• Sonuç bulunamadı

A chromogenic dioxetane chemosensor for hydrogen sulfide and pH dependent off-on chemiluminescence property

N/A
N/A
Protected

Academic year: 2021

Share "A chromogenic dioxetane chemosensor for hydrogen sulfide and pH dependent off-on chemiluminescence property"

Copied!
6
0
0

Yükleniyor.... (view fulltext now)

Tam metin

(1)

ContentslistsavailableatScienceDirect

Sensors

and

Actuators

B:

Chemical

j ou rn a l h o m ep a g e :w w w . e l s e v i e r . c o m / l o c a t e / s n b

A

chromogenic

dioxetane

chemosensor

for

hydrogen

sulfide

and

pH

dependent

off–on

chemiluminescence

property

Ilke

Simsek

Turan,

Fazli

Sozmen

UNAM—NationalNanotechnologyResearchCenter,BilkentUniversity,Ankara06800,Turkey

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received6February2014

Receivedinrevisedform28April2014 Accepted29April2014

Availableonline9May2014 Keywords: Hydrogensulfide 1-2Dioxetanes Chemosensors Chemiluminescence

a

b

s

t

r

a

c

t

Inthispaper,arapidandhighlyselectivechromogenicnakedeyedetectionofhydrogensulfidewas achievedby a1,2-dioxetane based chemiluminescent probe in aqueousmedia at pH 7.4. Chemi-luminescencepropertyoftheprobecanbemodulateddependingonthepHvalueofmedium.

©2014ElsevierB.V.Allrightsreserved.

1. Introduction

The emission of light produced by a chemical reaction is describedaschemiluminescenceandthisphenomenonisutilized in nature frequentlyand referred toas bioluminescence [1–5]. The mostknown bioluminescenceassayis derived fromfirefly luminescencethatarisesfromluciferasecatalyzedaerobic oxida-tionofluciferin[6].Amongthemostpopularchemiluminescent substratessuchasoxalateesters,luminol,acridiniumesters, 1,2-dioxetanes havereceiveda great deal ofattention dueto their unique emission properties [7,8]. Following the synthesis of a firstmemberofdioxetanesbyKopeckyandMumford,many four-memberedring peroxidederivatives havebeensynthesized[9]. Theunimolecular or catalyzeddecomposition of1,2-dioxetanes resultinchemiluminescenceemission.Theunimolecularthermal decompositionof 1,2-dioxetaneshavingunchargedsubstituents canbeexplainedwithconcertedandbiradicalmechanisms.Inthe thermallyinducedconcertedmechanism,twocarbonylproducts which oneof them is inthe singlet ortriplet excitedstateare formeddirectlyviahomolyticcleavageoftheC CandO Obonds offourmemberedring.Inthebiradicalmechanism,an intermedi-atesingletbiradical,whichcanyieldcarbonylproducts,isformed [10,11].Thelatterdecompositionmechanismof1,2-dioxetanesis thechemically initiated intramolecularcharge transfer induced

∗ Correspondingauthor.Tel.:+903122903568/+905554811949. E-mailaddresses:sozmen@unam.bilkent.edu.tr,fsozmen@hotmail.com (F.Sozmen).

chemiluminescence(CTICL)ofdioxetanes.IntheCTICLmechanism, decompositioniscatalyzedbysubstratessuchasabaseorametal ion.Generallythehydroxyphenylgroupisoftenusedasan aro-maticelectrondonor.Thedeprotanationofhydroxyphenylgroup leadstoformationof ananionicphenolate groupwhich causes intramolecularchargetransfer(CT).TheCToccursfromphenolate totheO Oofdioxetanesinordertoinducedecompositioninto respectiveexcitedspecies[11].

Redoxactivesulfurcontainingmoleculeswhichareknownas reactive sulfur species (RSS) play crucial roles via oxidation or reductionofbiomoleculesunderphysiologicalconditions[12–17]. Onememberofthisfamily ishydrogensulfide (H2S)whichhas

acharacteristicfoulodorofrottenegg.Sinceendogenously pro-ducedH2Shassignificantrolesinbiologicalsignalingandmetabolic

processsuchasmodulationofneurotransmission,cardiovascular protection,regulationofcellgrowth,stimulationofangiogenesis, detectionofthismoleculeattractsgrowinginterestinliterature [17–25].

Achromogenicchemosensorgenerallytransducesachemical signalintoacolorchangeandthistypeofsensingattractedmuch attentionlasttwodecades[25–30].Inthisstudy,wedesignedand synthesizedanovelfastresponding1,2-dioxetanebaseda chro-mogenicprobe6forsensingH2S.Afterthedesignofprobe6,itwas

synthesizedinsixsteps.ThedetectionofH2Swasachieved

suc-cessfullybyprobe6andthehighlyselectivesensingprocesscanbe monitoredbyacolorchangeofsolutionwithnakedeyeandalso viaappearanceofanewabsorbancebandinelectronicabsorption spectraatpH7.4.Ontheotherhand,chemiluminescenceofprobe

6obtainedatpH12.4sinceitdecomposedatthispHvalue.

http://dx.doi.org/10.1016/j.snb.2014.04.101 0925-4005/©2014ElsevierB.V.Allrightsreserved.

(2)

2. Materialsandmethods

2.1. Materials

4-(2-Hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES) waspurchasedfromSigma–Aldrich.Sodiumhydroxide solution (0.1mol/L)wasaddedtoaqueousHEPES(100mmol/L)toadjust thepHto7.4.Spectrophotometric gradesolventswereusedfor spectroscopyexperiments. Flashcolumn chromatography (FCC) wasperformedbyusingglasscolumnswithaflashgradesilicagel (MerckSilicaGel60(40–63␮m)).Reactionsweremonitoredby thinlayerchromatography(TLC)usingprecoatedsilicagelplates (MerckSilicaGelPF-254),visualizedbyUV-Vislight.Allorganic extractswere dehydratedover anhydrous Na2SO4 and

concen-tratedbyusingrotaryevaporatorbeforebeingsubjectedtoFCC. Allotherchemicalsandsolventsweresuppliedfromcommercial sourcesandusedasreceived.

2.2. Instruments

A pH meter (Oakton, manufactured by Eutech instruments) wasusedtodeterminethepH.Ultraviolet–visible(UV–vis)spectra were recorded on a Varian Cary 100 UV–vis spectrophotome-ter. Chemiluminescence measurements were doneon a Varian Eclipsespectrofluorometer.1HNMRand 13C NMRspectrawere

recorded onBruker Spectrospin Avance DPX 400spectrometer usingCDCl3 as thesolvent.Chemicalshifts values arereported

inppmfromtetramethylsilaneasinternalstandard.Spin multi-plicitiesarereportedasthefollowing:s(singlet),d(doublet),m (multiplet).HRMSdatawereacquiredonanAgilentTechnologies 6530Accurate-MassQ-TOFLC/MS.

2.3. Synthesisofcompounds

2.3.1. Synthesisof3-benzyloxybenzaldehyde(1)

3-Hydroxybenzaldehyde(1g,8.19mmol)wasdissolvedindry THF. When reaction mixture was cooled to 0◦C, triethylamine (TEA)(1.71mL,12.2mmol)wasaddedandmixedfor20min.After the addition of catalytic amount of 4-(dimethylamino)pyridine (DMAP),benzoylchloride(1.38mL,12.2mmol)wasadded drop-wise to the reaction mixture and it was left to stir at room temperature.Theprogressofthereactionwasmonitoredbythin layerchromatography(TLC).WhenTLCshowednostarting mate-rial,reactionwasconcentratedtohalfofit.Theresiduewasdiluted withethylacetate (EtOAc)and extractedwithbrine.Combined organicphasesweredriedoveranhydrousNa2SO4.Afterremoval

of thesolvent, theresidue waspurified by silica gel flash col-umnchromatographyusingEtOAc/Hexane(1:5,v/v)astheeluent. Compound1wasobtainedaswhitesolid (1.41g,76%).1HNMR

(400MHz,CDCl3):ıH10.04(s,1H),8.23(d,J=8.4Hz,2H),7.78–7.82

(m,2H),7.57–7.69(m,2H),7.51–7.57(m,3H).13CNMR(100MHz,

CDCl3)ı191.1,164.8,151.5,137.8,133.9,130.24,130.21,129.0,

128.71,128.69,127.9,127.3,122.5ppm.

2.3.2. Synthesisof3-benzyloxybenzaldehydedimethylacetal(2)

Compound1(1g,4.42mmol),2,2-dimethoxypropane(1.2mL) andcatalyticamountofp-toluenesulfonicacidwasmixedat75◦C. Theprogress ofthereaction wasmonitoredbyTLC.WhenTLC showednostartingmaterial,reactionwasconcentratedtohalfof it.TheresiduewasdilutedwithEtOAcandextractedwithbrine. Combined organic phases were dried over anhydrous Na2SO4.

After removal of the solvent, the residue was purified by sil-icagel flash columnchromatography using EtOAc/Hexane (1:5, v/v) as the eluent. Compound 2 was obtained as white solid (745mg,62%).1HNMR(400MHz,CDCl 3):ıH8.24(d,J=8.49Hz, 2H),7.65(t,J=7.41Hz,1H),7.39–7.55(m,5H),7.23(d,J=8.0Hz, 1H),5.48(s,1H),3.37(s,6H).13CNMR(100MHz,CDCl 3)ı165.1, 151.0,140.0,133.6,130.1,129.5,129.3,128.6,124.2,121.7,120.2, 102.2,52.5ppm.MS(TOF-ESI):m/z:CalcdforC16H16O4:295.09408

[M+Na]+,Found:295.09078[M+Na]+,=11.18ppm.

2.3.3. Synthesisofdimethyl1-methoxy-1-(3-benzyloxyphenyl) methylphosphonate(3)

Trimethylphosphite(0.3mL,2.58mmol)wasaddedtothe solu-tionofcompound2(500mg,1.84mmol)inDCMat−78◦Cunder

argon.15minlater, TiCl4 (0.3mL,2.58mmol) wasadded

drop-wisetothereactionmixtureat−78◦C.Themixturewasstirred

for 30min before allowingit toroom temperature and stirred atroomtemperatureforfurther1h.Aftertheadditionof aque-ousmethanol(2:1),reactionmixturewasdilutedwithDCMand extractedfirstwithsaturatedsolutionofNaHCO3thenwithbrine.

CombinedorganicphasesweredriedoveranhydrousNa2SO4.After

removalofthesolvent,theresiduewaspurifiedbysilicagelflash columnchromatographyusingEtOAcastheeluent.Compound3

wasobtainedas white solid (583mg, 91%).1H NMR (400MHz,

CDCl3):ıH8.22(d,J=8.27Hz,2H),7.66–7.68(m,1H),7.52–7.55 (m,2H),7.48(t,J=7.86Hz,1H),7.38(d,J=7.74Hz, 1h),7.34(s, 1H), 7.24(d, J=8.01Hz, 1H), 4.60 (d, J=15.8Hz, 1H), 3.74 (dd, J=7, 10, 6H),3.45 (s, 3H).13C NMR (100MHz, CDCl 3)ı 165.0, 151.19,151.16,136.1,133.6,130.1,129.6,129.5,128.6,125.4,125.3, 121.97,121.94,121.19,121.14,80.7,79.0,59.0,58.8,53.98,53.92, 53.8,53.7ppm.MS(TOF-ESI):m/z:CalcdforC19H17O6P:373.07657

[M+Na]+,Found:373.07657[M+Na]+,=12.27ppm.

2.3.4. Synthesisof 1-(2-adamatylidene)-1-methoxy-1-(3-hydroxyphenyl)methane(4)

Lithiumdiisopropylamide(1.8mL,3.07mmol)wasadded drop-wisetothereactionmixtureofcompound3(430mg,1.23mmol) dissolvedin1mLdryTHFat−78◦Cunderargon.Afterstirringofthe

reactionmixturefor45min,2-adamantanone(166mg,1.11mmol) dissolvedindryTHFwasaddeddropwisetothereactionmixture at−78◦C under Ar. Reactionwasleftto stirat room

tempera-tureovernight.Afterpouringitintophosphatebuffer(0.2M,pH 7),it wasextractedwithEtOAc.Combinedorganicphaseswere driedover anhydrousNa2SO4.Afterremovalofthesolvent,the

residuewaspurified bysilicagelflashcolumn chromatography using EtOAc/Hexane (1:5, v/v) as the eluent. Compound4 was obtainedaswhitesolid(312mg,94%).1HNMR(400MHz,CDCl

3): ıH7.17(s,br,1H),7.09(t,J=7.83Hz,1H),6.81(s,1H),6.70–6.77 (m,2H),3.24(s,3H),3.15(s,1H),2.57(s,1H),1.67–1.85(m,14H). 13C NMR (100MHz, CDCl 3) ı 155.8, 142.8,136.7, 132.4, 129.1, 121.8,115.9,114.6,57.7,39.1,39.0,37.1,32.2,30.3,28.2ppm.MS (TOF-ESI):m/z: Calcdfor C18H22O2:271.16926 [M+H]+,Found:

271.16357[M+H]+,=13.59ppm.

2.3.5. Synthesisof 1-(2-adamatylidene)-1-methoxy-1-(3-(2,4-dinitrophenoxy)phenyl)methane(5)

Compound4(100mg,0.37mmol)wasdissolvedin1mLDMF and K2CO3 (153mg, 1.11mmol) was added and the reaction

mixturewasstirredfor5minatroomtemperature. 2,4-dinitro-1-fluoro-benzene(68.9mg,0,37mmol)wasaddedandthereaction mixture was left to stir at room temperature. The progress of thereactionwasmonitoredbyTLC.WhenTLCshowedno start-ingmaterial,theresidue wasdilutedwithEtOAcand extracted withbrine.Combinedorganicphasesweredriedoveranhydrous Na2SO4. Afterremoval of thesolvent, theresidue was purified

by silicagel flash column chromatography using EtOAc/hexane (1:5,v/v)astheeluent.Compound5wasobtainedaswhitesolid (143.6mg,89%).1HNMR(400MHz,CDCl 3):ıH8.88(d,J=2.08Hz, 1H),8.36(dd, J=2.95, 9.23Hz,1H),7.47(t,J=7.75Hz, 1H),7.31 (s,1H),7.07–7.12(m,3H),3.34(s,3H),3.26(s,1H),2.66(s,1H), 1.77–2.01 (m, 14H).13C NMR (100MHz, CDCl 3)ı 156.0, 153.5,

(3)

Scheme1. Synthesisofprobe6.

142.1,141.4,139.5,138.64,130.2,128.8,127.4,122.0,119.2,118.6, 58.0, 39.1,38.9, 37.0, 32.3,30.3, 28.1. MS(TOF-ESI): m/z:Calcd forC24H24N2O6:435.15616[M H]−,Found:435.15452[M H]−,

=3.77ppm.

2.3.6. Synthesisof4-methoxy-4-(3-(2,4-dinitrophenoxy) phenyl)spiro[adamantine-2,3-[1,2]-dioxetane(6)

Compound 5 (143.6mg, 0.37mmol) was dissolved in DCM. Methyleneblue(5mg)wasaddedtothereactionmixturewhich was irradiated while oxygen gas was passing through it. The progressofthereactionwasmonitoredbyTLC.WhenTLCshowed nostartingmaterial,themixturewasconcentratedundervacuo andtheresiduewassubjectedtothesilicagelflashcolumn chro-matographybyusingDCMastheeluent.Compound6wasobtained aswhitesolid(162.8mg,94%).1HNMR(400MHz,CDCl 3):ıH8.88 (t,J=2.59Hz,1H),8.36(dt,J=2.65,9.24Hz,1H),7.60(m,b,4H), 7.21–7.24(m,1H),6.99(d,J=9.23Hz,1H),3.27(s,3H),3.05(s,1H), 2.12(s,1H),1.90–1.50(m,14H).13CNMR(100MHz,CDCl 3)ı155.8, 153.8,141.6,139.6,138.1,130.6,128.8,122.1,121.4,118.1,111.2, 50.0,36.2,34.7,33.2,32.9,32.1,31.6,31.4,25.9ppm.

3. Resultsanddiscussions

3.1. Synthesisofprobe6

Thesyntheticroutetowardprobe6isdepictedinScheme1. Initially 3-hydroxybenzaldehyde was converted to a benzoyl derivative 1 to prevent any polymerization reaction dur-ing the preparation of dimethyl acetal 2. After that, dimethyl acetal 2 was synthesized by using 2,2-dimethoxypropane and

toluene-4-sulfonicacidasacatalyst.Then||-methoxyphosphonate

3wasobtainedinthepresenceoftrimethylphosphiteandTiCl4

asaLewisacid.Subsequenttreatmentofthephosphonate3tothe Wittig–Hornerreactionwith2-adamantanoneyieldedcompound

4.Thencompound5wassynthesizedbythereactionbetween4

and 1-fluoro-2,4-dinitrobenzeneunderbasicconditionsthrough nucleophilicsubstitution.Finally,1,2dioxetanederivative6was synthesizedwiththe[2+2]cycloadditionofsingletoxygen1O

2on

enoletherofcompound5(Scheme2).

3.2. ElectronicabsorptionspectraforH2Sdetection

Thefirst importantobservationwasthecolorimetric change inthesolutionofprobe6inthepresenceofNa2S(acommonly

employedH2Sdonor)atpH7.4.TheconcentrationratiosofS2-,HS−

andH2SaredeterminedbythepHofthebuffer.Thetimedependent

electronicabsorptionspectrawereexaminedfor100␮Mprobe6

in100mMHEPESbuffer/DMSO(1:9,v/v,pH7.4,25◦C)(Fig.1aand b).Uponadditionof10equiv.ofH2S(inHEPESbuffer,100mM)

at pH7.4a newabsorption bandappearedat 468nm immedi-ately,withinaminute,andreachedequilibriumafterabout30min. Thedecompositionofprobe6withH2SatpH7.4resultedinthe

releaseofdinitrothiophenolgroupwhichisresponsiblefor appear-anceofanewabsorbancebandat468nminelectronicabsorption spectrum.TitrationwithvaryingconcentrationsofH2SinHEPES

buffer(100mM,pH7.4)clearlyshowedaprogressiveincreaseof theabsorptionintensity.Fortitrationexperiment,theelectronic absorptionspectrawerecollected10minaftertheeachadditionof H2S(Fig.1c)andthecolorchangewaseasilydistinguishablewith

nakedeye.

(4)

Fig.1. (a)Timedependenceofelectronicabsorptionspectraof100␮Mprobe6in 100mMHEPESbuffer/DMSO(1:9,v/v,pH7.4,25◦C)with10equiv.H2S.(b)Time

dependenceofelectronicabsorptionspectraofprobe6(100␮M)in100mMHEPES buffer/DMSO(1:9,v/v,pH7.4,25◦C)with10equiv.H2Sat468nm.(c)Theelectronic

absorptionspectraofprobe6(100␮M)in100mMHEPESbuffer/DMSO(1:9,v/v,pH 7.4,25◦C)inthepresenceof0–10equiv.H2SinHEPESbuffer(100mM,pH7.4).

3.3. Chemiluminescencemeasurements

OnceH2SsolutioninHEPESbufferat pH7.4 wasaddedthe

solutionofprobe6in100mMHEPESbuffer/DMSO(1:9,v/v,pH 7.4,25◦C),adarkyellowchromogenicchangewasobservedwithin thefirst minute due to therelease of dinitrothiophenolgroup.

Fig. 2.(a) Light emission spectra of probe 6 (100␮M) in 100mM HEPES buffer/DMSO(1:9,v/v,pH7.4,25◦C)with10equiv.H2S(inHEPESbuffer,100mM)

atpH12.4andwithoutH2SatpH12.4.(b)Timedependenceofchemiluminescence

spectraofprobe6(100␮M)in9DMSO-1HEPESbuffer(100mM,pH7.4)with 10equiv.H2SandwithoutH2SatpH12.4.(c)Thedigitalphotographof

chemi-luminescenceofprobe6in100mMHEPESbuffer/DMSO(1:9,v/v,pH7.4,25◦C) with10equiv.H2SatpH12.4.(d)Thedigitalphotographofchemiluminescenceof

probe6in100mMHEPESbuffer/DMSO(1:9,v/v,25◦C)atpH12.4.

However,luminescencecannotbeobservedsincecompound7was notdeprotonatedatpH7.4(chemiluminescenceoff).Tothatend, thepHofsolutionwasadjustedto12.4byNaOHsolution(10N) andbecauseofdecompositionof8viaintramolecularcharge trans-fer,luminescenceofsolutionwasobserved(chemiluminescence on). On the other hand, when pH of probe 6 (100mM HEPES buffer/DMSO(1:9,v/v,pH7.4,25◦C)wasreachedtopH12.4 with-outaddinganyH2Ssolution,almostsameluminescencevaluewas

measured(Fig.2a–d).Theonlydifferencebetweentwocasesare substanceswhicharereleased.Thus,anon–offchemiluminescence wasachievedbyprobe6dependingonpHofthemedium.

(5)

Fig.3.(a)Theelectronicabsorptionspectraof‘probe6+H2S’and‘probe6+various

relatedspecies’(H2Sandotherspecieswere10equiv.inHEPESbuffer100mM,pH

7.4).Probe6concentrationwas100␮Min100mMHEPESbuffer/DMSO(1:9,v/v, pH7.4,25◦C).(b)Digitalphotographshowstheappearanceofthesolutionsunder

ambientlight.Probeconcentrationswere100␮M,H2Sandotherrelatedspecies

wereaddedat10equiv.,allin100mMHEPESbuffer/DMSO(1:9,v/v,pH7.4,25◦C).

Photographwastaken10minaftertheadditionofallspecies.

3.4. Selectivityoverotherrelatedspecies

Further,weevaluatedtheselectivityofprobe6bytreatingwith otherrelatedspecies,includingvariousreactivesulfurspeciesand representativeanions(Fig.3aandb).Onlyprobe6promoted signifi-cantabsorbancechangeat468nm,conformingthehighselectivity ofprobe6forH2S.Theelectronicabsorptionspectraweretaken

10minaftertheadditionofallspecies.Alsodigitalphotographin Fig.3bshowsthatthecolorchangesof100␮Mprobe6solutions(in 100mMHEPESbuffer/DMSO(1:9,v/v,pH7.4,25◦C))whichwere preparedbyadding10equiv.solutionsofglutathione(GSH), cys-teine(cys),H2O2,KCN,Na2S2O3,KSCN,Na2SO3,KF,NaN3,NaNO2

andH2Sin100mMHEPESbuffer/DMSO(1:9,v/v,pH7.4,25◦C).The

digitalphotographwastaken10minaftertheadditionofsolutions. Thus,asshownindigitalphotograph(Fig.3b),ahighlyselective andveryfastnakedeyecolorimetricdetectionofH2Sispossible.

AlsothespectaculardifferencebetweenH2Sandtheotherrelated

speciesintermsofabsorbanceisclearlyshowninthebargraphs (Fig.3c).

3.5. Proposeddecompositionmechanism

Allexperimentsareincompleteagreementwiththefollowing mechanismsdescribedinScheme1.OnceH2SsolutioninHEPES

buffer at pH 7.4 was added, the thiolysis of the dinitrophenyl etheryieldedmixed7anddinitrothiophenolwhichmainlycaused newabsorptionbandnamelyadarkyellowcolorchange.The HR-ESI mass spectral analysis in thenegative mode clearly shows thereleaseofdinitrothiophenolgroup(Fig.S17).AtpH12.4,the deprotanationofhydroxyphenylgroupof7leadstoananionic phenolategroup.Thenegativelychargedphenolategroupcauses intramolecularchargetransfer(CT)fromphenolatetoO Oof diox-etanestoinducedecompositionintoexcited9whichreturnstothe groundstatethroughlightemissionand releaseadamantanone. Furthermore,whenthepHofprobe6wasadjustedpH12.4,the removalofdinitrophenolategroupwhichwasconfirmedby HR-ESImassspectrometry(negativeionmode)(Fig.S19)resultsinthe formationofdeprotonated8whichdecomposedtogivetheexcited compound9thatreturnstothegroundstatethroughlightemission inthesameway.

4. Conclusion

In summary, we synthesized a novel fast responding 1,2-dioxetanederivativeprobe6forsensingofH2S.Forchromogenic

chemosensing processes, a new absorption band appeared at 468nm due to the release of dinitrothiophenol group in the presence of H2S, and highly selective and sensitivenaked eye

chemosensingprocesswasobservedforH2S.AlsowhenpHof

solu-tionwasadjustedto12.4,strongchemiluminescenceofsolution was obtaineddue to theremoval of dinitrothiophenol or dini-trophenolategroups.Thedemonstrationsshowninthisworkare significantsincethesynthesisofadioxetanebasedhighlyselective, sensitiveandrapidchromogenicH2Sdetectionandmodulationof

chemiluminescencecharacterbypHwaspresentedfor thefirst time.

Acknowledgment

TheauthorsthankProfessorDr.EnginU.Akkayaforfruitful dis-cussions.

AppendixA. Supplementarydata

Supplementarydataassociatedwiththisarticlecanbefound,in theonlineversion,athttp://dx.doi.org/10.1016/j.snb.2014.04.101.

References

[1]M.L.Grayeski,Chemiluminescenceanalysis,Anal.Chem.59(1987)1243–1256. [2]F.McCapra,Anapplicationofthetheoryofelectrocyclicreactionsto

biolumi-nescence,J.Chem.Soc.,Chem.Commun.3(1968)155–156.

[3]W.Adam,G.Cilento,ChemicalandBiologicalGenerationofExcitedStates, AcademicPress,NewYork,NY,1982.

[4]E.Sagi,N.Hever,R.Rosen,A.J.Bartolome,J.R.Premkumar,R.Ulber,O.Lev, T.Scheper,S.Belkin,Fluorescenceandbioluminescencereporterfunctions ingeneticallymodifiedbacterialsensorstrains,Sens.Actuators,B:Chem.90 (2003)2–8.

[5]R.D.Chaudhari,A.B.Joshi,R.Srivastava,Uricacidbiosensorbasedon chemi-luminescencedetectionusinganano-microhybridmatrix,Sens.Actuators,B: Chem.173(2012)882–889.

[6]E.H.White,E.Rapaport,T.A.Hopkins,H.H.Seliger,Chemi-andbioluminescence offireflyluciferin,J.Am.Chem.Soc.91(1969)2178–2180.

[7]S.Beck,H.Koster,Applicationsofdioxetanechemiluminescentprobesto molecularbiology,Anal.Chem.62(1990)2258–2270.

[8]J.Wu,X.Fu,C.Xie,M.Yang,W.Fang,S.Gao,TiO2nanoparticles-enhanced

luminolchemiluminescenceanditsanalyticalapplicationsinorganophosphate pesticideimprinting,Sens.Actuators,B:Chem.160(2011)511–516. [9]K.R.Kopecky,C.Mumford,Luminescenceinthethermaldecompositionof

(6)

[10]M.Matsumoto,Advancedchemistryofdioxetane-basedchemiluminescent substratesoriginatingfrombioluminescence,J.Photochem.Photobiol.,C: Pho-tochem.Rev.5(2004)27–53.

[11]M. Matsumoto, N. Watanabe, N. Hoshiya, H.K. Ijuin, Color modulation for intramolecular charge-transfer-induced chemiluminescence of 1,2-dioxetanes,Chem.Rec.8(2008)213–228.

[12]H.Sies,Glutathioneanditsroleincellularfunctions,FreeRadicalBiol.Med.27 (1999)916–921.

[13]J.M.Estrela,A.Ortega,E.Obrador,Glutathioneincancerbiologyandtherapy, Crit.Rev.Clin.Lab.Sci.43(2006)143–181.

[14]O.Kabil,R.J.Banerjee,Redoxbiochemistryofhydrogensulfide,J.Biol.Chem. 285(2010)21903–21907.

[15]H.S.Jung,X.Chen,J.S.Kim,J.Yoon,Recentprogressinluminescentand col-orimetricchemosensorsfordetectionofthiols,Chem.Soc.Rev.42(2013) 6019–6031.

[16]Y.Qian,B.Yang,Y.Shen,Q.Du,L.Lin,J.Lin,H.Zhu,A BODIPY–coumarin-based selective fluorescent probefor rapidly detecting hydrogensulfide in blood plasma and living cells,Sens. Actuators, B: Chem.182 (2013) 498–503.

[17]M.Isik,T.Ozdemir,I.S.Turan,S.Kolemen,E.U.Akkaya,Chromogenic, Fluo-rogenicsensingofbiologicalthiolsinaqueoussolutionsusingBODIPY-based reagents,Org.Lett.15(2013)216–219.

[18]Y.Yang,C.Yin,Y.Chu,H.Tong,J.Chao,F.Cheng,A.Zheng,pH-sensitive fluo-rescentsalicylaldehydederivativeforselectiveimagingofhydrogensulfidein livingcells,Sens.Actuators,B:Chem.186(2013)212–218.

[19]C.X.Duan,Y.G.Liu,Recentadvancesinfluorescentprobesformonitoringof hydrogensulfide,Curr.Med.Chem.20(2013)2929–2937.

[20]R.Wang,Hydrogensulfide:thethirdgasotransmitterinbiologyandmedicine, Antioxid.RedoxSignaling12(2010)1061–1064.

[21]G.Szabó,G.Veres,T.Radovits,D.Gero,K.Módis,C.M.Gröschel,F.Horkay,M. Karck,C.Szabó,Cardioprotectiveeffectsofhydrogensulfide,NitricOxide25 (2011)201–210.

[22]B.L.Predmore,D.J.Lefer,Developmentofhydrogensulfidebasedtherapeutics forcardiovasculardisease,J.Cardiovasc.Transl.Res.3(2010)487–498. [23]R.Baskar,J.Bian,Hydrogensulfidegashascellgrowthregulatoryrole,Eur.J.

Pharmacol.656(2011)5–9.

[24]M.J.Wang,W.J.Cai,N.Li,Y.J.Ding,Y.Chen,Y.C.Zhu,Thehydrogensulfidedonor NaHSpromotesangiogenesisinaratmodelofhindlimbischemia,Antioxid. RedoxSignaling12(2010)1065–1077.

[25]C.Szabó,A.Papapetropoulos,Hydrogensulphideandangiogenesis: mecha-nismsandapplications,Br.J.Pharmacol.164(2011)853–865.

[26]Z.Ekmekci,M.D.Yilmaz,E.U.Akkaya,Amonostyryl-boradiazaindacene (BOD-IPY)derivativeascolorimetricandfluorescentprobeforcyanideions,Org.Lett. 10(2008)461–464.

[27]I.S.Turan,F.P.Cakmak,F.Sozmen,Highlyselectivefluoridesensingvia chro-mogenicaggregationofasilyloxy-functionalizedtetraphenylethylene(TPE) derivative,TetrahedronLett.55(2014)456–459.

[28]Z.H.Liu,S.Devaraj,C.R.Yang,Y.P.Yen,Anewselectivechromogenicand fluorogenic sensor for citrateion, Sens. Actuators, B:Chem. 174 (2012) 555–562.

[29]S.Atilgan,T.Ozdemir,E.U.Akkaya,AsensitiveandselectiveratiometricnearIR fluorescentprobeforzincionsbasedonthedistyryl-bodipyfluorophore,Org. Lett.10(2008)4065–4067.

[30]C.X.Yin,F.J.Huo,P.Yang,Anion-basedchromogenicdetectingmethodfor phosphate-containingderivativesinphysiologicalcondition,Sens.Actuators, B:Chem.109(2005)291–299.

Biographies

IlkeSimsekTuranisaPh.D.studentinUNAM—NationalNanotechnologyResearch CenteratBilkentUniversity,Ankara,Turkey.SheearnedherM.Sc.degreein chem-istryfromMiddleEastTechnicalUniversity(METU),Ankarain2009andB.Sc.degree inchemistryeducationfromMiddle EastTechnicalUniversity (METU),Ankara in2007.Herresearchinterestandexperiencearedevelopmentofnovel chemi-luminescentcompounds,photodynamictherapy,molecularsensorsandmolecular logicgates.

FazliSozmenisaseniorresearchscientistinUNAM—NationalNanotechnology ResearchCenter,BilkentUniversity,Ankara,Turkey.HeearnedhisDoctoraldegree inchemistryfromAkdenizUniversity,Antalya,Turkeyin2012.HeearnedhisM.Sc. andB.Sc.degreesinchemistryfromAkdenizUniversityin2005and2002, respec-tively.Hisresearchinterestandexperiencearelightharvestingsupramolecular systems,self-assembledfunctionalsystems,molecularsensorsandmolecularlogic gates.HisPh.D.thesiswasonthesynthesisofnewBODIPYderivativesincluding ter-pyridineandphenantroline,preparationoftheirmetallosupramolecularcomplexes andenergytransfer.

Şekil

Fig. 2. (a) Light emission spectra of probe 6 (100 ␮M) in 100 mM HEPES buffer/DMSO (1:9, v/v, pH 7.4, 25 ◦ C) with10 equiv

Referanslar

Benzer Belgeler

 Enerji ve protein dengeli olmalı  Yağ oranı düşük olmalı.  Rasyondaki ani değişimlerde sakınılmalı  Uzun ot-

helikopterlerin daha hızlı, daha uzağa ve daha ekonomik uçması için gereken

Proposed stochas- tic models can clearly help emergency planning by estimating the minimum number of drivers for different levels of quality of service under different demand,

We also obtained some mKdV surfaces from the variational principle for the Lagrange function, that is, a polynomial of the Gaussian and mean curvatures of the surfaces corresponding

İdiyopatik hiperkalsiüri (İH), serum kalsiyum de- ğerinin normal, idrarla atılan kalsiyum miktarının fazla olması ile karakterize, çoğu hastada semp- tomsuz seyretmesi nedeniyle

H 13 : Acentelerin bulundukları bölgeyle sigorta acentelerinin yaşamakta oldukları sorunlardan bilinç düzeyi.. arasında anlamlı bir

The effects of the damping properties on the stress distribution of the impacted incisor were evaluated by altering the damping ratio of the finite element model.. Our results

2, which showed that adsorption efficiency of As(III) increased very rapidly with an increase in dosage of red mud from 5 g/L to 100 g/L; a marginal increased was observed on