• Sonuç bulunamadı

Stability inequalities for the delay pseudo-parabolic equations

N/A
N/A
Protected

Academic year: 2021

Share "Stability inequalities for the delay pseudo-parabolic equations"

Copied!
6
0
0

Yükleniyor.... (view fulltext now)

Tam metin

(1)

Volume 32 No. 2 2019, 289-294

ISSN: 1311-1728 (printed version); ISSN: 1314-8060 (on-line version) doi:http://dx.doi.org/10.12732/ijam.v32i2.10

STABILITY INEQUALITIES FOR THE DELAY PSEUDO−PARABOLIC EQUATIONS Ilhame Amirali1 §, Seda Cati2, Gabil M. Amiraliyev3

1Department of Mathematics

Faculty of Arts & Sciences

Duzce University, 81620, Duzce, TURKEY

2Department of Mathematics

Faculty of Arts & Sciences

Duzce University, 81620, Duzce, TURKEY

3Department of Mathematics

Faculty of Arts & Sciences

Erzincan University, 24000, Erzincan, TURKEY

Abstract: This paper deals with the initial-boundary value problem for linear pseudo-parabolic equation. Using the method of energy estimates the stabil-ity bounds obtained for the considered problem. Illustrative example is also presented.

AMS Subject Classification: 65M12, 65M15, 65M22, 34K28

Key Words: Sobolev equations, pseudo-parabolic equations, stability bounds

*

In the domain Q = Ω × [0, T ]; Ω = [0, l], Q = Ω × (0, T ], Ω = (0, l) we consider the following initial-boundary value problem for a pseudo-parabolic equation with delay

Received: January 9, 2019 2019 Academic Publicationsc

(2)

∂u(x, t) ∂t − a(t) ∂3u(x, t) ∂t∂x2 = b(t) ∂2u(x, t) ∂x2 + c(t) ∂2u(x, t − r) ∂x2 + d(t)u(x, t) + f (x, t), (x, t) ∈ Q, (1) u(x, t) = φ(x, t), x∈ Ω, −r ≤ t ≤ 0, (2) u(0, t) = u(l, t) = 0, t∈ [0, T ] , a(t) ≤ α ≤ 0, (3) where r > 0 represents the delay parameter, a ≥ α > 0, b, c, d, f and φ are given sufficiently smooth functions satisfying certain regularity conditions to be specified. The above equations are usually called Sobolev type or pseudo-parabolic equations, which appear in engineering fields, such as, for instance, flows of fluids through fissured rock, heat condition involving a thermodynamic temperature and a conductive temperature, and quasistationary processes in semiconductors (see, e.g. [1]-[6]). This existence and uniqueness result for pseudo-parabolic equations without delay can be found, e.g., in [7]-[11]. In the present study, using the method of energy estimates we have obtained the stability bounds for the problem (1)−(3). Illustrative example is also given.

Lemma 1. Let δ(t) ≥ 0 be the continuous function such that δ(t) ≤ δ∗+

Z t

0 {c0

δ(s) + c1δ(s − r)}ds, t >0,

δ(t) = ϕ(t), −r ≤ t ≤ 0,

with nonnegative constants δ∗, c0, c1 and ϕ∈ C [−r, 0]. Then

δ(t) ≤ δ∗exp  c0+ c1 Z 0 −r ϕ(s)ds  .

Proof. After replacing s − r = η we observe that Z t 0 δ(s − r)ds = Z t−r −r δ(η)dη = ( R0 −rϕ(t)dt, 0 ≤ t ≤ r, R0 −rϕ(t)dt + Rt−r 0 δ(η)dη, t≥ r. Therefore we have δ(t) ≤ δ∗+  c0+ c1 Z 0 −r ϕ(t)dt  Z t 0 δ(s)ds, which by using the Gronwall inequality completes the proof.

(3)

Theorem 2. For a, b, c, d ∈ C [0, T ], f ∈ C Q and ∂k

φ

∂φk ∈ C Ω × [−r, 0],

k= 0, 1 the solution of the delay boundary-value problem (1) − (3) satisfies the following stability bound:

αkuk2+ ∂u ∂x 2 ≤ " A+ c1 Z 0 −r αkφk2+ ∂φ ∂x 2 dt !# , 0 ≤ t ≤ T, (4) where (g, h) = Z l 0 g(x)h(x)dx, kgk2 = Z l 0 g2(x)dx, A= 2α kφk2+ ∂φ ∂x 2 + 4αT Z T 0 kf k 2ds, c0 = T max  4c2,2b2, c1 = 4α−2d 2 T, g= max [0,T ]|g(t)|.

Proof. Consider the identity  ∂u ∂t, ∂u ∂t  − a(t)  ∂3u ∂t∂x2, ∂u ∂t  = b(t) ∂ 2u ∂x2, ∂u ∂t  + c(t) ∂ 2u(·, t − r) ∂x2 , ∂u ∂t  + d(t)  u,∂u ∂t  +  f(t),∂u ∂t  . (5)

Next we will use the following relations  ∂u ∂t, ∂u ∂t  = ∂u ∂t 2 ,  ∂3u ∂t∂x2, ∂u ∂t  = ∂ 2u ∂t∂x, ∂2u ∂t∂x  = ∂2u ∂t∂x 2 , b(t) ∂ 2u ∂x2, ∂u ∂t  = b(t) ∂u ∂x, ∂2u ∂t∂x  ≤ µ1 ∂2u ∂t∂x 2 +¯b 2(t) 4µ1 ∂u ∂x 2 , c(t) ∂ 2u(·, t − r) ∂x2 , ∂u ∂t  = c(t) ∂u(·, t − r) ∂x , ∂2u ∂t∂x  ≤ µ2 ∂2u ∂t∂x 2 +c¯ 2(t) 4µ2 ∂u(·, t − r) ∂x 2 , d(t)  u,∂u ∂t  ≤ µ3 ∂u ∂t 2 +d¯ 2(t) 4µ3 kuk 2,

(4)

 f(t),∂u ∂t  ≤ µ4 ∂u ∂t 2 + 1 4µ4kf k 2.

Then from (5) we have

(1 − µ3− µ4) ∂u ∂t 2 + (a(t) − µ1− µ2) ∂2u ∂t∂x 2 ≤ ¯b 2 4µ1 ∂u ∂x 2 + c¯ 2 4µ2 ∂u(·, t − r) ∂x 2 + d¯ 2 4µ3 kuk 2+ 1 4µ4kf k 2. Choosing µ1= µ2= α 4, µ3 = µ4 = 1 4, we get ∂u ∂t 2 + α ∂2u ∂t∂x 2 ≤ ¯b 2 α ∂u ∂x 2 + 2 ¯d2kuk2+2¯c 2 α ∂u(·, t − r) ∂x 2 +2 kf k2. (6)

After integrating (6) on (0, t) and using the inequality g2(t) ≤ 2g2(0) + 2T Z t 0 |g ′ (s)|2ds, we obtain Z t 0 ∂u ∂t 2 ds 1 2T kuk 2 −T1 kφk2, Z t 0 ∂2u ∂t∂x 2 ds 1 2T ∂u ∂x 2 −T1 ∂φ ∂x 2 . Therefore the inequality (6) reduces to

αkuk2+ ∂u ∂x 2 ≤ 4αT ¯d2 Z t 0 kuk 2ds+ 2T¯b2Z t 0 ∂u ∂x 2 ds + 4T ¯c2 Z t 0 ∂u(·, t − r) ∂x 2 ds+ A. Denote δ(t) = α kuk2+ ∂u ∂x 2 ,

(5)

then δ(t) ≤ A + c0 Z t 0 δ(s)ds + c1 Z t 0 δ(s − r)ds. From here by fLemma1 we have

δ(t) ≤ " A+ c1 Z 0 −r αkφk2+ ∂φ ∂x 2! dt # exp (c0T + c1exp(c0T)t)

which immediately leads to (4).

Example ∂u ∂t − (1 + t) 2 ∂3u ∂t∂x2 = e −t∂2u ∂x2 + p 2 + t2∂2u(x, t − 1) ∂x2 + tu + t sin πx, 0 < t ≤ 1, 0 < x < 1, u(x, t) = te−t, 0 < x < 1, −1 ≤ t ≤ 0. Using the inequality (4) with

α = 1, ¯b = 1, ¯c =√3, d¯= 1, Z 0 −rkφk 2dt=Z 0 −r t 2 1 − e −2x dt = 1 − e−2x 6 , Z 0 −r ∂φ ∂x 2 dt= 1 − e −2x 6 ,

gives us the following stability estimate for the solution of our particular prob-lem: v(t) ≥ 0, kuk2+ ∂u ∂x 2 ≤  2 + 12 1 − e −2x 6  exp(4T + 12 exp(4T )t).

(6)

References

[1] C. Cuesta, C.J. Van Duijn, J. Hulshof, Infiltration in porous media with dynamic capillary pressure: travelling waves. Eur. J. Appl. Math., 11, No 4 (2000), 381-397.

[2] G. Barenblatt, V. Entov, V. Ryzhik, Theory of Fluid Flow Through Natural Rocks, Kluwer, Dordrecht (1990).

[3] G. M. Amiraliyev, E. Cimen, I. Amirali, M. Cakir, High-order finite dif-ference technique for delay pseudo-parabolic equations, J. Comput. Appl. Math., 321 (2017), 1-7; DOI: 10.1016/j.cam.2017.02.017.

[4] G. M. Amiraliyev, Y. Mamedov, Difference scheme on the uniform mesh for singularly perturbed pseudo-parabolic equation, Turkish J. Math., 19 (1995), 207-222.

[5] Quan Liu, Xuefeng Wang, Daniel De Kee, Mass transport through swelling membranes, International J. Engineering Science, 43 (2005), 1464-1470. [6] T.W. Ting, Certain non-steady flows of second-order fluids, Arch. Ratl.

Mech. Anal. 14(1963), 1-26.

[7] R.W. Caroll, R.E. Showalter, Singular and Degenerate Cauchy Problems, Mathematics in Science and Engineering 127, Academic Press, N. York (1976).

[8] H. Gajewski, K. Zacharias, ¨Uber eine weitere klasse nichtlinearer differen-tialgleichungen im Hilbert-Raum, Math. Nachr., 57 (1973), 127-140. [9] S.M. Hassanizadeh, W.G. Gray, Thermodynamic basis of capillary pressure

in porous media, Water Resour. Res., 29 (1993), 858-879.

[10] T. Kato, Quasi-linear equations of evolution, with applications to par-tial differenpar-tial equations, In: Spectral Theory and Differenpar-tial Equations, Lecture Notes in Math., 448, Springer, Berlin (1975), 2570.

[11] R.E. Showalter, Hilbert Space Methods for Partial Differential Equations, Monographs and Studies in Mathematics, Pitman, London (1977).

Referanslar

Benzer Belgeler

Bu bölüm üç kısımdan oluşmaktadır. İlk kısımda, Hessenberg matrisler üzerine çalışılmış ve tanımlanan matrislerin permanent ve determinantları ile bilinen

İki i’lâlın peşpeşe gelmesi ancak iki aynı harf yan yana geldiği zaman imkân- sızdır. Eğer نيعلا kelimesinin ortası kurallı olarak i’lâl olur ve “lam” harfi

Anadolu Selçuklu Veziri Sahip Ata Fahreddin Ali tarafından inşa ettirilmiş olan Konya Sahip Ata Külliyesi, Anadolu Selçuklu Dönemi Sanatının gerek mimarisi ve

Bu spekülasyonlara aç kl k getirmek amac yla bistüri, elektrokoter ve plasmakinetik enerjili peak plasmablade koter kullan larak yap lan kar n duvar ve intestinal kesilerden sonra

Baseline scores on the QLQ-C30 functioning scales from patients in both treat- ment arms were comparable to available reference values for patients with ES-SCLC; however, baseline

We prove a refinement of the p-soluble case of Robinson’s conjectural local characterization of the defect of an irreducible

Heyd, Foundations of Turkish Nationalism: The Life and Teachings of Ziya G €okalp, p.149; Swietochowski, Russian Azerbaijan 1905-1920: The Shaping of National Identity in a

Analysis of variance and variance components for grain yield, plant height, thousand kernel weight, hectolitre weight and SDS of 23 wheat genotypes grown in 7 environments...