• Sonuç bulunamadı

Calibration transfer in temperature modulated gas sensor arrays

N/A
N/A
Protected

Academic year: 2021

Share "Calibration transfer in temperature modulated gas sensor arrays"

Copied!
9
0
0

Yükleniyor.... (view fulltext now)

Tam metin

(1)

ContentslistsavailableatScienceDirect

Sensors

and

Actuators

B:

Chemical

j ourn a l h o m e pa g e :w w w . e l s e v i e r . c o m / l o c a t e / s n b

Calibration

transfer

in

temperature

modulated

gas

sensor

arrays

L.

Fernandez

a,b,∗

,

S.

Guney

c

,

A.

Gutierrez-Galvez

a,b

,

S.

Marco

a aInstituteofBioengineeringofCatalonia(IBEC),Barcelona,Spain

bUniversityofBarcelona,Barcelona,Spain cBaskentUniversity,Ankara,Turkey

a

r

t

i

c

l

e

i

n

f

o

Articlehistory: Received27July2015

Receivedinrevisedform11February2016 Accepted26February2016

Availableonline10March2016 Keywords:

Calibrationtransfer Gassensorarray MOX

Temperaturemodulation

a

b

s

t

r

a

c

t

Shiftsinworkingtemperatureareanimportantissuethatpreventsthesuccessfultransferofcalibration modelsfromonechemicalinstrumenttoanother.Thiseffectisofspecialrelevancewhenworkingwith gassensorarraysmodulatedintemperature.Inthispaper,westudytheuseofmultivariatetechniques totransferthecalibrationmodelfromatemperaturemodulatedgassensorarraytoanotherwhena globalchangeoftemperatureoccurs.Todoso,webuilt12identicalmastersensorarrayscomposedof threedifferenttypesofcommercialFigarosensorsandacquiredadatasetofsensorresponsestothree puresubstances(ethanol,acetoneandbutanone)dosedat7concentrations.Themasterarraysarethen shiftedintemperature(from−50to50◦C,T=10C)andconsideredasslavearrays.Datacorrectionis

performedforanincreasingnumberoftransfersampleswith4differentcalibrationtransfertechniques: DirectStandardization,Piece-wiseDirectStandardization,OrthogonalSignalCorrectionandGeneralized LeastSquaresWeighting.Inordertoevaluatetheperformanceofthecalibrationtransfer,wecomparethe RootMeanSquareErrorofPrediction(RMSEP)ofmasterandslavearrays,foreachinstrumentcorrection. BestresultsareobtainedfromPiece-wiseDirectstandardization,whichexhibitsthelowerRMSEPvalues aftercorrectionforthesmallernumberoftransfersamples.

©2016ElsevierB.V.Allrightsreserved.

1. Introduction

Shiftsinworkingtemperaturepreventdirectcalibration

trans-ferbetweenchemical measuringinstruments[1].Thatistosay

thatcalibrationmodelsbuiltforinstrumentI1workingata

tem-peratureT1 experienceanimportant degradationonprediction

whenappliedtodatasamplesofinstrument I2 atT2 (T2 /=T1).

Thisisamatteroftheutmostimportancefortemperature

modu-latedmetaloxidegassensorarrays[2],wheretolerancesinheater

resistancesvalues,variationsontheworkingflowconditions,and

environmentalfluctuations cangiverisetoaglobalshiftT of

thesensornominaltemperatureprofile,andthereforeofthe

sen-sorresponse waveform. A naïveapproach toovercome invalid

calibrationtransferis tocreate independentcalibrationmodels

foreach ofthearrays. However,this isanimpracticalsolution,

sinceitimpliescostlyandlabor-intensivemeasurementperiods.A

preferablemethodologyistheuseofinstrumentstandardization

techniques[3]tocorrectthetemperatureshiftinsensor arrays

ascomparedtoareferencearray(fromnowonwewillreferto

∗ Corresponding authorat: Institute of Bioengineering of Catalonia (IBEC), Barcelona,Spain.Tel.:+34934034804;fax:+34934021148.

E-mailaddresses:lfernandez@el.ub.es,lfernrom@gmail.com(L.Fernandez).

thesearraysasslaveandmasterarraysrespectively)calibratedfora

completesetofexperimentalconditionsandapropertemperature

profile.Thecalibrationtransferthenreliesonthemeasurementof

onlyasmallsubsetofexperimentalpointsintheslavearray(herein

calledtransfersamples).

AccordingtoMarcoandGutierrez-Galvez[4],calibration

trans-fer can be realized following three different strategies: (i) by

transformingtheslaveinstrumentreadingstokeepthecalibration

modelofthemasterinstrumentstillvalidontheslaveinstrument,

(ii)bymodifyingthetargetlabelsofthesamplesfromtheslave

instrumentsoastomatchthoseobtainedfromthemaster

instru-ment,and (iii) byforcingmasterand slavereadingstobecome

moresimilarbeforecreatingthecalibrationmodel.Direct

Stan-dardization(DS)andPiecewiseDirectStandardization(PDS)arethe

morepopularmethodstostandardizeslaveinstrumentresponse

[5,6]. Withrespectto thesecond strategy, themostfrequently

usedmethodisunivariateMultiplicativeSignalCorrection(MSC)

[7].Finally,ComponentCorrection(CC),OrthogonalSignal

Correc-tion(OSC)andGeneralizedLeastSquaresWeighting(GLSW)are

commonlyusedtoremoveinstrument-to-instrument variability

[8–10].

Alargenumberofstudiesoninstrumentstandardizationhave

beenappliedtoNearInfraredSpectroscopy(NIRS).However,there

isanoticeablelackofstudiesaboutthestandardizationofgas

sen-http://dx.doi.org/10.1016/j.snb.2016.02.131

(2)

sorarrays,withtheexceptionof threeimportantcontributions.

Balabanetal.[11]builtacalibrationmodeltoidentifytheageof

milksampleswithachemicalsensorarrayof12conductive

poly-mers.Theytransferredthismodeltoadifferentarraywiththesame

sensors.Todoso,theytransformedtheslavearrayresponseinto

masterarrayreadingsbyapplyingthreedifferenttypesof

correc-tions:UnivariateRegression,MultivariateRegression(MLR)and

MultilayerPerceptrons(MLP).Thesecalibrationtransfermethods

wereevaluatedcomparingtheclassificationratesof themaster

andthetransformedmasterarrays.Multivariateregressionshowed

thebestperformanceinstandardizingtheinstruments.Ina

sim-ilarstudy,Tomicetal.[12] aimedatcompensatingtheeffectof

sensorreplacementinahybridsensorarraycomposedof12MOS

(metal-oxidesemiconductor)sensorsand5MOSFET(metal-oxide

semiconductorfield-effecttransistor).Theproblemtosolvewasto

distinguishbetweenmilkingoodconditionfromoff-flavormilk.

Theyacquiredtwicethe completeset ofmeasurements, before

and afterthe sensorreplacement. Thentheymodeled thedata

oftheoldsensorarray,whichwasselectedasthemaster

instru-ment.Measurementsobtainedfromthenewarraywereadapted

tobeusedinthemasterclassificationmodelwithtwodifferent

techniques:ComponentCorrection(CC) andMultiplicative Drift

Correction(MDC).Thelaterwasshowntobeslightlymoreefficient

inrectifyingtheslaveinstrumentresponseusingtheclassification

rateobtainedforthetestasafigureofmerit.Inamorerecentpaper,

Carmelet al. [13] showedthe possibility of buildingmappings

betweentwodifferentsensortechnologyarrays,a32conducting

polymerarray(CP)andan8sensorquartzmicrobalancemodule

(QMB),which wereexposed toasetof 23purechemicals.The

authorsbuiltaPCAmodelforeachinstrumentandtriedtoclassify

testsamplesaccordingtothedistancetothecentroidofthenearest

class.Afterthat,theytransformedtheprojecteddatafromone

sen-sorarraytotheotherinbothdirections.Toperformthistask,they

investigatedthreedifferentapproaches:MultivariateRegression

(MLR,PCR,PLS),NeuralNetworks(NN)andTesselation-based

Lin-earInterpolation(TLI).Again,theclassificationratewasthefigure

ofmeritusedtocomparemasterandthestandardizedslave

instru-ments.Theirresultsshowedthattheperformanceofthedifferent

standardizationmethodswasdependentonthemappingdirection,

obtainingthebestresultsfortheconversionfromCPtoQMBusing

NN,andapplyingTLIinthereversemapping.Inalltheseprevious

worksthecompletesetoftrainingsamplesusedtocreatethedata

modelswastransferredfromthemastertotheslaveinstrument.

Beyondthesevaluablecontributions,wehaveidentifiedthree

importantopenquestionsforcalibrationtransferine-noses.(i)

E-nosearrayscantunetheiroperationalparameterssoastoenhance

theirsensitivitytodifferentcompounds[14].Therefore,instrument

dissimilaritiesdue to tolerances ontheoperational parameters

mustbecorrectedaccordingly.(ii)Inordertomakeanefficient

cal-ibrationtransfer,alimitedsubsetofexperimentsshouldberunin

theslaveinstruments.Tothebestofourknowledge,nosystematic

studycomparingtheperformanceofdifferentcalibrationtransfer

techniqueswithrespecttothenumberoftransfersamplesisfound

intheliteraturefor e-noses.(iii)Continuouscalibrationmodels

(regressors)provideamoresensitivemeasureofthecalibration

transferperformancethandiscretecalibrationmodels(classifiers).

However,intheliteratureyoucanonlyfindclassificationmodels

transferredfromoneinstrumenttoanother.

Inthispaper,weaddressthesethreeopenquestionswiththe

followingstudy.Wehaveexploredthecalibrationtransfer

prob-lemfortemperaturemodulatedmetaloxidesensorarrayswhena

globalshiftoftemperatureoccurs(i).Inanexhaustivestudythat

includes132master-slaveinstrumentcombinations,wewill

eval-uatethequalityofthecalibrationtransferobtainedfromseveral

instrumentstandardizationtechniques.Wewillcomparemaster

andslaveerrors(RMSEP)fordifferenttemperatureshiftsandsizes

ofthetransfersampleset(ii)andonconcentrationprediction(iii).

2. Theory

In this paper, we follow two of the three different

strate-giesproposedintheliteratureforcalibrationtransfer[Marcoand

Gutierrez-Galvez[4]].Thefirstone consistsin transformingthe

sensorresponsesoftheslaveinstrumentsotheyresemblethoseof

themasterinstrument.Inthisway,wecandirectlyusethe

calibra-tionmodelbuiltonthesensorresponsesofthemasterinstrument

withthetransformedslavesensorresponses.Inthisstrategy,we

workonthespaceofresponsesofthemasterinstrument.To

trans-formthesensorresponsesoftheslaveinstrument,weusedDirect

Standardization(DS)andPiece-wiseDirectStandardization(PDS).

Thesecondstrategyconsistsoftransformingnotonlythesensor

responsesof theslave instrumentbut alsothose ofthe master

instrument to a joint master-slave space. Thus, the calibration

modelisbuiltinthisjointspace.Thesensorresponse

transforma-tionmethodsusedinthisstrategyareGeneralizedLeastSquares

Weighting(GLSW)andOrthogonalSignalCorrection(OSC).Fig.1

illustratesbothstrategies.

Inadditiontothis,werealizedasamplesubsetselectiontosort

outthesamplesusedtostudytheperformanceofthecalibration

transferintermsofthenumberofsamplesconsideredfromthe

slaveinstrument.We testtwodifferentapproaches:select

sam-plesbeforeoraftercreatingthecalibrationmodelofthemaster

instrument.Next,wedescribethemainfeaturesofthedifferent

calibrationtransfertechniquesusedinthispaper,aswellasthe

twomethodologiesusedtoperformsamplesubsetselection.

2.1. Calibrationtransfertechniques

Thepurposeofcalibrationtransferistocorrectinstrumental

dif-ferencessothatthereadingsoftheslaveinstrument(XS)become

similartothereadingsofthemasterinstrument(XM).Eachofthe

calibrationtransfertechniquesemployedinthis workhasbeen

trainedtoperformthistaskusingasubsetofsamplesofthe

train-ingsetofmasterandslaveinstruments.Thesesamplesareusually

calledtransfersamplesS.Thisnotationisemployedinthe

descrip-tionofthefollowingfourcalibrationtransfertechniques.

2.1.1. DirectStandardization(DS)

DirectStandardization[15]isacalibrationtransfertechnique

thatrelatesthereadingsoftheslaveinstrumenttothoseofthe

masteraccordingtothefollowinglineartransformation:

¯SM= ¯SS×F (1)

where ¯SM and ¯SS are the mean-centered response matrices of

transfersamplesofmasterandslaveinstrumentsandFthe

slave-to-mastertransformationmatrix,whichisestimatedastheproduct

¯SMandthepseudo-inverseof ¯SS:

F= ¯S+

S × ¯SM (2)

Inthisway,newsamplesfromtheslaveinstrumentXScanbe

projectedontothemasterinstrumentresponsespaceXM:

XTM=XTS×F (3)

2.1.2. Piece-wiseDirectStandardization(PDS)

TheDSmethodhasthelimitationofnotproperlytransformthe

responsesfromslavetomasterinstrumentswhenthenumberof

variablespersampleisgreaterthanthenumberofsamples.Thus,

thetransformationmatrixF(Eq.(2))becomesunderdetermined[7].

Piece-wiseDirectStandardization[16]avoidsthisproblemusing

(3)

a)

b)

Fig.1. Blockdiagramofthecalibrationtransferprocess(a)totransformtheresponsesoftheslaveinstrumentsoastoworkonthespaceofresponsesofthemasterinstrument (DSandPDS),and(b)totransformtheresponsesofthemasterandslaveinstrumentinordertoworkonajointmaster-slavespace(OSC,GLSW).

responseofthemasterinstrumentvariableswithinawindowof

sizewcenteredatthej-thvariabletothej-thvariableontheslave

array.TheresultingtransformationmatrixforthemethodFhasa

diagonalstructure:

F=diag



f1T...f2T...fkT



(4)

wherekisthenumberofvariablesonbothinstruments.The

projec-tionofdatafromthemasterontotheslaveinstrumentisperformed

followingEq.(3).

2.1.3. OrthogonalSignalCorrection(OSC)

OrthogonalSignalCorrection[17]aimstoremovethesourcesof

varianceoftheslaveinstrumentthatareorthogonaltothemaster

array.TheOSCalgorithmstartscalculatingthescoresvectort1of

thefirstPrincipalcomponentoftheslavearraymatrixoftransfer

samples,SS.Thatvectoristhenorthogonalizedagainstthemaster

instrumentresponsematrixoftransfersamplesSM,givingraiseto

t1 t1 =



1−SM×



SMT ×SM



−1 ×STM



×t1 (5)

Afterthat,theweightsw1oftheproductSSw1arecalculatedfor

themaximumprojectionontotheorthogonalscoresvectort1:

w1= ¯S+S ×t



1 (6)

SS+beingthepseudo-inverseofSS.Thescoresvectort1isthen

updated:

t1=SS×w1 (7)

Next,thealgorithmreturnstoEq.(5),wherethedetermination

oftheorthogonalscorevectorisrepeateduntilconvergence.At

thispoint,theloadingvectorcorrespondingtothefirstorthogonal

scoreiscomputedas:

p1=STS×t1



tT 1t1



−1 (8)

andthefirstOSCcomponentcanberemovedfromtheoriginal

SSmatrixobtainingthedeflateddatamatrixSS,1:

SS,1=SS,1−t1pT1 (9)

Finally,thecomplete processcanberepeateduntiltheN-th

OrthogonalSignalComponentasfollows:

SS,N=SS−

i=N



i=1

tipT1 (10)

2.1.4. GeneralizedLeastSquaresWeighting(GLSW)

Generalized Least Squares Weighting [18] method identifies

anddown-weightstheinstrumentchannels(features)

responsi-bleforthemajorsourcesofvariancebetweenmasterandslave

instruments.Tobuildthefilter,thecovariancematrixCfromthe

differencebetweenthemean-centeredmasterandslavematrixof

transfersamplesiscomputed:

C=



¯SM− ¯SS



T



¯SM− ¯SS



(11)

Next,Cisfactorizedastheproductofthreematricesthrough

singularvaluedecomposition(SVD):

C=VD2VT (12)

whereVandDare,respectively,theeigenvectorandthesingular

valuematrices.Afterthat,theSmatrixisweightedinthefollowing

way:

W=



D2

˛ +I (13)

BeingWthematrixoftheweightedeigenvalues,␣the

weight-ingparameterandItheidentitymatrix.Theparameter␣controls

thedegreeofdissimilarityallowedtotheinstruments.Whilehigh

valuesof␣increasethedownweighting,lowervaluesof␣reduce

itseffect.ThefilteringmatrixGisthencalculatedusingtheinverse

oftheweightedeigenvalues:

G=VW−1VT (14)

2.2. Samplesubsetselection

Samplesubsetselectioncanbeconductedintwomanners:(a)

(4)

multivariatemean)onthemasterinstrumentmatrix ¯XMthrough

thecalculusoftheleveragematrixH[19]:

H= ¯XM¯XMT (15)

And(b)byseekingforthemostinfluentialsamplesofthe

mas-ter’sinstrumentcalibrationmodel,approachingHastheleverage

matrixfortheinversecalibrationmodel ¯XM+,alsomean-centered:

H= ¯XM¯XM+ (16)

Inbothcases,themaximumdiagonalelementofHcorresponds

tothemostrelevantsampleinthetrainingset.Oncethefirstsample

isobtained,therestofthedatasetisorthogonalizedagainstit,anew

leveragematrixHiscreated,andthenextmostinfluentialsample

canbeselected.Table1showsthefirst12samplesselectedusing

bothmethods.

3. Methods

3.1. Experimental

Toperformthisstudy,weusedasetofthreedifferenttypesof

Figarometaloxidesemiconductorsensors(TGS-2600,TGS-2610,

TGS-2620)replicated12timeseach.Inallexperiments,onegroup

ofthreedifferentsensorswasusedasamasterinstrumenttofind

acalibrationmodelandtheresttreatedasslavearraystostudy

thecalibrationtransfer.Thereadoutofthesensorsisperformed

throughaloadresistor(RL=6.1K)inahalfbridgeconfiguration.

Wemodulatedthesensortemperatureswitharampprofile

rang-ingfrom ambienttemperature to495◦C±5◦C [20] in a period

of90s. The36 sensorswereexposedduring900sto3analytes

(ethanol,acetone,butanone)at7differentconcentrations(0,20,40,

60,80,100,120),givingriseto21differentexperiments.Detailed

information ontheodordeliverysystemand theestimation of

sample concentrationcan be foundin our previouswork [21].

Aftereachmeasurementblock,thesensorchamberwascleaned

insyntheticairoveraperiodof1800s.Usingthissetof

experi-ments,webuiltcalibrationmodelsofthemasterinstrumentsfor

thepredictionofethanol,acetoneandbutanoneconcentration.We

acquiredadifferentnumberofrepetitionsperexperimentfor

train-ing(7) andtesting(3)thecalibrationmodels.Experiments with

concentrationlevelsof0,40,80and120ppmwereacquiredand

usedasatrainingset(3pureanalytes×4concentrations×7

rep-etitions=84samples).Similarly,experimentswithconcentrations

of20,60, 100ppm wereacquiredand employedfortestingthe

calibrationmodels(3pureanalytes×3concentrations×3

repeti-tions=27samples).Theselectedtemperaturewindowusedforthe

calibrationofthemasterinstrumentswas[200–300]◦C.

3.2. Calibrationmodel

Wehave approachedthecalibrationofourinstrumentsasa

regressionproblemtoprovidemoresensitivitywhentransferring

thecalibrationmodeltoanotherinstrument.Inparticular,wehave

usedpartialleastsquaresregression(PLSR).WenotethatthePLSR

modelofthemasterinstrument providessimultaneouslya

pre-dictionfortheconcentrationofethanol,acetoneandbutanoneof

gassamples.Weemployedthesetoftrainingsamplestogenerate

thecalibrationmodels,whoselevelofcomplexity(i.e.,the

num-beroflatentvariables)wassetthrougha cross-validationstage

basedontheLeaveOneBlockOut(LOBO)approach.More

specifi-cally,eachblockofsamplesusedforcross-validationbelongedto

oneexperimenttypeofthetrainingset.Therefore,weemployed

12blocksofexperiments,with7sampleseach.Basically,theLOBO

methodcomputestheRootMeanSquareErrorinCross-Validation

(RMSECVM)astheaverageRMSEobtainedfrompredictingeachof

thedifferentblocksofexperimentsusingaPLSRmodelbuiltfrom

thecomplementaryblocksofexperiments:

RMSECVM= 1 C C



k=1



NV i=1

M j=1



˜yi,j,k−yi,j,k



2

NV×M

(17)

where ˜yi,j,kandvi,j,k are,respectively,theobservedandthe

pre-dicted concentration values for the i-th sample, the j-th pure

substanceandthek-thdatapartition,NVisthenumberofsamples

fortestingeachpartitionofthevalidationset(7),Mthenumber

ofpureanalytespresentinthedataset(3)andCthenumberof

blocksofexperimentsofthetrainingset(12).Thenumberoflatent

variablesofthecalibrationmodelwasdeterminedcalculatingthe

RMSECVM(lv)foranincreasingnumberoflatentvariables(lvfrom

1to10).WhenthecurrentRMSECVM (lv=r)didnotreducethe

previousRMSECVM(lv=r−1)valuemorethana1%,theselected

numberoflatentvariableswasdeterminedlv=r−1.

Themeasureofthemodel’sperformancefittingthetestdatafor

themasterarraywastheRootMeanSquaredErrorofPrediction

(RMSEPM): RMSEPM=



NT i=1

M j=1



˜yi,j−yi,j



2

NT×M

(18)

where ˜yi,jandyi,jwere,respectively,theobservedandthepredicted

concentrationvaluesforthesamplei-thsample,thej-thpure

ana-lyte,NTisthenumberofsamplesoftestset(27),Mthenumberof

pureanalytespresentinthedataset(3).TheRMSEPwasalsoused

asameasureofgoodnessoffitforthetransformedslavereadings

(RMSEPS).

3.3. Calibrationtransfer

Inthisstudy,wehaveevaluatedtheabilityoffourtechniques

(DS,PDS,OSC,GLSW)tocounteracttheeffectoftemperatureshift

oncalibrationtransfer.Aseriesof experimentswereconducted

wherethetemperatureoftheslaveswasshiftedaccordingtothe

following temperaturevalues:T=0◦C, ±10◦C,±20C, ±30C,

±40◦C,±50C.Fig.2showsthedramaticchangeonMOXsensor

waveformsduetotemperatureshifting(T=−50◦C),fora

temper-aturemodulatedTGS-2620sensorexposedtothe3testsetethanol

concentrations.Theeffectofthenumberoftransfersamples(from

1upto12)onthecalibrationtransferqualitywasstudied,giving

risetoatotalof17424differentcalibrationmodelstransferred(12

masters×11slaves×11temperatureshifts×12transfersamples)

perinstrumentstandardizationtechnique.Anexampleofthe

cali-brationtransferprocessisshowninfigure(Fig.3a–c)usingDirect

Standardization,foratemperatureshiftingofT=−50◦Cand12

transfersamples.ThesefiguresshowthescoresplotofaPCAmodel

for themasterarray (3a),theuncorrected slave array(3b)and

correctedslavearray(3c).Calibrationtransferallowsplacingtest

samplesbacktoitsoriginalpositionornearby.

3.3.1. Calibrationtransfermodels

Weoptimizedthe4calibrationtransfermethodsminimizing

thedifferencebetweenthemasterandthecorrectedslavearray

readings.Thisprocedureoptimizedtheparametersofthe

differ-entcalibrationtransferalgorithmsselectingthemamongasetof

possiblevalues.Therangeofparametervaluesdependedonthe

particulartechniqueemployed.Thewindowsizewwasselected

fromalistof1–31channelsforPDS.Themaximumvalueforwwas

limitedto31sothatallowedtemperatureshiftcorrectionbetween

instrumentswithoutmixingfeaturesfromdifferentsensorsofthe

masterarray.Therangeoftheweightingparameter␣inGLSWwas

(5)

dis-Table1

First12transfersamplesofthecalibrationdatasetselectedusingmethods1and2.

Method1 Method2

TransferSamples SampleReplicate Concentration(ppm) SampleReplicate Concentration(ppm)

Eth Acet But Eth Acet But

1 9 0 120 0 10 120 0 0 2 10 0 0 0 2 0 120 0 3 6 120 0 0 5 0 0 120 4 1 0 0 120 7 0 0 40 5 8 40 0 0 10 80 0 0 6 10 80 0 0 10 0 40 0 7 6 0 0 40 3 0 0 80 8 9 0 0 120 2 40 0 0 9 2 0 120 0 7 0 80 0 10 7 40 0 0 7 0 0 120 11 5 0 0 120 4 120 0 0 12 5 0 0 40 8 0 80 0 200 225 250 275 300 4 5 6 7 8 9 10 11 Reference Temperature (ºC) Sensor Response (V) Non shifted −50 ºC Shift TGS−2620 Ethanol 20 ppm Ethanol 60 ppm Ethanol 100 ppm

Fig.2.ResponseofaTGS2620sensorunitto20,60,100ppmofethanolwithin anominaltemperaturewindowof200–300◦Cfora)notemperatureshift

(gray-dashedcorves)andb)foratemperatureshiftofT=−50◦C(redcorves).(For

interpretationofthereferencestocolourinthisfigurelegend,thereaderisreferred tothewebversionofthisarticle).

similaritybetweenmasterandslaveinstruments.Largevaluesfor ␣(closeto1)areneededforcorrectinginstrumentaldissimilarities whoseimpactintheoverallvarianceofthedataiscomparableto theusefulvarianceofthemeasurement.Inpractice,weselected␣ fromthecollectionofvalues1,0.5,0.01,0.05,0.001,0.005.Finally, thenumberofOrthogonalComponents,ncomp,inOSCwassetin therangefrom2to12.Thereasonforthatwasthatthemaximum valueofthisparameterwaslimitedbynumberoftransfer sam-plesusedtoperformthecalibrationtransferbetweenmasterand slaveinstruments(from2to12).Thevalidationstarted perform-ingdatacorrectionforeachtechniqueandsetofparametervalues. Thecalibrationmodelofthemasterinstrumentwasthenapplied onthetransformedtrainingsetoftheslaveinstrumentandthe pre-dictionsofbothinstrumentswerecompared.Thecomparisonwas performedthroughthecalculationoftheRootMeanSquaredError ofCalibration(RMSECM-S): RMSECM−S=

Nc



i=1 M



j=1



yM i,j−y S i,j



NCM (19) whereyM

i,jandySi,jarethepredictedconcentrationvaluesofthe masterandslaveinstrumentsforthesamplei-thsampleandthe j-thpuresubstances,NC (84)isthenumberoftrainingsamples andMthenumberofsubstancespresentinthedataset(3).Theset

−20

−10

0

10

20

−10

−5

0

5

10

Scores on PC 1 (89.79%)

Scores on PC 2 (8.86%)

Train

Test

−20

−10

0

10

20

−10

−5

0

5

10

Scores on PC 1 (89.79%)

Scores on PC 2 (8.86%)

Train

S.Test

−20

−10

0

10

20

−10

−5

0

5

10

Scores on PC 1 (89.79%)

Scores on PC 2 (8.86%)

Train

C.Test

a)

b)

c)

Fig.3. (a–c)PCAplotofthesensorresponseforthetraining(blackcircles)andtest setswithinterleavedconcentrationsfor:a)themasterexperiments(bluesquares), (b)theuncorrectedslaves(reddiamonds)and(c)thecorrectedslavesafter perform-ingaDirectStandardization(greentriangles),(T=−50◦C).(Forinterpretationof

thereferencestocolourinthisfigurelegend,thereaderisreferredtothewebversion ofthisarticle).

ofparametervalueswhoseRMSECM-Swasnotabletobereduced inmorethan1%byanyothersetwasselectedtobuildthe cali-brationtransfermodel,foreachcalibrationtransferalgorithm.The

(6)

−50 −30 −10 10 30 50 0 20 40 60 80 100 120 140 160 180 200 Temperature Shift (ºC) RMSEP (ppm)

Average RMSEP vs Temperature Shift Slave Master

Fig.4.AveragedRMSEPSasfunctionofthetemperatureshiftforthenon-corrected

slaveinstruments.Noteastheworstpredictionsarebiasedtowardpositive tem-peratureshifts.

RMSEwasalsoemployedasameasureofgoodnessoffitforthe transformedslavereadingsofthetestset(RMSEPM-S).

4. Results

Togainsomeinsightontheeffectoftemperatureshifton cal-ibrationmodeltransfer,wewillshowfirstresultsofthemaster calibrationmodel applieddirectlyonthe slavewithout correc-tion. This will provide a baseline performance from where to improve.Then,wewillpresenttheresultsoftheslaveRMSEPfor anincreasingnumber oftransfersamplesand alsoas tempera-tureshiftsvariesintherangeof[–50,50]◦C.Finally,theresultsfor theRMSEPM-Sacrossalltemperatureshiftsandnumberoftransfer sampleswillprovideacomprehensivepictureoftheperformance ofthedifferentcalibrationtransfertechniques.

Inthisstudy,eachofthearrayreplicateswasusedbothasmaster instrumentfortheotherreplicatesorasslavearraytobecorrected byanothermasterarray.Whenactingasmasterinstruments,the arrayreplicatesproducedsimilarcalibrationmodelsintermsof complexityandmodelperformance.Mostofthearrayreplicates builta 4 latentvariablePLSR model (9out of12) whereasthe remaining(3)needed5latentvariablestoachievethe specifica-tionssetforcross-validation.TheaverageRMSEPMforthesetof masterinstrumentswas(4.7±1.1)ppm.

Thedirectapplicationofthemastercalibrationmodelinthe slave arrays led, as anticipated, to high RMSEPS. Fig. 4 shows

theaveragepredictionerrorofuncorrectedslavearrays(RMSEPS)

along temperature shift, for all possiblemaster-slave

combina-tions.TheRMSEPSwassubstantiallyhigherthantheRMSEPM.The

minimum differencebetweeninstruments wasfound when no

temperatureshiftwasproduced(RMSEPS|T=0=29.1±18.9ppm).

As canbe expected, theRMSEPS increased as thetemperature

shiftbetweeninstrumentsincreased.Though,thiseffectwasnot

symmetric:shiftstowardhighertemperaturesexhibitedagreater

penalty on the RMSEPS than shifts in the opposite direction.

Comparingthe mostextremetemperature shifts inboth

direc-tionswe found that theerror of prediction at T=+50◦C was

RMSEPS|T=+50◦C=128.2±41.4ppm,whereas at T=−50◦C was

RMSEPS|T=−50◦C=40.6±6.1ppm.

Afterdatacorrection,theRMSEPSoftheslavearrayswas

con-siderablyreduced.Thedegreeoferrorreductiondependedonthe

amountoftransfersamplesandtheshiftoftemperature.Asa

gen-eraltrend,theRMSEPSdecreasedgraduallyuntilsaturationasthe

numberoftransfersamplesincreased,foranytemperatureshift

andcalibrationtransfertechnique.Theinfluenceof thetransfer

samplesubsetsizeonthequalityofthecalibrationtransferis

illus-tratedinFig.5(a–d).ThefigureshowstheaverageRMSEPSofthe

corrected slaveinstrumentsof thedifferentcalibrationtransfer

techniques,foranincreasingnumber oftransfer samplesand a

fixedtemperatureshiftofT=−20◦C.DSandPDSobtainedthe

lowest RMSEPS levels (6.3±2.1ppm, and 6.1±1.4ppm,

respec-tively)althoughPDSneededafewernumberofsamplestoreach

errorsaturation(fiveinsteadofeleven).OSCandGLSW showed

higher RMSEPS values (around8ppm, for bothtechniques) and

slowertransitionstosaturation.Concerningtheinfluenceof

tem-perature shift, we found that the lowest RMSEPS were biased

toward negativeshifts,foranynumber oftransfersamplesand

calibrationtransfertechnique.However,PDSdemonstratedtobe

themostrobusttechniqueagainstthisdirection-dependenteffect.

Anexample ofthis behavior canbeseenonFig.6(a–d),where

weshowtheaverageRMSEPSofthecorrectedslavearraysusing

thefourinstrumentstandardizationmethods,forthecompleteset

ofthetemperatureshifts,fixingto5thenumberoftransfer

sam-ples.TheminimumRMSEPSvalueforDSandPDSisobtainedfora

temperatureshiftofT=−30◦C(9.4±4.0ppm,and6.2±1.6ppm,

respectively).Ontheotherhand,OSCandGLSWpresentedtheir

minimumRMSEPSvalueforT=0◦C(8.7±2.8ppmforOSCand

9.1±3.3ppmforGLSW).

Fig.7(a–d)showsthecolormapsplotsfortheaverageRMSEPM-S

ofthetransformedslaves,for eachnumber oftransfersamples,

temperature shiftand calibrationtransfer technique.Dark/light

tonesdenotegood/badperformancesincorrectinginstrument

dis-similarities.Toenhancethecontrastofplots,thepredictionerrors

below5ppmand above20ppmweresaturated,respectively,to

black andwhite colors.To comparethequalityof thedifferent

instrumentstandardizationmethodsweevaluatedthepercentage

ofslavearrayswitherrorsofpredictionbelow5ppminFig.7(a–d).

Accordingtothiscriterion,DSwasabletocorrectproperlyaround

the23%oftheseslavearrays.However,DSneededatleast5

trans-fersamplestoobtainpredictionerrorsbelow20ppm,andtended

topresentbettercorrectionsforslavearraysbiasedtoward

nega-tivetemperatureshifts.RegardingOSCandGLSW,theyexhibited

asimilarbehaviorinthesensethattheyexperienceddifficulties

tocorrecttheeffectoftemperatureshifting.Notethatboth

tech-niquesneededatleast8transfersamplestoreducetheprediction

errorbelow5ppm,forthenearesttemperatureshift(T=−10◦C).

Inanycase,noneofthemproperlycorrectedmorethana15%ofthe

slavearrays.Again,PDSpresentedthebestperformance,sincethe

techniquecouldcopebetterwiththeRMSEPerrorcontributiondue

tothetemperatureshiftdirection.Forinstance,PDSonlyneeded

5transfersamplestocorrectslavearraysintherangeof

tempera-tureshiftsthatgoesfromT=−20◦CtoT=20C.Consequently,

providedthehighestnumberofproperlyslavecorrections(60%of

theslavearrays).

5. Discussion

ThereasonwhyPDSperformedbettercorrectionsthanDSis

thatPDScreateslocalcorrectivemodelsforeachofthechannels

oftheslavearray,whereasDSgeneratesasingleglobalmodel,less

flexibleandmorecomplex.ThisseemstobesoalsoforOSCand

GLSW.Inadditiontothis,PDSdetectedwhichchannelsofthe

mas-terarray(withinawindow)weremorecorrelatedtotheparticular

channelontheslavearray,down-weightingthecontributionto

thecorrectionofthenon-importantchannels.Asaconsequence,

thenumberoftransfersamplesbetweenmasterandslavearrays

(7)

2

4

6

8

10

12

0

10

20

30

40

Transfer Samples

RMSEP (ppm)

DS

Slaves

Masters

2

4

6

8

10

12

0

10

20

30

40

RMSEP (ppm)

Transfer Samples

PDS

Slaves

Masters

2

4

6

8

10

12

0

10

20

30

40

Transfer Samples

RMSEP (ppm)

OSC

Slaves

Masters

2

4

6

8

10

12

0

10

20

30

40

Transfer Samples

RMSEP (ppm)

GLSW

Slaves

Masters

c)

d)

a)

b)

Fig.5.(a–d)AverageRMSEPSofthecorrectedslaveinstrumentsasfunctionofthenumberoftransfersamples,forafixedtemperatureshiftofT=−20◦C.Datacorrection

wasperformedusinga)DirectStandardization(blue-dottedline),b)Piece-wiseDirectStandardizationred-dottedline),(c)OrthogonalSignalCorrection(green-dottedline), and(d)GeneralizedLeastSquaresWeighting(black-dottedline).TheaveragedRMSEPMisincludedineachoftheplotswithcomparativepurposes.(Forinterpretationofthe

referencestocolourinthisfigurelegend,thereaderisreferredtothewebversionofthisarticle).

−50 −30 −10 10 30 50

0

10

20

30

40

Temperature Shift (ºC)

RMSEP (ppm)

DS

Slaves

Masters

−50 −30 −10 10 30 50

0

10

20

30

40

RMSEP (ppm)

Temperature Shift (ºC)

PDS

Slaves

Masters

−50 −30 −10 10 30 50

0

10

20

30

40

Temperature Shift (ºC)

RMSEP (ppm)

OSC

Slaves

Masters

−50 −30 −10 10 30 50

0

10

20

30

40

Temperature Shift (ºC)

RMSEP (ppm)

GLSW

Slaves

Masters

c)

b)

a)

d)

Fig.6. (a–d)AverageRMSEPSofthecorrectedslaveinstrumentsasfunctionofthetemperatureshift,foranumberof5transfersamples.Datacorrectionwasperformedusing

(a)DirectStandardization(blue-dottedline),(b)Piece-wiseDirectStandardizationred-dottedline),(c)OrthogonalSignalCorrection(green-dottedline),and(d)Generalized LeastSquaresWeighting(black-dottedline).TheaverageRMSEPMisincludedineachoftheplotswithcomparativepurposes.(Forinterpretationofthereferencestocolour

inthisfigurelegend,thereaderisreferredtothewebversionofthisarticle).

Thatsuggeststhatthepiece-wisedextensionsofOSCandGLSW

mayoutperformtheresultsobtainedfromtheglobalversionsof

thealgorithms,althoughthisdiscussionisbeyondthescopeofthis

paper.

The performance of a calibrationmodel with a highdegree

ofcomplexity is directlyrelated withtheavailabilityof a large

numberofsamples.Effectively,asweknowfromFig.5(a–d),an

incrementonthenumberoftransfersamplesprovides, uptoa

(8)

improve-Fig.7.(a–d)AverageRMSEPM-Softhecorrectedslaveinstrumentsasfunctionofthetemperatureshift,foreachtemperatureshiftandnumberoftransfersamples.Data

correctionwasperformedusing(a)DirectStandardization,(b)Piece-wiseDirectStandardization,(c)OrthogonalSignalCorrection,and(d)GeneralizedLeastSquares Weighting.

Table2a

Median,firstquartileandthirdquartileoftheoptimizedsetofparametersused compensateforatemperatureshiftof−20◦Cintheslavearrays,foradifferent

numberoftransfersampleandcalibrationtransfertechnique.

TransferSamples PDS(w) OSC(ncomp) GLSW(␣) Q1 Median Q3 Q1 Median Q3 Q1 Median Q3 2 1 9 11 2 2 2 0.1 0.1 0.1 3 3 9 12 3 3 3 0.1 0.1 0.1 4 5 9 17 2 4 4 0.01 0.1 0.1 5 8 12 19 2 5 5 0.01 0.05 0.1 6 7 13 21 2 6 6 0.01 0.05 0.05 7 7 15 23 3 5 7 0.01 0.01 0.05 8 9 15 23 3 5 8 0.005 0.01 0.05 9 9 15 27 3 6 9 0.005 0.01 0.01 10 11 17 27 3 6 8 0.005 0.01 0.01 11 13 21 27 3 6 8 0.005 0.01 0.01 12 13 21 27 3 6 8 0.003 0.01 0.01

mentisreflectedonthestructureofthecalibrationtransfermodels (Table2a),wheretheparametersthatgovernthesample

trans-formationsaregraduallymodifieduntilreachingsaturation.The

reasonforerrorsaturationonthecorrectedslavearrays canbe

deducedfromtheselectionofthecalibrationtransfersample

sub-set,showninTable1.Basically,foracertainnumberofselected

samples we start to find samples that belong to a previously

acquiredcategory(substanceandconcentration).Inconsequence,

nonewinformationisaddedtothetransfermodelsandtheerror

ofpredictionforthecorrectedslavearrayscannotdecrease

signif-icantly.Thetransitiontoerrorsaturationisfasterwhentheoption

forselectingthetransfersamplesisMethod2.Thatoccursbecause

itincludesarepresentativeofeachofthecategoriespresent on

thetraining set (with theexception of the air samples) before

addingsamplereplicates,whileMethod1discardsthreesample

categories.Inreferencetothecalibrationtransfermodels,those

methodsthatperformeddatacorrectionbeforetobuildthe

calibra-tionmodel(GLSWandOSC)exhibitedtheirbestresultsemploying

thesamplesubsetMethod1,whereasthosemethodsthatapplied

data correctionafter the creation of thecalibration model (DS

Table2b

Median,firstquartileandthirdquartileoftheoptimizedsetofparametersusedto correctthereadingsslavearrays,forthedifferenttemperatureshiftsandcalibration transfertechniqueandfixingto5thenumberoftransfersamples.

Temp.Shift(◦C) PDS(w) OSC(ncomp) GLSW(␣)

Q1 Median Q3 Q1 Median Q3 Q1 Median Q3 −50 17 19 29 5 5 5 0.01 0.05 0.1 −40 13 21 31 5 5 5 0.01 0.05 0.1 −30 9 21 27 5 5 5 0.01 0.05 0.1 −20 8 13 22 3 5 5 0.01 0.05 0.1 −10 7 11 20 2 4 5 0.01 0.05 0.1 0 5 9 13 2 3 5 0.01 0.01 0.05 10 5 7 13 3 5 5 0.01 0.05 0.1 20 7 9 11 2.5 5 5 0.01 0.1 0.1 30 11 13 15 3 5 5 0.01 0.1 0.1 40 11 13 16 5 5 5 0.01 0.1 0.1 50 15 13 19 5 5 5 0.01 0.1 0.1

andPDS)showedtheirbestperformanceforthesamplingsubset Method2.

Aspecialcommentdeservestheasymmetryinsensorresponse with respect to temperature shift. Revisiting the results of

Fig.6(a–d)weobservethatanincreaseonthetemperatureshift

forcesanincrementonthemodel’sspecifications(seeTable2b).

Interestingly,theasymmetryshowedbytheRMSEPSforopposite

temperatureshiftpositionsisalsopresentontheparameter

val-uesofallthecalibrationtransfertechniques.Thisisinagreement

withtheresultsobtainedinFig.4foradirectcalibrationtransfer

betweeninstrumentsshiftedintemperature,wherethehigher

pre-dictionerrorswerefoundtowardpositivetemperatureshifts.The

asymmetryontheerrorduetotemperatureshiftingwasproduced

becausetheuncorrectedslavearrayresponsetendstosaturateto

thehighestvoltagelevel(10V)foranysubstanceand

concentra-tion,asreviewinFig.2.Projectingtheresponseoftestsetsamples

ofaslavearrayshiftedtowardnegativesincrementsoftemperature

(T=–50◦C)onaPCAmodelbuiltfromthetrainingsetofamaster

array(Fig.3b)weseethatthesesamplesapproximatetothemaster

arrayresponsetoair.Takingthatresultasareferencewecan

(9)

theslavearraysamplesbyairmeasurementsofthemasterarray.

Thatgivesrisetoalowererrorboundaroundthe68ppm.Toward

positivetemperatureshifts,nosaturationontheuncorrectedslave

arrayresponseisproduced,sothetestsamplestendtospreadon

thePCAspaceandtheerroriscontinuouslyincreasing.

6. Conclusions

Inthepresentstudy,weshowedthattheeffectoftemperature

shiftsbetweenhomologousMOXsensorarraysleadstoinvalid

cal-ibrationtransfersfeaturedwithlowpredictiveperformanceand

direction-dependenterrormagnitudes.Toovercomeinstrument

dissimilaritiestheuseofcalibrationtransfertechniquesisrequired.

Amongthefourdifferentcalibrationtechniquesusedinthispaper,

thePiece-wiseDirectStandardizationprocedureshowedthebest

performanceinreducingtheslavearraypredictionerrorforany

temperatureshiftdirectionandusingfewertransfersamples.The

mainadvantageofthePDSmethodliedinitsabilitytocorrect

indi-viduallyeachoneoftheslaveinstrumentschannelsthroughtheuse

ofmultivariatelocalmodels.Thisresultsinacalibrationtransfer

modelwithlesscomplexityandmoreflexibility.

References

[1]J.Lin,Near-IRcalibrationtransferbetweendifferenttemperatures,Appl. Spectrosc.52(1998)1591–1596.

[2]A.P.Lee,B.J.Reedy,Temperaturemodulationinsemiconductorgassensing, Sens.ActuatorsB:Chem.60(1999)35–42.

[3]Y.D.Wang,D.J.Veltkamp,B.R.Kowalski,Multivariateinstrument standardization,Anal.Chem.63(1991)2750–2756.

[4]S.Marco,A.Gutiérrez-Gálvez,Signalanddataprocessingformachine olfactionandchemicalsensing:areview,IEEESens.J.12(2012)3189–3214.

[5]B.Walczak1,E.Bouveresse,D.L.Massart,Standardizationofnear-infrared spectrainthewaveletdomain,Chemometr.Intell.Lab.Syst.36(1997)41–51.

[6]E.Bouveresse,D.L.Massart,Improvementofthepiecewisedirect standardisationprocedureforthetransferofNIRspectraformultivariate calibration,Chemometr.Intell.Lab.Syst.32(1996)201–213.

[7]R.N.Feudale,N.A.Woodya,H.Tana,A.J.Mylesa,S.D.Brown,J.Ferré,Transfer ofmultivariatecalibrationmodels:areview,Chemometr.Intell.Lab.Syst.64 (2002)181–192.

[8]M.Padilla,A.Perera,I.Montoliu,A.Chaudhry,K.Persaud,S.Marco,Drift compensationofgassensorarraydatabyorthogonalsignalcorrection, Chemometr.Intell.Lab.Syst.100(2010)28–35.

[9]J.Sjöblom,O.Svensson,M.Josefson,H.Kullberg,S.Wold,Anevaluationof orthogonalsignalcorrectionappliedtocalibrationtransferofnearinfrared spectra,Chemometr.Intell.Lab.Syst.44(1998)229–244.

[10]Q.Fu,J.Wang,G.Lin,H.Suo,C.Zhao,Shortwavenear-Infraredspectrometer foralcoholdeterminationandtemperaturecorrection,J.Anal.MethodsChem. 2012(2012)7,pages.

[11]M.O.Balaban,F.Korel,A.Z.Odabasi,G.Folkes,Transportabilityofdata betweenelectronicnoses:Mathematicalmethods,Sens.ActuatorsB:Chem. 71(2000)203–211.

[12]O.Tomic,T.Eklov,K.Kvaal,J.E.Haugen,Recalibrationofagas-sensorarray systemrelatedtosensorreplacement,Anal.Chim.Acta512(2004)199–206.

[13]O.Shaham,L.Carmel,D.Harel,Onmappingsbetweenelectronicnoses,Sens. ActuatorsB:Chem.106(2005)76–82.

[14]A.Hierlemann,R.Gutierrez-Osuna,Higher-OrderChemicalSensing,Chem. Rev.108(2008)563–613.

[15]R.Tauler,B.Walczak,S.D.Brown,ComprehensiveChemometrics,Elsevier, 2009.

[16]Y.D.Wang,M.J.Lysaght,B.R.Kowalski,Improvementofmultivariate calibrationthroughinstrumentstandardization,Anal.Chem.64(1992) 562–564.

[17]T.Fearn,Onorthogonalsignalcorrection,Chemometr.Intell.Lab.Syst.50 (2000)47–52.

[18]H.Martens,M.Høy,B.M.Wise,R.Bro,P.B.Brockhoff,Pre-whiteningofdataby covariance-weightedpre-processing,J.Chemometr.17(2003)153–165.

[19]M.A.Sharaf,D.L.Illman,B.R.Kowalsky,Chemometrics,JohnWiley&Sons, NewYork,1986,pp.239.

[20]A.P.Lee,B.J.Reedy,Applicationofradiometrictemperaturemethodsto semiconductorgassensors,Sens.ActuatorsB:Chem.69(2000)37–45.

[21]J.Fonollosa,L.Fernández,R.Huerta,A.Gutiérrez-Gálvez,S.Marco, TemperatureoptimizationofmetaloxidesensorarraysusingMutual Information,Sens.ActuatorsB:Chem.187(2013)331–339. Biographies

LuisFernandezisaPh.D.studentattheDepartmentofElectronicsoftheUniversity ofBarcelona.HereceivedaB.S.inPhysics(2005)andaB.S.inElectricalEngineering (2011)fromtheUniversityofBarcelona.Hiscurrentresearchtopicisbio-inspired largesensorarraysbasedonmetaloxidesensors.

SeldaGuneyreceivedtheM.Sc.andPh.D.degreeinelectricalandelectronics engi-neeringfromKaradenizTechnicalUniversityofTrabzon,Turkeyin2007and2013 respectively.Currently,sheisanAssistantProfessorwiththeDepartmentof Elec-tricalandElectronics,BaskentUniversity.Herresearchinterestsinclude,control systems,patternrecognitionandsignalprocessingofgassensorarrays.

AgustinGutierrez-GalvezreceivedtheB.E.degreeinphysicsandelectrical engi-neeringfromtheUniversityofBarcelona,Catalonia,Spain,in1995and2000, respectively.HereceivedthePh.D.degreeincomputersciencefromTexasA&M Uni-versity,CollegeStation,in2005.HewasaJSPSPost-DoctoralFellowwiththeTokyo InstituteofTechnology,Tokyo,Japan,in2006,andcamebacktotheUniversityof BarcelonawithaMarieCurieFellowship.Currently,heisanAssistantProfessorwith theDepartmentofElectronics,UniversityofBarcelona.Hiscurrentresearch inter-estsincludebiologicallyinspiredprocessingforgassensorarrays,computational modelsoftheolfactorysystems,patternrecognition,anddynamicalsystems.

SantiagoMarcoreceivedtheDegreeinappliedphysicsandthePh.D.degreein microsystemtechnologyfromtheUniversityofBarcelona,Catalonia,Spain,in1988 and1993,respectively.HeheldaHumanCapitalMobilityGrantforapost-doctoral positionattheDepartmentofElectronicEngineering,UniversityofRome“Tor Ver-gata,”Rome,Italy,in1994.Since1995,hehasbeenanAssociateProfessorwiththe DepartmentofElectronics,UniversityofBarcelona.In2004,hehadasabbaticalleave atEADS-CorporateResearch,Munich,Germany,wherehewasinvolvedinion mobil-ityspectrometry.HehasrecentlybeenappointedleaderoftheArtificialOlfaction Laboratory,InstituteofBioengineeringofCatalonia,Barcelona,Spain.Hiscurrent researchinterestsincludethedevelopmentofsignal/dataprocessingalgorithmic solutionsforsmartchemicalsensingbasedinsensorarraysormicrospectrometers integratedtypicallyusingmicrosystemtechnologies.

Şekil

Fig. 1. Block diagram of the calibration transfer process (a) to transform the responses of the slave instrument so as to work on the space of responses of the master instrument (DS and PDS), and (b) to transform the responses of the master and slave instr
Fig. 2. Response of a TGS 2620 sensor unit to 20, 60, 100 ppm of ethanol within a nominal temperature window of 200–300 ◦ C for a) no temperature shift
Fig. 4. Averaged RMSEP S as function of the temperature shift for the non-corrected
Fig. 5. (a–d) Average RMSEP S of the corrected slave instruments as function of the number of transfer samples, for a fixed temperature shift of T = −20 ◦ C
+2

Referanslar

Benzer Belgeler

This experimental study aimed at investigating the effects of learner generated mnemonic narrative chain method on recall and recognition of vocabulary items in

Attachment of bacteria to human pharyngeal epithelial cells is the initial step in the pathogenesis of infection and S-carboxymethylcysteine (S-CMC) can modulate the attachment

二十多年前,臺北醫學院首任院長徐千田醫師,贈送羅 丹「沉思者」(‘Le Pensevr’ or‘The Thinker’, by Auguste Rodin,

Fakat matbuat hayatının bu unutulmaz şahsiyeti uzun = senelerden sonra kendine meslekte bir tekaüt hayatının lüzumu- j nu takdir eylemiş gibi «Vakit» e

Since our model is highly nonlinear (multi-modal), and for all practical purposes it can be perceived as a “black box” computational procedure, we need to utilize suitable

Up to this section some kinds of materials are presented, but many attempts are done on the other oxides to detect low concentration of NO x gases up to now, which involve

Figure 7 shows calibration curves of the capillary flowmeters 2 and 3 for measurements of lower flows of hydrogen, methane and carbon dioxide.. Calibration conditions of

In order for Conservation of Registered Cultural and Natural Monuments in utilization of individual and corporate ownership, a Conservation Development Plan needs to