76b,76c C. Mariotti,76a,76b,76cS. Maselli,76a,76b,76cE. Migliore,76a,76b,76cV. Monaco,76a,76b,76cE. Monteil,76a,76b,76cM. Monteno,76a,76b,76c

M. M. Obertino,76a,76b,76cL. Pacher,76a,76b,76cN. Pastrone,76a,76b,76cM. Pelliccioni,76a,76b,76cG. L. Pinna Angioni,76a,76b,76c

F. Ravera,76a,76b,76cA. Romero,76a,76b,76cM. Ruspa,76a,76b,76cR. Sacchi,76a,76b,76cK. Shchelina,76a,76b,76cV. Sola,76a,76b,76c

A. Solano,76a,76b,76cA. Staiano,76a,76b,76cP. Traczyk,76a,76b,76cS. Belforte,77a,77bM. Casarsa,77a,77bF. Cossutti,77a,77bG. Della

Ricca,77a,77bA. Zanetti,77a,77bD. H. Kim,78G. N. Kim,78M. S. Kim,78J. Lee,78S. Lee,78S. W. Lee,78C. S. Moon,78 Y. D. Oh,78S. Sekmen,78D. C. Son,78Y. C. Yang,78A. Lee,79H. Kim,80D. H. Moon,80G. Oh,80J. A. Brochero Cifuentes,81

J. Goh,81T. J. Kim,81S. Cho,82S. Choi,82Y. Go,82D. Gyun,82S. Ha,82B. Hong,82Y. Jo,82Y. Kim,82K. Lee,82K. S. Lee,82

S. Lee,82J. Lim,82S. K. Park,82Y. Roh,82J. Almond,83J. Kim,83J. S. Kim,83H. Lee,83K. Lee,83K. Nam,83S. B. Oh,83

B. C. Radburn-Smith,83S. h. Seo,83U. K. Yang,83H. D. Yoo,83G. B. Yu,83M. Choi,84H. Kim,84J. H. Kim,84J. S. H. Lee,84

I. C. Park,84Y. Choi,85C. Hwang,85J. Lee,85I. Yu,85V. Dudenas,86A. Juodagalvis,86J. Vaitkus,86I. Ahmed,87Z. A. Ibrahim,87

M. A. B. Md Ali,87,agF. Mohamad Idris,87,ahW. A. T. Wan Abdullah,87M. N. Yusli,87Z. Zolkapli,87M. C. Duran-Osuna,88 H. Castilla-Valdez,88E. De La Cruz-Burelo,88G. Ramirez-Sanchez,88I. Heredia-De La Cruz,88,aiR. I. Rabadan-Trejo,88

R. Lopez-Fernandez,88J. Mejia Guisao,88R. Reyes-Almanza,88A. Sanchez-Hernandez,88S. Carrillo Moreno,89C. Oropeza

Barrera,89F. Vazquez Valencia,89I. Pedraza,90H. A. Salazar Ibarguen,90C. Uribe Estrada,90A. Morelos Pineda,91

D. Krofcheck,92P. H. Butler,93A. Ahmad,94M. Ahmad,94Q. Hassan,94H. R. Hoorani,94A. Saddique,94M. A. Shah,94

M. Shoaib,94M. Waqas,94H. Bialkowska,95M. Bluj,95B. Boimska,95T. Frueboes,95M. Górski,95M. Kazana,95 K. Nawrocki,95M. Szleper,95P. Zalewski,95K. Bunkowski,96A. Byszuk,96,ajK. Doroba,96A. Kalinowski,96M. Konecki,96 J. Krolikowski,96M. Misiura,96M. Olszewski,96A. Pyskir,96M. Walczak,96P. Bargassa,97C. Beirão Da Cruz E. Silva,97A. Di

Francesco,97P. Faccioli,97B. Galinhas,97M. Gallinaro,97J. Hollar,97N. Leonardo,97L. Lloret Iglesias,97M. V. Nemallapudi,97

J. Seixas,97G. Strong,97O. Toldaiev,97D. Vadruccio,97J. Varela,97S. Afanasiev,98P. Bunin,98M. Gavrilenko,98I. Golutvin,98

I. Gorbunov,98A. Kamenev,98V. Karjavin,98A. Lanev,98A. Malakhov,98V. Matveev,98,akV. Palichik,98V. Perelygin,98 S. Shmatov,98S. Shulha,98N. Skatchkov,98V. Smirnov,98N. Voytishin,98A. Zarubin,98Y. Ivanov,99V. Kim,99,al E. Kuznetsova,99,amP. Levchenko,99V. Murzin,99V. Oreshkin,99I. Smirnov,99V. Sulimov,99L. Uvarov,99S. Vavilov,99

A. Vorobyev,99Yu. Andreev,100A. Dermenev,100S. Gninenko,100N. Golubev,100A. Karneyeu,100M. Kirsanov,100

N. Krasnikov,100A. Pashenkov,100D. Tlisov,100A. Toropin,100V. Epshteyn,101V. Gavrilov,101N. Lychkovskaya,101

V. Popov,101I. Pozdnyakov,101G. Safronov,101A. Spiridonov,101A. Stepennov,101M. Toms,101E. Vlasov,101A. Zhokin,101

T. Aushev,102A. Bylinkin,102,anM. Chadeeva,103,aoP. Parygin,103D. Philippov,103S. Polikarpov,103E. Popova,103 V. Rusinov,103V. Andreev,104M. Azarkin,104,anI. Dremin,104,anM. Kirakosyan,104,anA. Terkulov,104A. Baskakov,105

A. Belyaev,105E. Boos,105A. Demiyanov,105A. Ershov,105A. Gribushin,105O. Kodolova,105V. Korotkikh,105I. Lokhtin,105

I. Miagkov,105S. Obraztsov,105S. Petrushanko,105V. Savrin,105A. Snigirev,105I. Vardanyan,105V. Blinov,106,apD. Shtol,106,ap

Y. Skovpen,106,apI. Azhgirey,107I. Bayshev,107S. Bitioukov,107D. Elumakhov,107V. Kachanov,107A. Kalinin,107

D. Konstantinov,107V. Krychkine,107V. Petrov,107R. Ryutin,107A. Sobol,107S. Troshin,107N. Tyurin,107A. Uzunian,107 A. Volkov,107P. Adzic,108,aqP. Cirkovic,108D. Devetak,108M. Dordevic,108J. Milosevic,108V. Rekovic,108J. Alcaraz Maestre,109A. Álvarez Fernández,109M. Barrio Luna,109M. Cerrada,109N. Colino,109B. De La Cruz,109A. Delgado Peris,109

A. Escalante Del Valle,109C. Fernandez Bedoya,109J. P. Fernández Ramos,109J. Flix,109M. C. Fouz,109P. Garcia-Abia,109

O. Gonzalez Lopez,109S. Goy Lopez,109J. M. Hernandez,109M. I. Josa,109A. Pérez-Calero Yzquierdo,109J. Puerta Pelayo,109

A. Quintario Olmeda,109I. Redondo,109L. Romero,109M. S. Soares,109J. F. de Trocóniz,110M. Missiroli,110D. Moran,110

J. Cuevas,111C. Erice,111J. Fernandez Menendez,111I. Gonzalez Caballero,111J. R. González Fernández,111E. Palencia Cortezon,111S. Sanchez Cruz,111P. Vischia,111J. M. Vizan Garcia,111I. J. Cabrillo,112A. Calderon,112B. Chazin Quero,112

E. Curras,112J. Duarte Campderros,112M. Fernandez,112J. Garcia-Ferrero,112G. Gomez,112A. Lopez Virto,112J. Marco,112

C. Martinez Rivero,112P. Martinez Ruiz del Arbol,112F. Matorras,112J. Piedra Gomez,112T. Rodrigo,112A. Ruiz-Jimeno,112

L. Scodellaro,112N. Trevisani,112I. Vila,112R. Vilar Cortabitarte,112D. Abbaneo,113E. Auffray,113P. Baillon,113A. H. Ball,113

D. Barney,113M. Bianco,113P. Bloch,113A. Bocci,113C. Botta,113T. Camporesi,113R. Castello,113M. Cepeda,113 G. Cerminara,113E. Chapon,113Y. Chen,113D. d’Enterria,113A. Dabrowski,113V. Daponte,113A. David,113M. De Gruttola,113 A. De Roeck,113M. Dobson,113B. Dorney,113T. du Pree,113M. Dünser,113N. Dupont,113A. Elliott-Peisert,113P. Everaerts,113

Şekil

FIG. 1. The event-by-event probability distribution observed in the charge asymmetry, A ch , for PbPb collisions at √s NN = 5.02 TeV within the 30–40% centrality range
FIG. 3. The normalized difference in elliptic flow v 2 between
TABLE I. The table summarizes the absolute and normalized slope parameters (r) from v 2 and p T  in ranges of multiplicity class, N trk offline ,
TABLE III. The table summarizes the absolute and normalized slope parameters (r) from v 2 and v 3 in ranges of centrality class, in PbPb

Referanslar

Benzer Belgeler

Ö ğrencilerin sosyal beceri ölçeğinin olumlu sosyal beceri alt boyutu puanlarının cinsiyet değişkenine göre anlamlı bir farklılık gösterip göstermediğini

Depresyon düzeyi yüksek olan annelerin, ölüm süreci düĢüncesine bağlı olarak yaĢayacağı korku düzeyi de anlamlı derecede artmakta ölümden sonra

Using several models to describe the dressed cross section yields stable parameters for the first enhancement, which has a mass of 4228.6  4.1  6.3 MeV=c 2 and a width of 77.0  6.8

In this study, the design of embedded Sugeno fuzzy logic based controller for controlling non-linear liquid level process is realized.. First, the system was activated on

1 Institute of High Energy Physics, Beijing 100049, People’s Republic of China 2 Beihang University, Beijing 100191, People’s Republic of China.. 3 Beijing Institute of

3218 sayılı Serbest Bölgeler Kanunu’nun geçici 3 üncü maddesi gereğin- ce, Serbest Bölgelerde üretilen ürünlerin FOB bedelinin en az % 85’ini yurt- dışına ihraç

Selim dönemi ve o dönemin dünya siyaset merkezi haline dönüşen İstanbul'u, &#34;Müteferrika: Basmacı İbrahim Efendi ve Müteferrika Matbaası&#34; (Fikret Sarıcaoğlu

li yazma eser vitrinlerde teşhir edilmiştir. İstanbul Üniversitesi öğretim üyeleri, İs­ tanbul Kütüphanecileri ve san'at tarihi öğrencileri tarafından tertiplenen bu